Near-Instantaneously Self-Healing Coating toward Stable and Durable Electromagnetic Interference Shielding
Corresponding Author: Swee Ching Tan
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 190
Abstract
Durable electromagnetic interference (EMI) shielding is highly desired, as electromagnetic pollution is a great concern for electronics’ stable performance and human health. Although a superhydrophobic surface can extend the service lifespan of EMI shielding materials, degradation of its protection capability and insufficient self-healing are troublesome issues due to unavoidable physical/chemical damages under long-term application conditions. Here, we report, for the first time, an instantaneously self-healing approach via microwave heating to achieve durable shielding performance. First, a hydrophobic 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS) layer was coated on a polypyrrole (PPy)-modified fabric (PPy@POTS), enabling protection against the invasion of water, salt solution, and corrosive acidic and basic solutions. Moreover, after being damaged, the POTS layer can, for the first time, be instantaneously self-healed via microwave heating for a very short time, i.e., 4 s, benefiting from the intense thermal energy generated by PPy under electromagnetic wave radiation. This self-healing ability is also repeatable even after intentionally severe plasma etching, which highlights the great potential to achieve robust and durable EMI shielding applications. Significantly, this approach can be extended to other EMI shielding materials where heat is a triggering stimulus for healing thin protection layers. We envision that this work could provide insights into fabricating EMI shielding materials with durable performance for portable and wearable devices, as well as for human health care.
Highlights:
1 Stable and durable electromagnetic interference (EMI) shielding performance was achieved in harsh environments by applying a thin protective coating of hydrophobic 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS) on polypyrrole (PPy)-modified fabrics.
2 The damaged POTS layer can be instantaneously self-healed (~ 4 s) for the first time by the microwave heating effect of PPy.
3 The self-healing process is repeatable even after severe damages, highlighting the great potential to exploit EMI shielding materials’ instant microwave heating effects to enable robust and durable EMI shielding applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Zhou, S. Padgett, Z. Cai, G. Conta, Y. Wu et al., Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 155, 112064 (2020). https://doi.org/10.1016/j.bios.2020.112064
- G. Chen, C. Au, J. Chen, Textile triboelectric nanogenerators for wearable pulse wave monitoring. Trends Biotechnol. (2020). https://doi.org/10.1016/j.tibtech.2020.12.011
- G. Chen, Y. Li, M. Bick, J. Chen, Smart textiles for electricity generation. Chem. Rev. 120, 3668–3720 (2020). https://doi.org/10.1021/acs.chemrev.9b00821
- J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu et al., Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138 (2016). https://doi.org/10.1038/nenergy.2016.138
- Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
- D.D.L. Chung, Materials for electromagnetic interference shielding. Mater. Chem. Phys. 255, 123587 (2020). https://doi.org/10.1016/j.matchemphys.2020.123587
- Q.W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29, 1806819 (2019). https://doi.org/10.1002/adfm.201806819
- L.C. Jia, K.Q. Ding, R.J. Ma, H.L. Wang, W.J. Sun et al., Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Adv. Mater. Technol. 4, 1800503 (2019). https://doi.org/10.1002/admt.201800503
- Y. Wang, W. Wang, R. Xu, M. Zhu, D. Yu, Flexible, durable and thermal conducting thiol-modified rGO-WPU/cotton fabric for robust electromagnetic interference shielding. Chem. Eng. J. 360, 817–828 (2019). https://doi.org/10.1016/j.cej.2018.12.045
- A. Lacy-Hulbert, R.C. Wilkins, T.R. Hesketh, J.C. Metcalfe, Cancer risk and electromagnetic fields. Nature 375, 23–23 (1995). https://doi.org/10.1038/375023a0
- L. Hardell, M. Carlberg, Health risks from radiofrequency radiation, including 5G, should be assessed by experts with no conflicts of interest. Oncol. Lett. 20, 15–15 (2020). https://doi.org/10.3892/ol.2020.11876
- J.W. Frank, Electromagnetic fields, 5G and health: what about the precautionary principle? J. Epidemiol. Commun. H. 75, 562–566 (2021). https://doi.org/10.1136/jech-2019-213595
- S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian et al., Leveraging triboelectric nanogenerators for bioengineering. Matter 4, 845–887 (2021). https://doi.org/10.1016/j.matt.2021.01.006
- X. Zhao, H. Askari, J. Chen, Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 5, 1391–1431 (2021). https://doi.org/10.1016/j.joule.2021.03.013
- J. Luo, L. Wang, X. Huang, B. Li, Z. Guo et al., Mechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11, 10883–10894 (2019). https://doi.org/10.1021/acsami.8b22212
- L.C. Jia, L. Xu, F. Ren, P.G. Ren, D.X. Yan et al., Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 144, 101–108 (2019). https://doi.org/10.1016/j.carbon.2018.12.034
- K. Meng, S. Zhao, Y. Zhou, Y. Wu, S. Zhang et al., A wireless textile-based sensor system for self-powered personalized health care. Matter 2, 896–907 (2020). https://doi.org/10.1016/j.matt.2019.12.025
- C. Lan, M. Guo, C. Li, Y. Qiu, Y. Ma et al., Axial alignment of carbon nanotubes on fibers to enable highly conductive fabrics for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 7477–7485 (2020). https://doi.org/10.1021/acsami.9b21698
- S. Zhang, Y. Ma, L. Suresh, A. Hao, M. Bick et al., Carbon nanotube reinforced strong carbon matrix composites. ACS Nano 14, 9282–9319 (2020). https://doi.org/10.1021/acsnano.0c03268
- L. Geng, P. Zhu, Y. Wei, R. Guo, C. Xiang et al., A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding. Cellulose 26, 2833–2847 (2019). https://doi.org/10.1007/s10570-019-02284-5
- P. Gahlout, V. Choudhary, Microwave shielding behaviour of polypyrrole impregnated fabrics. Compos. Part-B. Eng. 175, 107093 (2019). https://doi.org/10.1016/j.compositesb.2019.107093
- Z. Stempien, T. Rybicki, E. Rybicki, M. Kozanecki, M.I. Szynkowska, In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synth. Met. 202, 49–62 (2015). https://doi.org/10.1016/j.synthmet.2015.01.027
- Y. Wang, W. Wang, Q. Qi, N. Xu, D. Yu, Layer-by-layer assembly of PDMS-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding. Cellulose 27, 2829–2845 (2020). https://doi.org/10.1007/s10570-019-02949-1
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
- E. Pakdel, J. Wang, S. Kashi, L. Sun, X. Wang, Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments. Adv. Colloid Interface Sci. 277, 102116 (2020). https://doi.org/10.1016/j.cis.2020.102116
- M. Sang, S. Wang, S. Liu, M. Liu, L. Bai et al., A hydrophobic, self-powered, electromagnetic shielding PVDF-based wearable device for human body monitoring and protection. ACS Appl. Mater. Interfaces 11, 47340–47349 (2019). https://doi.org/10.1021/acsami.9b16120
- L.C. Jia, W.J. Sun, L. Xu, J.F. Gao, K. Dai et al., Facile construction of a superhydrophobic surface on a textile with excellent electrical conductivity and stretchability. Ind. Eng. Chem. Res. 59, 7546–7553 (2020). https://doi.org/10.1021/acs.iecr.9b06990
- X. Li, Y. Li, T. Guan, F. Xu, J. Sun, Durable, Highly electrically conductive cotton fabrics with healable superamphiphobicity. ACS Appl. Mater. Interfaces 10, 12042–12050 (2018). https://doi.org/10.1021/acsami.8b01279
- D. Chen, D. Wang, Y. Yang, Q. Huang, S. Zhu et al., Self-healing materials for next-generation energy harvesting and storage devices. Adv. Energy Mater. 7, 1700890 (2017). https://doi.org/10.1002/aenm.201700890
- Y. Li, S. Chen, M. Wu, J. Sun, All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings. Adv. Mater. 26, 3344–3348 (2014). https://doi.org/10.1002/adma.201306136
- P. Setny, R. Baron, J.A. McCammon, How can hydrophobic association be enthalpy driven? J. Chem. Theory Comput. 6, 2866–2871 (2010). https://doi.org/10.1021/ct1003077
- K. Song, W. Ye, X. Gao, H. Fang, Y. Zhang et al., Synergy between dynamic covalent boronic ester and boron–nitrogen coordination: strategy for self-healing polyurethane elastomers at room temperature with unprecedented mechanical properties. Mater. Horiz. 8, 216–223 (2021). https://doi.org/10.1039/D0MH01142H
- H. Wang, Y. Xue, J. Ding, L. Feng, X. Wang et al., Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew. Chem. Int. Ed. 50, 11433–11436 (2011). https://doi.org/10.1002/anie.201105069
- S. Chen, X. Li, Y. Li, J. Sun, Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9, 4070–4076 (2015). https://doi.org/10.1021/acsnano.5b00121
- E. Kobina Sam, D. Kobina Sam, X. Lv, B. Liu, X. Xiao et al., Recent development in the fabrication of self-healing superhydrophobic surfaces. Chem. Eng. J. 373, 531–546 (2019). https://doi.org/10.1016/j.cej.2019.05.077
- L. Zou, L. Yao, Y. Ma, X. Li, S. Sailimujiang et al., Comparison of polyelectrolyte and sodium dodecyl benzene sulfonate as dispersants for multiwalled carbon nanotubes on cotton fabrics for electromagnetic interference shielding. J. Appl. Polym. Sci. 131, 40588 (2014). https://doi.org/10.1002/app.40588
- L. Zou, C. Lan, L. Yang, Z. Xu, C. Chu et al., The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding. Diam. Relat. Mater. 104, 107757 (2020). https://doi.org/10.1016/j.diamond.2020.107757
- J. Ren, C. Wang, X. Zhang, T. Carey, K. Chen et al., Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 111, 622–630 (2017). https://doi.org/10.1016/j.carbon.2016.10.045
- Y. Li, L. Li, J. Sun, Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed. 49, 6129–6133 (2010). https://doi.org/10.1002/anie.201001258
- K.L. Yick, K.P.S. Cheng, R.C. Dhingra, Y.L. How, Comparison of mechanical properties of shirting materials measured on the KES-F and FAST instruments. Text. Res. J. 66, 622–633 (1996). https://doi.org/10.1177/004051759606601003
- X. Liu, X. Jin, L. Li, J. Wang, Y. Yang et al., Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J. Mater. Chem. A 8, 12526–12537 (2020). https://doi.org/10.1039/D0TA03048A
- P. Saini, V. Choudhary, S.K. Dhawan, Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization. Polym. Adv. Technol. 23, 343–349 (2012). https://doi.org/10.1002/pat.1873
- L. Zou, S. Zhang, X. Li, C. Lan, Y. Qiu et al., Step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shielding. Adv. Mater. Interfaces 3, 1500476 (2016). https://doi.org/10.1002/admi.201500476
- F. Geyer, M. D’Acunzi, A. Sharifi-Aghili, A. Saal, N. Gao et al., When and how self-cleaning of superhydrophobic surfaces works. Sci. Adv. 6, eaaw9727–eaaw9727 (2020). https://doi.org/10.1126/sciadv.aaw9727
- L. Boinovich, A. Emelyanenko, A wetting experiment as a tool to study the physicochemical processes accompanying the contact of hydrophobic and superhydrophobic materials with aqueous media. Adv. Colloid Interface Sci. 179–182, 133–141 (2012). https://doi.org/10.1016/j.cis.2012.06.010
- J. Kujawa, S. Cerneaux, W. Kujawski, Investigation of the stability of metal oxide powders and ceramic membranes grafted by perfluoroalkylsilanes. Colloid Surf. A-Physicochem. Eng. Asp. 443, 109–117 (2014). https://doi.org/10.1016/j.colsurfa.2013.10.059
- X. Ding, W. Wang, Y. Wang, R. Xu, D. Yu, High-performance flexible electromagnetic shielding polyimide fabric prepared by nickel-tungsten-phosphorus electroless plating. J. Alloys Compd. 777, 1265–1273 (2019). https://doi.org/10.1016/j.jallcom.2018.11.120
- F. Zhang, T. Zhou, Y. Liu, J. Leng, Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci. Rep. 5, 11152 (2015). https://doi.org/10.1038/srep11152
- Y. Liu, X. Pei, Z. Liu, B. Yu, P. Yan et al., Accelerating the healing of superhydrophobicity through photothermogenesis. J. Mater. Chem. A 3, 17074–17079 (2015). https://doi.org/10.1039/C5TA04252F
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- V. Solouki Bonab, V. Karimkhani, I. Manas-Zloczower, Ultra-fast microwave assisted self-healing of covalent adaptive polyurethane networks with carbon Nanotubes. Macromol. Mater. Eng. 304, 180 (2019). https://doi.org/10.1002/mame.201800405
- N. Paul, L. Suresh, J.V. Vaghasiya, L. Yang, Y. Zhang et al., Self-powered all weather sensory systems powered by Rhodobacter sphaeroides protein solar cells. Biosens. Bioelectron. 165, 112423 (2020). https://doi.org/10.1016/j.bios.2020.112423
- D.K. Nandakumar, J.V. Vaghasiya, L. Suresh, T.N. Duong, S.C. Tan, Organic ionic conductors infused aqueous inverse-melting electrolyte aiding crack recovery in flexible supercapacitors functional down to −30 °C. Mater. Today Energy 17, 100428 (2020). https://doi.org/10.1016/j.mtener.2020.100428
References
Z. Zhou, S. Padgett, Z. Cai, G. Conta, Y. Wu et al., Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 155, 112064 (2020). https://doi.org/10.1016/j.bios.2020.112064
G. Chen, C. Au, J. Chen, Textile triboelectric nanogenerators for wearable pulse wave monitoring. Trends Biotechnol. (2020). https://doi.org/10.1016/j.tibtech.2020.12.011
G. Chen, Y. Li, M. Bick, J. Chen, Smart textiles for electricity generation. Chem. Rev. 120, 3668–3720 (2020). https://doi.org/10.1021/acs.chemrev.9b00821
J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu et al., Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138 (2016). https://doi.org/10.1038/nenergy.2016.138
Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
D.D.L. Chung, Materials for electromagnetic interference shielding. Mater. Chem. Phys. 255, 123587 (2020). https://doi.org/10.1016/j.matchemphys.2020.123587
Q.W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29, 1806819 (2019). https://doi.org/10.1002/adfm.201806819
L.C. Jia, K.Q. Ding, R.J. Ma, H.L. Wang, W.J. Sun et al., Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Adv. Mater. Technol. 4, 1800503 (2019). https://doi.org/10.1002/admt.201800503
Y. Wang, W. Wang, R. Xu, M. Zhu, D. Yu, Flexible, durable and thermal conducting thiol-modified rGO-WPU/cotton fabric for robust electromagnetic interference shielding. Chem. Eng. J. 360, 817–828 (2019). https://doi.org/10.1016/j.cej.2018.12.045
A. Lacy-Hulbert, R.C. Wilkins, T.R. Hesketh, J.C. Metcalfe, Cancer risk and electromagnetic fields. Nature 375, 23–23 (1995). https://doi.org/10.1038/375023a0
L. Hardell, M. Carlberg, Health risks from radiofrequency radiation, including 5G, should be assessed by experts with no conflicts of interest. Oncol. Lett. 20, 15–15 (2020). https://doi.org/10.3892/ol.2020.11876
J.W. Frank, Electromagnetic fields, 5G and health: what about the precautionary principle? J. Epidemiol. Commun. H. 75, 562–566 (2021). https://doi.org/10.1136/jech-2019-213595
S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian et al., Leveraging triboelectric nanogenerators for bioengineering. Matter 4, 845–887 (2021). https://doi.org/10.1016/j.matt.2021.01.006
X. Zhao, H. Askari, J. Chen, Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 5, 1391–1431 (2021). https://doi.org/10.1016/j.joule.2021.03.013
J. Luo, L. Wang, X. Huang, B. Li, Z. Guo et al., Mechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11, 10883–10894 (2019). https://doi.org/10.1021/acsami.8b22212
L.C. Jia, L. Xu, F. Ren, P.G. Ren, D.X. Yan et al., Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 144, 101–108 (2019). https://doi.org/10.1016/j.carbon.2018.12.034
K. Meng, S. Zhao, Y. Zhou, Y. Wu, S. Zhang et al., A wireless textile-based sensor system for self-powered personalized health care. Matter 2, 896–907 (2020). https://doi.org/10.1016/j.matt.2019.12.025
C. Lan, M. Guo, C. Li, Y. Qiu, Y. Ma et al., Axial alignment of carbon nanotubes on fibers to enable highly conductive fabrics for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 7477–7485 (2020). https://doi.org/10.1021/acsami.9b21698
S. Zhang, Y. Ma, L. Suresh, A. Hao, M. Bick et al., Carbon nanotube reinforced strong carbon matrix composites. ACS Nano 14, 9282–9319 (2020). https://doi.org/10.1021/acsnano.0c03268
L. Geng, P. Zhu, Y. Wei, R. Guo, C. Xiang et al., A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding. Cellulose 26, 2833–2847 (2019). https://doi.org/10.1007/s10570-019-02284-5
P. Gahlout, V. Choudhary, Microwave shielding behaviour of polypyrrole impregnated fabrics. Compos. Part-B. Eng. 175, 107093 (2019). https://doi.org/10.1016/j.compositesb.2019.107093
Z. Stempien, T. Rybicki, E. Rybicki, M. Kozanecki, M.I. Szynkowska, In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synth. Met. 202, 49–62 (2015). https://doi.org/10.1016/j.synthmet.2015.01.027
Y. Wang, W. Wang, Q. Qi, N. Xu, D. Yu, Layer-by-layer assembly of PDMS-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding. Cellulose 27, 2829–2845 (2020). https://doi.org/10.1007/s10570-019-02949-1
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
E. Pakdel, J. Wang, S. Kashi, L. Sun, X. Wang, Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments. Adv. Colloid Interface Sci. 277, 102116 (2020). https://doi.org/10.1016/j.cis.2020.102116
M. Sang, S. Wang, S. Liu, M. Liu, L. Bai et al., A hydrophobic, self-powered, electromagnetic shielding PVDF-based wearable device for human body monitoring and protection. ACS Appl. Mater. Interfaces 11, 47340–47349 (2019). https://doi.org/10.1021/acsami.9b16120
L.C. Jia, W.J. Sun, L. Xu, J.F. Gao, K. Dai et al., Facile construction of a superhydrophobic surface on a textile with excellent electrical conductivity and stretchability. Ind. Eng. Chem. Res. 59, 7546–7553 (2020). https://doi.org/10.1021/acs.iecr.9b06990
X. Li, Y. Li, T. Guan, F. Xu, J. Sun, Durable, Highly electrically conductive cotton fabrics with healable superamphiphobicity. ACS Appl. Mater. Interfaces 10, 12042–12050 (2018). https://doi.org/10.1021/acsami.8b01279
D. Chen, D. Wang, Y. Yang, Q. Huang, S. Zhu et al., Self-healing materials for next-generation energy harvesting and storage devices. Adv. Energy Mater. 7, 1700890 (2017). https://doi.org/10.1002/aenm.201700890
Y. Li, S. Chen, M. Wu, J. Sun, All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings. Adv. Mater. 26, 3344–3348 (2014). https://doi.org/10.1002/adma.201306136
P. Setny, R. Baron, J.A. McCammon, How can hydrophobic association be enthalpy driven? J. Chem. Theory Comput. 6, 2866–2871 (2010). https://doi.org/10.1021/ct1003077
K. Song, W. Ye, X. Gao, H. Fang, Y. Zhang et al., Synergy between dynamic covalent boronic ester and boron–nitrogen coordination: strategy for self-healing polyurethane elastomers at room temperature with unprecedented mechanical properties. Mater. Horiz. 8, 216–223 (2021). https://doi.org/10.1039/D0MH01142H
H. Wang, Y. Xue, J. Ding, L. Feng, X. Wang et al., Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew. Chem. Int. Ed. 50, 11433–11436 (2011). https://doi.org/10.1002/anie.201105069
S. Chen, X. Li, Y. Li, J. Sun, Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9, 4070–4076 (2015). https://doi.org/10.1021/acsnano.5b00121
E. Kobina Sam, D. Kobina Sam, X. Lv, B. Liu, X. Xiao et al., Recent development in the fabrication of self-healing superhydrophobic surfaces. Chem. Eng. J. 373, 531–546 (2019). https://doi.org/10.1016/j.cej.2019.05.077
L. Zou, L. Yao, Y. Ma, X. Li, S. Sailimujiang et al., Comparison of polyelectrolyte and sodium dodecyl benzene sulfonate as dispersants for multiwalled carbon nanotubes on cotton fabrics for electromagnetic interference shielding. J. Appl. Polym. Sci. 131, 40588 (2014). https://doi.org/10.1002/app.40588
L. Zou, C. Lan, L. Yang, Z. Xu, C. Chu et al., The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding. Diam. Relat. Mater. 104, 107757 (2020). https://doi.org/10.1016/j.diamond.2020.107757
J. Ren, C. Wang, X. Zhang, T. Carey, K. Chen et al., Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 111, 622–630 (2017). https://doi.org/10.1016/j.carbon.2016.10.045
Y. Li, L. Li, J. Sun, Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed. 49, 6129–6133 (2010). https://doi.org/10.1002/anie.201001258
K.L. Yick, K.P.S. Cheng, R.C. Dhingra, Y.L. How, Comparison of mechanical properties of shirting materials measured on the KES-F and FAST instruments. Text. Res. J. 66, 622–633 (1996). https://doi.org/10.1177/004051759606601003
X. Liu, X. Jin, L. Li, J. Wang, Y. Yang et al., Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J. Mater. Chem. A 8, 12526–12537 (2020). https://doi.org/10.1039/D0TA03048A
P. Saini, V. Choudhary, S.K. Dhawan, Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization. Polym. Adv. Technol. 23, 343–349 (2012). https://doi.org/10.1002/pat.1873
L. Zou, S. Zhang, X. Li, C. Lan, Y. Qiu et al., Step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shielding. Adv. Mater. Interfaces 3, 1500476 (2016). https://doi.org/10.1002/admi.201500476
F. Geyer, M. D’Acunzi, A. Sharifi-Aghili, A. Saal, N. Gao et al., When and how self-cleaning of superhydrophobic surfaces works. Sci. Adv. 6, eaaw9727–eaaw9727 (2020). https://doi.org/10.1126/sciadv.aaw9727
L. Boinovich, A. Emelyanenko, A wetting experiment as a tool to study the physicochemical processes accompanying the contact of hydrophobic and superhydrophobic materials with aqueous media. Adv. Colloid Interface Sci. 179–182, 133–141 (2012). https://doi.org/10.1016/j.cis.2012.06.010
J. Kujawa, S. Cerneaux, W. Kujawski, Investigation of the stability of metal oxide powders and ceramic membranes grafted by perfluoroalkylsilanes. Colloid Surf. A-Physicochem. Eng. Asp. 443, 109–117 (2014). https://doi.org/10.1016/j.colsurfa.2013.10.059
X. Ding, W. Wang, Y. Wang, R. Xu, D. Yu, High-performance flexible electromagnetic shielding polyimide fabric prepared by nickel-tungsten-phosphorus electroless plating. J. Alloys Compd. 777, 1265–1273 (2019). https://doi.org/10.1016/j.jallcom.2018.11.120
F. Zhang, T. Zhou, Y. Liu, J. Leng, Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci. Rep. 5, 11152 (2015). https://doi.org/10.1038/srep11152
Y. Liu, X. Pei, Z. Liu, B. Yu, P. Yan et al., Accelerating the healing of superhydrophobicity through photothermogenesis. J. Mater. Chem. A 3, 17074–17079 (2015). https://doi.org/10.1039/C5TA04252F
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
V. Solouki Bonab, V. Karimkhani, I. Manas-Zloczower, Ultra-fast microwave assisted self-healing of covalent adaptive polyurethane networks with carbon Nanotubes. Macromol. Mater. Eng. 304, 180 (2019). https://doi.org/10.1002/mame.201800405
N. Paul, L. Suresh, J.V. Vaghasiya, L. Yang, Y. Zhang et al., Self-powered all weather sensory systems powered by Rhodobacter sphaeroides protein solar cells. Biosens. Bioelectron. 165, 112423 (2020). https://doi.org/10.1016/j.bios.2020.112423
D.K. Nandakumar, J.V. Vaghasiya, L. Suresh, T.N. Duong, S.C. Tan, Organic ionic conductors infused aqueous inverse-melting electrolyte aiding crack recovery in flexible supercapacitors functional down to −30 °C. Mater. Today Energy 17, 100428 (2020). https://doi.org/10.1016/j.mtener.2020.100428