Magnetized Micropillar-Enabled Wearable Sensors for Touchless and Intelligent Information Communication
Corresponding Author: Bingpu Zhou
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 197
Abstract
The wearable sensors have recently attracted considerable attentions as communication interfaces through the information perception, decoding, and conveying process. However, it is still challenging to obtain a sensor that can convert detectable signals into multiple outputs for convenient, efficient, cryptic, and high-capacity information transmission. Herein, we present a capacitive sensor of magnetic field based on a tilted flexible micromagnet array (t-FMA) as the proposed interaction interface. With the bidirectional bending capability of t-FMA actuated by magnetic torque, the sensor can recognize both the magnitude and orientation of magnetic field in real time with non-overlapping capacitance signals. The optimized sensor exhibits the high sensitivity of over 1.3 T−1 and detection limit down to 1 mT with excellent durability. As a proof of concept, the sensor has been successfully demonstrated for convenient, efficient, and programmable interaction systems, e.g., touchless Morse code and Braille communication. The distinguishable recognition of the magnetic field orientation and magnitude further enables the sensor unit as a high-capacity transmitter for cryptic information interaction (e.g., encoded ID recognition) and multi-control instruction outputting. We believe that the proposed magnetic field sensor can open up a potential avenue for future applications including information communication, virtual reality device, and interactive robotics.
Highlights:
1 A wearable capacitive sensor, which can recognize both the magnitude and orientation of magnetic field with non-overlapping capacitance signals, was proposed as touchless and intelligent communication channel.
2 The integrated sensor exhibited the high sensitivity of over 1.3 T-1 and detection limit down to 1 mT with excellent durability (over 10,000 cycles).
3 The sensor revealed as an efficient and ternary interface with high-capacity for information interaction, e.g., Morse code, Braille communication, and multi-control instruction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado, Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019). https://doi.org/10.1038/s41586-019-1687-0
- J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao, Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019). https://doi.org/10.1002/adma.201904765
- R. Yin, D. Wang, S. Zhao, Z. Lou, G. Shen, Wearable sensors-enabled human–machine interaction systems: from design to application. Adv. Funct. Mater. 31, 2008936 (2020). https://doi.org/10.1002/adfm.202008936
- J. Yin, R. Hinchet, H. Shea, C. Majidi, Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202007428
- F. He, X. You, W. Wang, T. Bai, G. Xue, Recent progress in flexible microstructural pressure sensors toward human–machine interaction and healthcare applications. Small Methods 5, 2001041 (2021). https://doi.org/10.1002/smtd.202001041
- F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu, Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications Adv. Sci. 7, 2000261 (2020). https://doi.org/10.1002/advs.202000261
- B. Ji, Q. Zhou, J. Wu, Y. Gao, W. Wen, Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array. ACS Appl. Mater. Interfaces 12, 31021 (2020). https://doi.org/10.1021/acsami.0c08910
- Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu, Flexible hybrid electronics for digital healthcare. Adv. Mater. 32, 1902062 (2020). https://doi.org/10.1002/adma.201902062
- T.-Y. Wang, J.-L. Meng, M.-Y. Rao, Z.-Y. He, L. Chen, Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 20, 4111–4120 (2020). https://doi.org/10.1021/acs.nanolett.9b05271
- H. Wang, S. Li, Y. Wang, H. Wang, X. Shen, Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32, 1908214 (2020). https://doi.org/10.1002/adma.201908214
- C. Wang, C. Pan, Z. Wang, Electronic skin for closed-loop systems. ACS Nano 13 12287–12293 (2019). https://doi.org/10.1021/acsnano.9b06576
- X. Liao, W. Song, X. Zhang, C. Yan, T. Li, A bioinspired analogous nerve towards artificial intelligence Nat. Commun. 11, 268 (2020). https://doi.org/10.1038/s41467-019-14214-x
- H. Tan, Q. Tao, I. Pande, S. Majumdar, F. Liu, Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat. Commun. 11, 1369 (2020). https://doi.org/10.1038/s41467-020-15105-2
- X. Pu, Q. Tang, W. Chen, Z. Huang, G. Liu, Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy 76, 105047 (2020). https://doi.org/10.1016/j.nanoen.2020.105047
- X. Liao, W. Song, X. Zhang, H. Zhan, Y. Liu, Hetero-contact microstructure to program discerning tactile interactions for virtual reality. Nano Energy 60, 127–136 (2019). https://doi.org/10.1016/j.nanoen.2019.03.048
- S. Kim, M. Amjadi, T.-I. Lee, Y. Jeong, D. Kwon, Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices. ACS Appl. Mater. Interfaces 11, 23639–23648 (2019). https://doi.org/10.1021/acsami.9b07636
- B. Ji, Y. Mao, Q. Zhou, J. Zhou, G. Chen, Facile preparation of hybrid structure based on mesodome and micropillar arrays as flexible electronic skin with tunable sensitivity and detection range. ACS Appl. Mater. Interfaces 11, 28060–28071 (2019). https://doi.org/10.1021/acsami.9b08419
- C. Qiu, F. Wu, C. Lee, M.R. Yuce, Self-powered control interface based on Gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy 70, 104456 (2020). https://doi.org/10.1016/j.nanoen.2020.104456
- P. Makushko, E.S. Oliveros Mata, G.S. Cañón Bermúdez, M. Hassan, S. Laureti et al., Flexible magnetoreceptor with tunable intrinsic logic for on-skin touchless human-machine interfaces. Adv. Funct. Mater. 2101089 (2021). https://doi.org/10.1002/adfm.202101089
- Q. Zhou, B. Ji, B. Hu, S. Li, Y. Xu, Tilted magnetic micropillars enabled dual-mode sensor for tactile/touchless perceptions. Nano Energy 78, 105382 (2020). https://doi.org/10.1016/j.nanoen.2020.105382
- J. Ge, X. Wang, M. Drack, O. Volkov, M. Liang, A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat. Commun. 10, 4405 (2019). https://doi.org/10.1038/s41467-019-12303-5
- C. Zhang, S. Liu, X. Huang, W. Guo, Y. Li et al., A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 62, 164–170 (2019). https://doi.org/10.1016/j.nanoen.2019.05.046
- B. Ślusarek, I. Dudzikowski, Application of permanent magnets made from ndfeb powder and from mixtures of powders in dc motors. J. Magn. Magn. Mater. 239, 597–599 (2002). https://doi.org/10.1016/S0304-8853(01)00646-1
- B.M. Ma, J.W. Herchenroeder, B. Smith, M. Suda, D.N. Brown, Recent development in bonded ndfeb magnets. J. Magn. Magn. Mater. 239, 418–423 (2002). https://doi.org/10.1016/S0304-8853(01)00609-6
- Y. Lin, Z. Hu, M. Zhang, T. Xu. S. Feng, Magnetically induced low adhesive direction of nano/micropillar arrays for microdroplet transport. Adv. Funct. Mater. 28, 1800163 (2018). https://doi.org/10.1002/adfm.201800163
- H. Gu, Q. Boehler, H. Cui, E. Secchi, G. Savorana, Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 11, 2637 (2020). https://doi.org/10.1038/s41467-020-16458-4
- W. Hu, G.Z. Lum, M. Mastrangeli, M. Sitti, Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018). https://doi.org/10.1038/nature25443
- J.A.-C. Liu, J.H. Gillen, S.R. Mishra, B.A. Evans, J.B. Tracy, Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics. Sci. Adv. 5, eaaw2897 (2019). https://doi.org/10.1126/sciadv.aaw2897
- D.-M. Drotlef, P. Blümler, A. Campo del, Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet). Adv. Mater. 26 775–779 (2014). https://doi.org/10.1002/adma.201303087
- Y. Kim, G.A. Parada, S. Liu, X. Zhao, Ferromagnetic soft continuum robots. Sci. Robot. 4 7329, (2019). https://doi.org/10.1126/scirobotics.aax7329
- A. Kaidarova, M.A. Khan, S. Amara, N.R. Geraldi, M.A. Karimi, Tunable, flexible composite magnets for marine monitoring applications. Adv. Eng. Mater. 20, 1800229 (2018). https://doi.org/10.1002/adem.201800229
- B. Ji, Q. Zhou, B. Hu, J. Zhong, J. Zhou, Bio-inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultrawide linearity range. Adv. Mater. (2021). https://doi.org/10.1002/adma.202100859
- Q. Zhou, B. Ji, Y. Wei, B. Hu, Y. Gao, A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. J. Mater. Chem. A 7, 27334–27346 (2020). https://doi.org/10.1039/C9TA10489E
- S.R.A. Ruth, L. Beker, H. Tran, V.R. Feig, N. Matsuhisa, Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv. Funct. Mater. 30, 1903100 (2019). https://doi.org/10.1002/adfm.201903100
- B. Ji, Q. Zhou, G. Chen, Z. Dai, S. Li, In situ assembly of a wearable capacitive sensor with a spine-shaped dielectric for shear-pressure monitoring. J. Mater. Chem. C 8 15634–15645 (2020). https://doi.org/10.1039/D0TC03110K
- Z. Wang, T. Wang, M. Zhuang, H. Xu, Stretchable polymer composite with a 3D segregated structure of PEDOT:PSS for multifunctional touchless sensing. ACS Appl. Mater. Interfaces 11 45301–45309 (2019). https://doi.org/10.1021/acsami.9b16353
- J. Ferri, R. Llinares Llopis, J. Moreno, J. Ibañez Civera, E. Garcia-Breijo, A wearable textile 3D gesture recognition sensor based on screen-printing technology. Sensors 19, 5068 (2019). https://doi.org/10.3390/s19235068
- C. Zhang, S. Liu, X. Huang, W. Guo, Y. Li, A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 62, 164–170 (2019). https://doi.org/10.1016/j.nanoen.2019.05.046
- G.S. Cañón Bermúdez, H. Fuchs, L. Bischoff, J. Fassbender, D. Makarov, Electronic-skin compasses for geomagnetic field-driven artificial magnetoreception and interactive electronics. Nat. Electron. 1, 589–595 (2018). https://doi.org/10.1038/s41928-018-0161-6
- L. Lόpez-Mir, C. Frontera, H. Aramberri, K. Bouzehouane, J. Cisneros-Fernández, Anisotropic sensor and memory device with a ferromagnetic tunnel barrier as the only magnetic element. Sci. Rep. 8, 861 (2018). https://doi.org/10.1038/s41598-017-19129-5
- M. Ha, G.S. Cañón Bermúdez, T. Kosub, I. Mönch, Y. Zabila et al., Printable and stretchable giant magnetoresistive sensors for highly compliant and skin-conformal electronics. Adv. Mater. 33, 2005521 (2021). https://doi.org/10.1002/adma.202005521
- A. Alfadhel, J. Kosel, Magnetic nanocomposite cilia tactile sensor. Adv. Mater. 27, 7888–7892 (2015). https://doi.org/10.1002/adma.201504015
- M. Melzer, J.I. Mönch, D. Makarov, Y. Zabila, G.S. Cañón Bermúdez et al., Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27, 1274–1280 (2015). https://doi.org/10.1002/adma.201405027
- P.N. Granell, G. Wang, G.S. Cañon Bermudez, T. Kosub, F. Golmar et al., Highly compliant planar Hall effect sensor with sub 200 nT sensitivity. npj Flex. Electron. 3, 3 (2019). https://doi.org/10.1038/s41528-018-0046-9
- G.S. Cañón Bermúdez, D. Makarov, Magnetosensitive e-skins for interactive devices. Adv. Funct. Mater. 2007788 (2021). https://doi.org/10.1002/adfm.202007788
- L. Jogschies, D. Klaas, R. Kruppe, J. Rittinger, P. Taptimthong, Recent developments of magnetoresistive sensors for industrial applications. Sensors 15, 28665–28689 (2015). https://doi.org/10.3390/s151128665
- H. Niu, S. Gao, W. Yue, Y. Li, W. Zhou, Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 16, 1904774 (2020) https://doi.org/10.1002/smll.201904774
- X.-F. Zhao, C.-Z. Hang, H.-L. Lu, K. Xu, H. Zhang, A skin-like sensor for intelligent Braille recognition. Nano Energy 68, 104346 (2020) https://doi.org/10.1016/j.nanoen.2019.104346
References
X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado, Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019). https://doi.org/10.1038/s41586-019-1687-0
J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao, Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019). https://doi.org/10.1002/adma.201904765
R. Yin, D. Wang, S. Zhao, Z. Lou, G. Shen, Wearable sensors-enabled human–machine interaction systems: from design to application. Adv. Funct. Mater. 31, 2008936 (2020). https://doi.org/10.1002/adfm.202008936
J. Yin, R. Hinchet, H. Shea, C. Majidi, Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202007428
F. He, X. You, W. Wang, T. Bai, G. Xue, Recent progress in flexible microstructural pressure sensors toward human–machine interaction and healthcare applications. Small Methods 5, 2001041 (2021). https://doi.org/10.1002/smtd.202001041
F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu, Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications Adv. Sci. 7, 2000261 (2020). https://doi.org/10.1002/advs.202000261
B. Ji, Q. Zhou, J. Wu, Y. Gao, W. Wen, Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array. ACS Appl. Mater. Interfaces 12, 31021 (2020). https://doi.org/10.1021/acsami.0c08910
Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu, Flexible hybrid electronics for digital healthcare. Adv. Mater. 32, 1902062 (2020). https://doi.org/10.1002/adma.201902062
T.-Y. Wang, J.-L. Meng, M.-Y. Rao, Z.-Y. He, L. Chen, Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 20, 4111–4120 (2020). https://doi.org/10.1021/acs.nanolett.9b05271
H. Wang, S. Li, Y. Wang, H. Wang, X. Shen, Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32, 1908214 (2020). https://doi.org/10.1002/adma.201908214
C. Wang, C. Pan, Z. Wang, Electronic skin for closed-loop systems. ACS Nano 13 12287–12293 (2019). https://doi.org/10.1021/acsnano.9b06576
X. Liao, W. Song, X. Zhang, C. Yan, T. Li, A bioinspired analogous nerve towards artificial intelligence Nat. Commun. 11, 268 (2020). https://doi.org/10.1038/s41467-019-14214-x
H. Tan, Q. Tao, I. Pande, S. Majumdar, F. Liu, Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat. Commun. 11, 1369 (2020). https://doi.org/10.1038/s41467-020-15105-2
X. Pu, Q. Tang, W. Chen, Z. Huang, G. Liu, Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy 76, 105047 (2020). https://doi.org/10.1016/j.nanoen.2020.105047
X. Liao, W. Song, X. Zhang, H. Zhan, Y. Liu, Hetero-contact microstructure to program discerning tactile interactions for virtual reality. Nano Energy 60, 127–136 (2019). https://doi.org/10.1016/j.nanoen.2019.03.048
S. Kim, M. Amjadi, T.-I. Lee, Y. Jeong, D. Kwon, Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices. ACS Appl. Mater. Interfaces 11, 23639–23648 (2019). https://doi.org/10.1021/acsami.9b07636
B. Ji, Y. Mao, Q. Zhou, J. Zhou, G. Chen, Facile preparation of hybrid structure based on mesodome and micropillar arrays as flexible electronic skin with tunable sensitivity and detection range. ACS Appl. Mater. Interfaces 11, 28060–28071 (2019). https://doi.org/10.1021/acsami.9b08419
C. Qiu, F. Wu, C. Lee, M.R. Yuce, Self-powered control interface based on Gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy 70, 104456 (2020). https://doi.org/10.1016/j.nanoen.2020.104456
P. Makushko, E.S. Oliveros Mata, G.S. Cañón Bermúdez, M. Hassan, S. Laureti et al., Flexible magnetoreceptor with tunable intrinsic logic for on-skin touchless human-machine interfaces. Adv. Funct. Mater. 2101089 (2021). https://doi.org/10.1002/adfm.202101089
Q. Zhou, B. Ji, B. Hu, S. Li, Y. Xu, Tilted magnetic micropillars enabled dual-mode sensor for tactile/touchless perceptions. Nano Energy 78, 105382 (2020). https://doi.org/10.1016/j.nanoen.2020.105382
J. Ge, X. Wang, M. Drack, O. Volkov, M. Liang, A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat. Commun. 10, 4405 (2019). https://doi.org/10.1038/s41467-019-12303-5
C. Zhang, S. Liu, X. Huang, W. Guo, Y. Li et al., A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 62, 164–170 (2019). https://doi.org/10.1016/j.nanoen.2019.05.046
B. Ślusarek, I. Dudzikowski, Application of permanent magnets made from ndfeb powder and from mixtures of powders in dc motors. J. Magn. Magn. Mater. 239, 597–599 (2002). https://doi.org/10.1016/S0304-8853(01)00646-1
B.M. Ma, J.W. Herchenroeder, B. Smith, M. Suda, D.N. Brown, Recent development in bonded ndfeb magnets. J. Magn. Magn. Mater. 239, 418–423 (2002). https://doi.org/10.1016/S0304-8853(01)00609-6
Y. Lin, Z. Hu, M. Zhang, T. Xu. S. Feng, Magnetically induced low adhesive direction of nano/micropillar arrays for microdroplet transport. Adv. Funct. Mater. 28, 1800163 (2018). https://doi.org/10.1002/adfm.201800163
H. Gu, Q. Boehler, H. Cui, E. Secchi, G. Savorana, Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 11, 2637 (2020). https://doi.org/10.1038/s41467-020-16458-4
W. Hu, G.Z. Lum, M. Mastrangeli, M. Sitti, Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018). https://doi.org/10.1038/nature25443
J.A.-C. Liu, J.H. Gillen, S.R. Mishra, B.A. Evans, J.B. Tracy, Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics. Sci. Adv. 5, eaaw2897 (2019). https://doi.org/10.1126/sciadv.aaw2897
D.-M. Drotlef, P. Blümler, A. Campo del, Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet). Adv. Mater. 26 775–779 (2014). https://doi.org/10.1002/adma.201303087
Y. Kim, G.A. Parada, S. Liu, X. Zhao, Ferromagnetic soft continuum robots. Sci. Robot. 4 7329, (2019). https://doi.org/10.1126/scirobotics.aax7329
A. Kaidarova, M.A. Khan, S. Amara, N.R. Geraldi, M.A. Karimi, Tunable, flexible composite magnets for marine monitoring applications. Adv. Eng. Mater. 20, 1800229 (2018). https://doi.org/10.1002/adem.201800229
B. Ji, Q. Zhou, B. Hu, J. Zhong, J. Zhou, Bio-inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultrawide linearity range. Adv. Mater. (2021). https://doi.org/10.1002/adma.202100859
Q. Zhou, B. Ji, Y. Wei, B. Hu, Y. Gao, A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. J. Mater. Chem. A 7, 27334–27346 (2020). https://doi.org/10.1039/C9TA10489E
S.R.A. Ruth, L. Beker, H. Tran, V.R. Feig, N. Matsuhisa, Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv. Funct. Mater. 30, 1903100 (2019). https://doi.org/10.1002/adfm.201903100
B. Ji, Q. Zhou, G. Chen, Z. Dai, S. Li, In situ assembly of a wearable capacitive sensor with a spine-shaped dielectric for shear-pressure monitoring. J. Mater. Chem. C 8 15634–15645 (2020). https://doi.org/10.1039/D0TC03110K
Z. Wang, T. Wang, M. Zhuang, H. Xu, Stretchable polymer composite with a 3D segregated structure of PEDOT:PSS for multifunctional touchless sensing. ACS Appl. Mater. Interfaces 11 45301–45309 (2019). https://doi.org/10.1021/acsami.9b16353
J. Ferri, R. Llinares Llopis, J. Moreno, J. Ibañez Civera, E. Garcia-Breijo, A wearable textile 3D gesture recognition sensor based on screen-printing technology. Sensors 19, 5068 (2019). https://doi.org/10.3390/s19235068
C. Zhang, S. Liu, X. Huang, W. Guo, Y. Li, A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 62, 164–170 (2019). https://doi.org/10.1016/j.nanoen.2019.05.046
G.S. Cañón Bermúdez, H. Fuchs, L. Bischoff, J. Fassbender, D. Makarov, Electronic-skin compasses for geomagnetic field-driven artificial magnetoreception and interactive electronics. Nat. Electron. 1, 589–595 (2018). https://doi.org/10.1038/s41928-018-0161-6
L. Lόpez-Mir, C. Frontera, H. Aramberri, K. Bouzehouane, J. Cisneros-Fernández, Anisotropic sensor and memory device with a ferromagnetic tunnel barrier as the only magnetic element. Sci. Rep. 8, 861 (2018). https://doi.org/10.1038/s41598-017-19129-5
M. Ha, G.S. Cañón Bermúdez, T. Kosub, I. Mönch, Y. Zabila et al., Printable and stretchable giant magnetoresistive sensors for highly compliant and skin-conformal electronics. Adv. Mater. 33, 2005521 (2021). https://doi.org/10.1002/adma.202005521
A. Alfadhel, J. Kosel, Magnetic nanocomposite cilia tactile sensor. Adv. Mater. 27, 7888–7892 (2015). https://doi.org/10.1002/adma.201504015
M. Melzer, J.I. Mönch, D. Makarov, Y. Zabila, G.S. Cañón Bermúdez et al., Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27, 1274–1280 (2015). https://doi.org/10.1002/adma.201405027
P.N. Granell, G. Wang, G.S. Cañon Bermudez, T. Kosub, F. Golmar et al., Highly compliant planar Hall effect sensor with sub 200 nT sensitivity. npj Flex. Electron. 3, 3 (2019). https://doi.org/10.1038/s41528-018-0046-9
G.S. Cañón Bermúdez, D. Makarov, Magnetosensitive e-skins for interactive devices. Adv. Funct. Mater. 2007788 (2021). https://doi.org/10.1002/adfm.202007788
L. Jogschies, D. Klaas, R. Kruppe, J. Rittinger, P. Taptimthong, Recent developments of magnetoresistive sensors for industrial applications. Sensors 15, 28665–28689 (2015). https://doi.org/10.3390/s151128665
H. Niu, S. Gao, W. Yue, Y. Li, W. Zhou, Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 16, 1904774 (2020) https://doi.org/10.1002/smll.201904774
X.-F. Zhao, C.-Z. Hang, H.-L. Lu, K. Xu, H. Zhang, A skin-like sensor for intelligent Braille recognition. Nano Energy 68, 104346 (2020) https://doi.org/10.1016/j.nanoen.2019.104346