High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life
Corresponding Author: Gibaek Lee
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 171
Abstract
Rechargeable aluminum-ion batteries (AIBs) are a new generation of low-cost and large-scale electrical energy storage systems. However, AIBs suffer from a lack of reliable cathode materials with insufficient intercalation sites, poor ion-conducting channels, and poor diffusion dynamics of large chloroaluminate anions (AlCl4− and Al2Cl7−). To address these issues, surface-modified graphitic carbon materials [i.e., acid-treated expanded graphite (AEG) and base-etched graphite (BEG)] are developed as novel cathode materials for ultra-fast chargeable AIBs. AEG has more turbostratically ordered structure covered with abundant micro- to nano-sized pores on the surface structure and expanded interlayer distance (d002 = 0.3371 nm) realized by surface treatment of pristine graphite with acidic media, which can be accelerated the diffusion dynamics and efficient AlCl4− ions (de)-intercalation kinetics. The AIB system employing AEG exhibits a specific capacity of 88.6 mAh g−1 (4 A g−1) and ~ 80 mAh g−1 at an ultra-high current rate of 10 A g−1 (~ 99.1% over 10,000 cycles). BEG treated with KOH solution possesses the turbostratically disordered structure with high density of defective sites and largely expanded d-spacing (d002 = 0.3384 nm) for attracting and uptaking more AlCl4− ions with relatively shorter penetration depth. Impressively, the AIB system based on the BEG cathode delivers a high specific capacity of 110 mAh g−1 (4 A g−1) and ~ 91 mAh g−1 (~ 99.9% over 10,000 cycles at 10 A g−1). Moreover, the BEG cell has high energy and power densities of 247 Wh kg−1 and 44.5 kW kg−1. This performance is one of the best among the AIB graphitic carbon materials reported for chloroaluminate anions storage performance. This finding provides great significance for the further development of rechargeable AIBs with high energy, high power density, and exceptionally long life.
Highlights:
1 Surface-modified graphite (acid-treated expanded graphite (AEG)/base-etched graphite (BEG)) displays an abundant micro- to nano-sized pores/defects and exposed edge graphitic site.
2 AEG and BEG exhibit high specific capacity, rate capability and cyclic stability compared with pristine graphite.
3 High defect density of BEG electrode exhibits profound effect on the chloroaluminate anions intercalation kinetics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 325–328 (2015). https://doi.org/10.1038/nature14340
- H. Chen, H. Xu, S. Wang, T. Huang, J. Xi et al., Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci. Adv. 3, eaao7233 (2017). https://doi.org/10.1126/sciadv.aao7233
- Z. Yu, S. Jiao, S. Li, X. Chen, W.L. Song et al., Flexible stable solid-state al-ion batteries. Adv. Funct. Mater. 29, 1806799 (2019). https://doi.org/10.1002/adfm.201806799
- J. Muldoon, C.B. Bucur, T. Gregory, Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114(23), 11683–11720 (2014). https://doi.org/10.1021/cr500049y
- H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang et al., A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 51, 11892–11895 (2015). https://doi.org/10.1039/C5CC00542F
- Z. Li, B. Niu, J. Liu, J. Li, F. Kang, Rechargeable aluminum-ion battery based on MoS2 microsphere cathode. ACS Appl. Mater. Interfaces 10(11), 9451–9459 (2018). https://doi.org/10.1021/acsami.8b00100
- K. Zhang, K.O. Kirlikovali, J.M. Suh, J.W. Choi, H.W. Jang et al., Recent advances in rechargeable aluminum-ion batteries and considerations for their future progress. ACS Appl. Energy Mater. 3(7), 6019–6035 (2020). https://doi.org/10.1021/acsaem.0c00957
- X. Dong, H. Xu, H. Chen, L. Wang, J. Wang et al., Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon 148, 134–140 (2019). https://doi.org/10.1016/j.carbon.2019.03.080
- J.V. Rani, V. Kanakaiah, T. Dadmal, M.S. Rao, S. Bhavanarushi et al., Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum–ion battery. Society 160(10), A1781–A1784 (2013). https://doi.org/10.1149/2.072310jes
- R.D. Mckerracher, A. Holland, A. Cruden, R.G.A. Wills, Comparison of carbon materials as cathodes for the aluminium-ion battery. Carbon 144, 333–341 (2019). https://doi.org/10.1016/j.carbon.2018.12.021
- K.V. Kravchyk, M.V. Kovalenko, Rechargeable dual-ion batteries with graphite as a cathode: key challenges and opportunities. Adv. Energy Mater. 9(35), 1901749 (2019). https://doi.org/10.1002/aenm.201901749
- S.K. Das, S. Mahapatra, H. Lahan, Aluminium-ion batteries: developments and challenges. J. Mater. Chem. A 5, 6347–6367 (2017). https://doi.org/10.1039/C7TA00228A
- C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li et al., Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10, 73 (2019). https://doi.org/10.1038/s41467-018-07980-7
- W. Yang, H. Lu, Y. Cao, P. Jing, Single-/few-layered ultrasmall WS2 nanoplates embedded in nitrogen-doped carbon nanofibers as a cathode for rechargeable aluminum batteries. J. Power Source 441, 227173 (2019). https://doi.org/10.1016/j.jpowsour.2019.227173
- W. Yang, H. Lu, Y. Cao, B. Xu, Y. Deng et al., Flexible free-standing MoS2/carbon nanofibers composite cathode for rechargeable aluminum-ion batteries. ACS Sustain. Chem. Eng. 7, 4861–4867 (2019). https://doi.org/10.1021/acssuschemeng.8b05292
- W. Yang, H. Lu, Y. Cao, P. Jing, X. Hu et al., A flexible free-standing cathode based on graphene-like MoSe2 nanosheets anchored on N-doped carbon nanofibers for rechargeable aluminum-ion batteries. Ionics 26, 3405–3413 (2020). https://doi.org/10.1007/s11581-020-03476-x
- N.S. Hudak, Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries. J. Phys. Chem. C 118(10), 5203–5215 (2014). https://doi.org/10.1021/jp500593d
- H. Chen, F. Guo, Y. Liu, T. Huang, B. Zheng et al., A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 29(12), 1605958 (2017). https://doi.org/10.1002/adma.201605958
- X. Yu, B. Wang, D. Gong, Z. Xu, B. Lu, Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable al-ion batteries. Adv. Mater. 29(4), 1604118 (2017). https://doi.org/10.1002/adma.201604118
- H. Chen, C. Chen, Y. Liu, X. Zhao, N. Ananth et al., High-quality graphene microflower design for high-performance Li–S and Al-Ion batteries. Adv. Energy Mater. 7(17), 1700051 (2017). https://doi.org/10.1002/aenm.201700051
- D.Y. Wang, C.Y. Wei, M.C. Lin, C.J. Pan, H.L. Chou et al., Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat. Commun. 8, 14283 (2017). https://doi.org/10.1038/ncomms14283
- D.H. Hu, T. Cai, P. Bai, J. Xu, S. Ge et al., Small graphite nanoflakes as an advanced cathode material for aluminum ion batteries. Chem. Commun. 56, 1593–1596 (2020). https://doi.org/10.1039/C9CC06895C
- N.P. Stadie, S. Wang, K.V. Kravchyk, M.V. Kovalenko, Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano 11(2), 1911–1919 (2017). https://doi.org/10.1021/acsnano.6b07995
- Q. Zhang, L. Wang, J. Wang, C. Xing, J. Ge et al., Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy Storage Mater. 15, 361–367 (2018). https://doi.org/10.1016/j.ensm.2018.06.021
- Z. Liu, J. Wang, H. Ding, S. Chen, X. Yu et al., Carbon nanoscrolls for aluminum battery. ACS Nano 12(8), 8456–8466 (2018). https://doi.org/10.1021/acsnano.8b03961
- Y. Uemura, C.Y. Chen, Y. Hashimoto, T. Tsuda, H. Matsumoto et al., Graphene nanoplatelet composite cathode for a chloroaluminate ionic liquid-based aluminum secondary battery. ACS Appl. Energy Mater. 1(5), 2269–2274 (2018). https://doi.org/10.1021/acsaem.8b00341
- K.L. Ng, T. Dong, J. Anawati, G. Azimi, High-performance aluminum ion battery using cost-effective AlCl3-trimethylamine hydrochloride ionic liquid electrolyte. Adv. Sustain. Syst. 4(8), 2000074 (2020). https://doi.org/10.1002/adsu.202000074
- G.A. Elia, J.B. Ducros, D. Sotta, V. Delhorbe, A. Brun et al., Polyacrylonitrile separator for high-performance aluminum batteries with improved interface stability. ACS Appl. Mater. Interfaces 9(44), 38381 (2017). https://doi.org/10.1021/acsami.7b09378
- M. Walter, K.V. Kravchyk, C. Böfer, R. Widmer, M.V. Kovalenko, Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 30(15), 1705644 (2018). https://doi.org/10.1002/adma.201705644
- D.J. Kim, D.J. Yoo, M.T. Otley, A. Prokofjevs, C. Pezzato et al., Rechargeable aluminium organic batteries. Nat. Energy 4, 51–59 (2019). https://doi.org/10.1038/s41560-018-0291-0
- D. Lee, G. Lee, Y. Tak, Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery. Nanotechnology 29, 36LT01 (2018). https://doi.org/10.1088/1361-6528/aacd7f
- C. Li, J. Patra, J. Li, P.C. Rath, M.H. Lin et al., A novel moisture-insensitive and low-corrosivity ionic liquid electrolyte for rechargeable aluminum batteries. Adv. Funct. Mater. 30(12), 1909565 (2020). https://doi.org/10.1002/adfm.201909565
- Y. Shin, S. Jung, I. Jeon, J. Baek, The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture. Carbon 52, 493–498 (2013). https://doi.org/10.1016/j.carbon.2012.10.001
- Z. Zhang, J. Xi, H. Zhou, X. Qiu, The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture. Electrochim. Acta 218(10), 15–23 (2016). https://doi.org/10.1016/j.electacta.2016.09.099
- Q. Cheng, R. Yuge, K. Nakahara, N. Tamura, S. Miyamoto, KOH etched graphite for fast chargeable lithium-ion batteries. J. Power Sources 284, 258–263 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.036
- J.H. Shim, S. Lee, Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries. J. Power Sources 324, 475–483 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.094
- J. Kim, S.M.N. Jeghan, G. Lee, Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries. Micropor. Mesopor. Mat. 305, 110325 (2020). https://doi.org/10.1016/j.micromeso.2020.110325
- Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45(8), 1686–1695 (2007). https://doi.org/10.1016/j.carbon.2007.03.038
- P. Tatarko, S. Grasso, T.G. Saunders, V. Casalegno, M. Ferraris et al., Flash joining of CVD-SiC coated Cf/SiC composites with a Ti interlayer. J. Eur. Ceram. 37(13), 3841–3848 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.05.016
- T. Qiu, J. Yang, X. Bai, Y. Wang, The preparation of synthetic graphite materials with hierarchical pores from lignite by one-step impregnation and their characterization as dye absorbents. RSC Adv. 9(22), 12737–12746 (2019). https://doi.org/10.1039/C9RA00343F
- N. Iwashita, C.R. Park, H. Fujimoto, M. Shiraishi, M. Inagaki, Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42(4), 7–14 (2004). https://doi.org/10.1016/j.carbon.2004.02.008
- J. Sottmann, M. Herrmann, P. Vajeeston, Y. Hu, A. Ruud et al., How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem. Mater. 28(8), 2750–2756 (2016). https://doi.org/10.1021/acs.chemmater.6b00491
- D. Son, J. Kim, M.R. Raj, G. Lee, Elucidating the structural redox behaviors of nanostructured expanded graphite anodes toward fast-charging and high-performance lithium-ion batteries. Carbon 175, 187–201 (2021). https://doi.org/10.1016/j.carbon.2021.01.015
- D. Jung, J. Jeong, B. Cha, J. Kim, B. Kong et al., Effects of ball-milled graphite in the synthesis of SnO2/graphite as an active material in lithium ion batteries. Met. Mater. Int. 17, 1021–1026 (2011). https://doi.org/10.1007/s12540-011-6022-8
- S. Roscher, R. Hoffmann, O. Ambacher, Determination of the graphene–graphite ratio of graphene powder by Raman 2D band symmetry analysis. Anal. Methods 11(9), 1224–1228 (2019). https://doi.org/10.1039/C8AY02619J
- K.S. Munir, M. Qian, Y. Li, D.T. Oldfield, P. Kingshott et al., Quantitative analyses of MWCNT-Ti powder mixtures using raman spectroscopy: the influence of milling parameters on nanostructural evolution. Adv. Eng. Mater. 17(11), 16601669 (2015). https://doi.org/10.1002/adem.201500142
- G. Leofantia, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts. Catal. Today 41(1–3), 207–219 (1998). https://doi.org/10.1016/S0920-5861(98)00050-9
- C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010). https://doi.org/10.1021/nn1002387
- K. Batra, S. Nayak, S.K. Behura, O. Jani, Optimizing performance parameters of chemically-derived graphene/p-Si heterojunction solar cell. J. Nanosci. 15(7), 4877–4882 (2015). https://doi.org/10.1166/jnn.2015.9818
- Y. Wu, C. Jiang, C. Wan, E. Tsuchida, Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries. Electrochem. Commun. 2(4), 272–275 (2000). https://doi.org/10.1016/S1388-2481(00)00022-9
- C. Xu, X. Shi, A. Ji, L. Shi, C. Zhou et al., Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS ONE 10, e0144842 (2015). https://doi.org/10.1371/journal.pone.0144842
- M. Yi, Z. Shen, S. Liang, L. Liu, X. Zhang et al., Water can stably disperse liquid-exfoliated graphene. Chem. Commun. 49, 11059–11061 (2013). https://doi.org/10.1039/C3CC46457A
- K.V. Kravchyk, S. Wang, L. Piveteau, M.V. Kovalenko, Efficient aluminum chloride–natural graphite battery. Chem. Mater. 29(10), 4484–4492 (2017). https://doi.org/10.1021/acs.chemmater.7b01060
- K.V. Kravchyk, M.V. Kovalenko, Aluminum electrolytes for Al dual-ion batteries. Commun. Chem. 3, 120 (2020). https://doi.org/10.1038/s42004-020-00365-2
- L. Somerville, J. Bareno, S. Trask, P. Jennings, A. McGordon et al., The effect of charging rate on the graphite electrode of commercial lithium-ion cells: a post-mortem study. J. Power Sources 335, 189–196 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.002
- J. Smajic, A. Alazmi, N. Batra, T. Palanisamy, D.H. Anjum et al., Mesoporous reduced graphene oxide as a high capacity cathode for aluminum batteries. Small 14(51), 1803584 (2018). https://doi.org/10.1002/smll.201803584
- S. Wang, K.V. Kravchyk, F. Krumeich, M.V. Kovalenko, Kish graphite flakes as a cathode material for an aluminum chloride–graphite battery. ACS Appl. Mater. Interfaces 9(34), 28478–28485 (2017). https://doi.org/10.1021/acsami.7b07499
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- Y. Lan, H. Zhao, Y. Zong, X. Li, Y. Sun et al., Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10, 11775 (2018). https://doi.org/10.1039/C8NR01229F
- T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, Templated nanocrystal-based porous TiO2 Films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131(5), 1802–1809 (2009). https://doi.org/10.1021/ja8057309
- L. Wu, J. Lang, P. Zhang, X. Zhang, R. Guo et al., Mesoporous Ni-doped MnCo2O4 hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism. J. Mater. Chem. A 4, 18392–18400 (2016). https://doi.org/10.1039/C6TA08364A
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010). https://doi.org/10.1038/nmat2612
- W. Liu, H. Niu, J. Yang, K. Cheng, K. Ye et al., Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 30(3), 1055–1068 (2018). https://doi.org/10.1021/acs.chemmater.7b04976
- T. Cai, L. Zhao, H. Hu, T. Li, X. Li et al., Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energy Environ. Sci. 11, 2341–2347 (2018). https://doi.org/10.1039/C8EE00822A
- Y. Zhu, J. Wang, F. Zhang, S. Gao, A. Wang et al., Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation. Adv. Funct. Mater. 28(40), 1804121 (2018). https://doi.org/10.1002/adfm.201804121
- W. Pan, Y. Wang, Y. Zhang, H.Y.H. Kwok, M. Wu et al., A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. J. Mater. Chem. A 7, 17420–17425 (2019). https://doi.org/10.1039/C9TA05207K
- S. Wang, S. Jiao, W. Song, H. Chen, J. Tu et al., A novel dual-graphite aluminum-ion battery. Energy Storage Mater. 12, 119–127 (2018). https://doi.org/10.1016/j.ensm.2017.12.010
References
M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 325–328 (2015). https://doi.org/10.1038/nature14340
H. Chen, H. Xu, S. Wang, T. Huang, J. Xi et al., Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci. Adv. 3, eaao7233 (2017). https://doi.org/10.1126/sciadv.aao7233
Z. Yu, S. Jiao, S. Li, X. Chen, W.L. Song et al., Flexible stable solid-state al-ion batteries. Adv. Funct. Mater. 29, 1806799 (2019). https://doi.org/10.1002/adfm.201806799
J. Muldoon, C.B. Bucur, T. Gregory, Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114(23), 11683–11720 (2014). https://doi.org/10.1021/cr500049y
H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang et al., A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 51, 11892–11895 (2015). https://doi.org/10.1039/C5CC00542F
Z. Li, B. Niu, J. Liu, J. Li, F. Kang, Rechargeable aluminum-ion battery based on MoS2 microsphere cathode. ACS Appl. Mater. Interfaces 10(11), 9451–9459 (2018). https://doi.org/10.1021/acsami.8b00100
K. Zhang, K.O. Kirlikovali, J.M. Suh, J.W. Choi, H.W. Jang et al., Recent advances in rechargeable aluminum-ion batteries and considerations for their future progress. ACS Appl. Energy Mater. 3(7), 6019–6035 (2020). https://doi.org/10.1021/acsaem.0c00957
X. Dong, H. Xu, H. Chen, L. Wang, J. Wang et al., Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon 148, 134–140 (2019). https://doi.org/10.1016/j.carbon.2019.03.080
J.V. Rani, V. Kanakaiah, T. Dadmal, M.S. Rao, S. Bhavanarushi et al., Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum–ion battery. Society 160(10), A1781–A1784 (2013). https://doi.org/10.1149/2.072310jes
R.D. Mckerracher, A. Holland, A. Cruden, R.G.A. Wills, Comparison of carbon materials as cathodes for the aluminium-ion battery. Carbon 144, 333–341 (2019). https://doi.org/10.1016/j.carbon.2018.12.021
K.V. Kravchyk, M.V. Kovalenko, Rechargeable dual-ion batteries with graphite as a cathode: key challenges and opportunities. Adv. Energy Mater. 9(35), 1901749 (2019). https://doi.org/10.1002/aenm.201901749
S.K. Das, S. Mahapatra, H. Lahan, Aluminium-ion batteries: developments and challenges. J. Mater. Chem. A 5, 6347–6367 (2017). https://doi.org/10.1039/C7TA00228A
C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li et al., Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10, 73 (2019). https://doi.org/10.1038/s41467-018-07980-7
W. Yang, H. Lu, Y. Cao, P. Jing, Single-/few-layered ultrasmall WS2 nanoplates embedded in nitrogen-doped carbon nanofibers as a cathode for rechargeable aluminum batteries. J. Power Source 441, 227173 (2019). https://doi.org/10.1016/j.jpowsour.2019.227173
W. Yang, H. Lu, Y. Cao, B. Xu, Y. Deng et al., Flexible free-standing MoS2/carbon nanofibers composite cathode for rechargeable aluminum-ion batteries. ACS Sustain. Chem. Eng. 7, 4861–4867 (2019). https://doi.org/10.1021/acssuschemeng.8b05292
W. Yang, H. Lu, Y. Cao, P. Jing, X. Hu et al., A flexible free-standing cathode based on graphene-like MoSe2 nanosheets anchored on N-doped carbon nanofibers for rechargeable aluminum-ion batteries. Ionics 26, 3405–3413 (2020). https://doi.org/10.1007/s11581-020-03476-x
N.S. Hudak, Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries. J. Phys. Chem. C 118(10), 5203–5215 (2014). https://doi.org/10.1021/jp500593d
H. Chen, F. Guo, Y. Liu, T. Huang, B. Zheng et al., A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 29(12), 1605958 (2017). https://doi.org/10.1002/adma.201605958
X. Yu, B. Wang, D. Gong, Z. Xu, B. Lu, Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable al-ion batteries. Adv. Mater. 29(4), 1604118 (2017). https://doi.org/10.1002/adma.201604118
H. Chen, C. Chen, Y. Liu, X. Zhao, N. Ananth et al., High-quality graphene microflower design for high-performance Li–S and Al-Ion batteries. Adv. Energy Mater. 7(17), 1700051 (2017). https://doi.org/10.1002/aenm.201700051
D.Y. Wang, C.Y. Wei, M.C. Lin, C.J. Pan, H.L. Chou et al., Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat. Commun. 8, 14283 (2017). https://doi.org/10.1038/ncomms14283
D.H. Hu, T. Cai, P. Bai, J. Xu, S. Ge et al., Small graphite nanoflakes as an advanced cathode material for aluminum ion batteries. Chem. Commun. 56, 1593–1596 (2020). https://doi.org/10.1039/C9CC06895C
N.P. Stadie, S. Wang, K.V. Kravchyk, M.V. Kovalenko, Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano 11(2), 1911–1919 (2017). https://doi.org/10.1021/acsnano.6b07995
Q. Zhang, L. Wang, J. Wang, C. Xing, J. Ge et al., Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy Storage Mater. 15, 361–367 (2018). https://doi.org/10.1016/j.ensm.2018.06.021
Z. Liu, J. Wang, H. Ding, S. Chen, X. Yu et al., Carbon nanoscrolls for aluminum battery. ACS Nano 12(8), 8456–8466 (2018). https://doi.org/10.1021/acsnano.8b03961
Y. Uemura, C.Y. Chen, Y. Hashimoto, T. Tsuda, H. Matsumoto et al., Graphene nanoplatelet composite cathode for a chloroaluminate ionic liquid-based aluminum secondary battery. ACS Appl. Energy Mater. 1(5), 2269–2274 (2018). https://doi.org/10.1021/acsaem.8b00341
K.L. Ng, T. Dong, J. Anawati, G. Azimi, High-performance aluminum ion battery using cost-effective AlCl3-trimethylamine hydrochloride ionic liquid electrolyte. Adv. Sustain. Syst. 4(8), 2000074 (2020). https://doi.org/10.1002/adsu.202000074
G.A. Elia, J.B. Ducros, D. Sotta, V. Delhorbe, A. Brun et al., Polyacrylonitrile separator for high-performance aluminum batteries with improved interface stability. ACS Appl. Mater. Interfaces 9(44), 38381 (2017). https://doi.org/10.1021/acsami.7b09378
M. Walter, K.V. Kravchyk, C. Böfer, R. Widmer, M.V. Kovalenko, Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 30(15), 1705644 (2018). https://doi.org/10.1002/adma.201705644
D.J. Kim, D.J. Yoo, M.T. Otley, A. Prokofjevs, C. Pezzato et al., Rechargeable aluminium organic batteries. Nat. Energy 4, 51–59 (2019). https://doi.org/10.1038/s41560-018-0291-0
D. Lee, G. Lee, Y. Tak, Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery. Nanotechnology 29, 36LT01 (2018). https://doi.org/10.1088/1361-6528/aacd7f
C. Li, J. Patra, J. Li, P.C. Rath, M.H. Lin et al., A novel moisture-insensitive and low-corrosivity ionic liquid electrolyte for rechargeable aluminum batteries. Adv. Funct. Mater. 30(12), 1909565 (2020). https://doi.org/10.1002/adfm.201909565
Y. Shin, S. Jung, I. Jeon, J. Baek, The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture. Carbon 52, 493–498 (2013). https://doi.org/10.1016/j.carbon.2012.10.001
Z. Zhang, J. Xi, H. Zhou, X. Qiu, The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture. Electrochim. Acta 218(10), 15–23 (2016). https://doi.org/10.1016/j.electacta.2016.09.099
Q. Cheng, R. Yuge, K. Nakahara, N. Tamura, S. Miyamoto, KOH etched graphite for fast chargeable lithium-ion batteries. J. Power Sources 284, 258–263 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.036
J.H. Shim, S. Lee, Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries. J. Power Sources 324, 475–483 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.094
J. Kim, S.M.N. Jeghan, G. Lee, Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries. Micropor. Mesopor. Mat. 305, 110325 (2020). https://doi.org/10.1016/j.micromeso.2020.110325
Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45(8), 1686–1695 (2007). https://doi.org/10.1016/j.carbon.2007.03.038
P. Tatarko, S. Grasso, T.G. Saunders, V. Casalegno, M. Ferraris et al., Flash joining of CVD-SiC coated Cf/SiC composites with a Ti interlayer. J. Eur. Ceram. 37(13), 3841–3848 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.05.016
T. Qiu, J. Yang, X. Bai, Y. Wang, The preparation of synthetic graphite materials with hierarchical pores from lignite by one-step impregnation and their characterization as dye absorbents. RSC Adv. 9(22), 12737–12746 (2019). https://doi.org/10.1039/C9RA00343F
N. Iwashita, C.R. Park, H. Fujimoto, M. Shiraishi, M. Inagaki, Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42(4), 7–14 (2004). https://doi.org/10.1016/j.carbon.2004.02.008
J. Sottmann, M. Herrmann, P. Vajeeston, Y. Hu, A. Ruud et al., How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem. Mater. 28(8), 2750–2756 (2016). https://doi.org/10.1021/acs.chemmater.6b00491
D. Son, J. Kim, M.R. Raj, G. Lee, Elucidating the structural redox behaviors of nanostructured expanded graphite anodes toward fast-charging and high-performance lithium-ion batteries. Carbon 175, 187–201 (2021). https://doi.org/10.1016/j.carbon.2021.01.015
D. Jung, J. Jeong, B. Cha, J. Kim, B. Kong et al., Effects of ball-milled graphite in the synthesis of SnO2/graphite as an active material in lithium ion batteries. Met. Mater. Int. 17, 1021–1026 (2011). https://doi.org/10.1007/s12540-011-6022-8
S. Roscher, R. Hoffmann, O. Ambacher, Determination of the graphene–graphite ratio of graphene powder by Raman 2D band symmetry analysis. Anal. Methods 11(9), 1224–1228 (2019). https://doi.org/10.1039/C8AY02619J
K.S. Munir, M. Qian, Y. Li, D.T. Oldfield, P. Kingshott et al., Quantitative analyses of MWCNT-Ti powder mixtures using raman spectroscopy: the influence of milling parameters on nanostructural evolution. Adv. Eng. Mater. 17(11), 16601669 (2015). https://doi.org/10.1002/adem.201500142
G. Leofantia, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts. Catal. Today 41(1–3), 207–219 (1998). https://doi.org/10.1016/S0920-5861(98)00050-9
C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010). https://doi.org/10.1021/nn1002387
K. Batra, S. Nayak, S.K. Behura, O. Jani, Optimizing performance parameters of chemically-derived graphene/p-Si heterojunction solar cell. J. Nanosci. 15(7), 4877–4882 (2015). https://doi.org/10.1166/jnn.2015.9818
Y. Wu, C. Jiang, C. Wan, E. Tsuchida, Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries. Electrochem. Commun. 2(4), 272–275 (2000). https://doi.org/10.1016/S1388-2481(00)00022-9
C. Xu, X. Shi, A. Ji, L. Shi, C. Zhou et al., Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS ONE 10, e0144842 (2015). https://doi.org/10.1371/journal.pone.0144842
M. Yi, Z. Shen, S. Liang, L. Liu, X. Zhang et al., Water can stably disperse liquid-exfoliated graphene. Chem. Commun. 49, 11059–11061 (2013). https://doi.org/10.1039/C3CC46457A
K.V. Kravchyk, S. Wang, L. Piveteau, M.V. Kovalenko, Efficient aluminum chloride–natural graphite battery. Chem. Mater. 29(10), 4484–4492 (2017). https://doi.org/10.1021/acs.chemmater.7b01060
K.V. Kravchyk, M.V. Kovalenko, Aluminum electrolytes for Al dual-ion batteries. Commun. Chem. 3, 120 (2020). https://doi.org/10.1038/s42004-020-00365-2
L. Somerville, J. Bareno, S. Trask, P. Jennings, A. McGordon et al., The effect of charging rate on the graphite electrode of commercial lithium-ion cells: a post-mortem study. J. Power Sources 335, 189–196 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.002
J. Smajic, A. Alazmi, N. Batra, T. Palanisamy, D.H. Anjum et al., Mesoporous reduced graphene oxide as a high capacity cathode for aluminum batteries. Small 14(51), 1803584 (2018). https://doi.org/10.1002/smll.201803584
S. Wang, K.V. Kravchyk, F. Krumeich, M.V. Kovalenko, Kish graphite flakes as a cathode material for an aluminum chloride–graphite battery. ACS Appl. Mater. Interfaces 9(34), 28478–28485 (2017). https://doi.org/10.1021/acsami.7b07499
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
Y. Lan, H. Zhao, Y. Zong, X. Li, Y. Sun et al., Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10, 11775 (2018). https://doi.org/10.1039/C8NR01229F
T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, Templated nanocrystal-based porous TiO2 Films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131(5), 1802–1809 (2009). https://doi.org/10.1021/ja8057309
L. Wu, J. Lang, P. Zhang, X. Zhang, R. Guo et al., Mesoporous Ni-doped MnCo2O4 hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism. J. Mater. Chem. A 4, 18392–18400 (2016). https://doi.org/10.1039/C6TA08364A
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010). https://doi.org/10.1038/nmat2612
W. Liu, H. Niu, J. Yang, K. Cheng, K. Ye et al., Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 30(3), 1055–1068 (2018). https://doi.org/10.1021/acs.chemmater.7b04976
T. Cai, L. Zhao, H. Hu, T. Li, X. Li et al., Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energy Environ. Sci. 11, 2341–2347 (2018). https://doi.org/10.1039/C8EE00822A
Y. Zhu, J. Wang, F. Zhang, S. Gao, A. Wang et al., Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation. Adv. Funct. Mater. 28(40), 1804121 (2018). https://doi.org/10.1002/adfm.201804121
W. Pan, Y. Wang, Y. Zhang, H.Y.H. Kwok, M. Wu et al., A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. J. Mater. Chem. A 7, 17420–17425 (2019). https://doi.org/10.1039/C9TA05207K
S. Wang, S. Jiao, W. Song, H. Chen, J. Tu et al., A novel dual-graphite aluminum-ion battery. Energy Storage Mater. 12, 119–127 (2018). https://doi.org/10.1016/j.ensm.2017.12.010