Time-Programmed Delivery of Sorafenib and Anti-CD47 Antibody via a Double-Layer-Gel Matrix for Postsurgical Treatment of Breast Cancer
Corresponding Author: Liang Luo
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 141
Abstract
The highly immunosuppressive microenvironment after surgery has a crucial impact on the recurrence and metastasis in breast cancer patients. Programmable delivery of immunotherapy-involving combinations through a single drug delivery system is highly promising, yet greatly challenging, to reverse postoperative immunosuppression. Here, an injectable hierarchical gel matrix, composed of dual lipid gel (DLG) layers with different soybean phosphatidylcholine/glycerol dioleate mass ratios, was developed to achieve the time-programmed sequential delivery of combined cancer immunotherapy. The outer layer of the DLG matrix was thermally responsive and loaded with sorafenib-adsorbed graphene oxide (GO) nanoparticles. GO under manually controlled near-infrared irradiation generated mild heat and provoked the release of sorafenib first to reeducate tumor-associated macrophages (TAMs) and promote an immunogenic tumor microenvironment. The inner layer, loaded with anti-CD47 antibody (aCD47), could maintain the gel state for a much longer time, enabling the sustained release of aCD47 afterward to block the CD47-signal regulatory protein α (SIRPα) pathway for a long-term antitumor effect. In vivo studies on 4T1 tumor-bearing mouse model demonstrated that the DLG-based strategy efficiently prevented tumor recurrence and metastasis by locally reversing the immunosuppression and synergistically blocking the CD47-dependent immune escape, thereby boosting the systemic immune responses.
Highlights:
1 A novel injectable double-layer-gel matrix is developed.
2 The hierarchically structured dual lipid gel matrix enables time-programmed drug delivery.
3 Applying a modest dose of sorafenib in advance can reeducate tumor-associated macrophages and potentiate anti-CD47 treatment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Zhang, G. Kuang, S. Zong, S. Liu, H. Xiao et al., Sandwich-like fibers/sponge composite combining chemotherapy and hemostasis for efficient postoperative prevention of tumor recurrence and metastasis. Adv. Mater. 30, 1803217 (2018). https://doi.org/10.1002/adma.201803217
- S. Paik, S. Shak, G. Tang, C. Kim, J. Baker, M. Cronin et al., A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004). https://doi.org/10.1056/NEJMoa041588
- A.M. Abulafi, N.S. Williams, Local recurrence of colorectal cancer: the problem, mechanisms, management and adjuvant therapy. BJS (British Journal of Surgery) 81, 7–19 (1994). https://doi.org/10.1002/bjs.1800810106
- H. Pan, R. Gray, J. Braybrooke, C. Davies, C. Taylor et al., 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 377, 1836 (2017). https://doi.org/10.1056/NEJMoa1701830
- H. Phuengkham, C. Song, Y.T. Lim, A designer matrix with immune nanoconverters for reverting immunosuppression and enhancing immune checkpoint blockade therapy. Adv. Mater. 31, 1903242 (2019). https://doi.org/10.1002/adma.201903242
- D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013). https://doi.org/10.1038/nm.3394
- L. Ren, Y.T. Lim, Degradation-regulatable architectured implantable macroporous matrix for the spatiotemporal modulation of immunosuppressive microenvironment and enhanced combination cancer immunotherapy. Adv. Funct. Mater. 28, 1804490 (2018). https://doi.org/10.1002/adfm.201804490
- K.S. Albain, R.S. Swann, V.W. Rusch, A.T. Turrisi, F.A. Shepherd et al., Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet 374, 379–386 (2009). https://doi.org/10.1016/S0140-6736(09)60737-6
- L. Huang, Y. Li, Y. Du, Y. Zhang, X. Wang et al., Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 10, 4871 (2019). https://doi.org/10.1038/s41467-019-12771-9
- Y. Qu, B.Y. Chu, J.R. Peng, J.F. Liao, T.T. Qi et al., A biodegradable thermo-responsive hybrid hydrogel: therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Mater. 7, 207 (2015). https://doi.org/10.1038/am.2015.83
- L. Zitvogel, L. Apetoh, F. Ghiringhelli, F. Andre, A. Tesniere et al., The anticancer immune response: indispensable for therapeutic success? J. Clin. Invest. 118, 1991–2001 (2008). https://doi.org/10.1172/JCI35180
- C.J. Batty, P. Tiet, E.M. Bachelder, K.M. Ainslie, Drug delivery for cancer immunotherapy and vaccines. Pharm. Nanotechnol. 6, 232–244 (2018). https://doi.org/10.2174/2211738506666180918122337
- T.R. Medler, T. Cotechini, L.M. Coussens, Immune response to cancer therapy: mounting an effective antitumor response and mechanisms of resistance. Trends Cancer 1, 66–75 (2015). https://doi.org/10.1016/j.trecan.2015.07.008
- Q. Chen, C. Wang, X. Zhang, G. Chen, Q. Hu et al., In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019). https://doi.org/10.1038/s41565-018-0319-4
- B.V. Hogan, M.B. Peter, H.G. Shenoy, K. Horgan, T.A. Hughes, Surgery induced immunosuppression. Surgeon 9, 38–43 (2011). https://doi.org/10.1016/j.surge.2010.07.011
- G.J. Szebeni, C. Vizler, L.I. Nagy, K. Kitajka, L.G. Puskas, Pro-tumoral inflammatory myeloid cells as emerging therapeutic targets. Int. J. Mol. Sci. 17(11), 1958 (2016). https://doi.org/10.3390/ijms17111958
- M. Hildebrandt, K. Peggs, L. Uharek, C.M. Bollard, H.E. Heslop, Immunotherapy: opportunities, risks and future perspectives. Cytotherapy 16, S120–S129 (2014). https://doi.org/10.1016/j.jcyt.2014.02.001
- M. Sambi, L. Bagheri, M.R. Szewczuk, Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J. Oncol. 2019, 4508794 (2019). https://doi.org/10.1155/2019/4508794
- J. Condeelis, J.W. Pollard, Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006). https://doi.org/10.1016/j.cell.2006.01.007
- S. Gordon, Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003). https://doi.org/10.1038/nri978
- T. Lawrence, G. Natoli, Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761 (2011). https://doi.org/10.1038/nri3088
- D.M. Mosser, J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008). https://doi.org/10.1038/nri2448
- Y.-C. Wang, F. He, F. Feng, X.-W. Liu, G.-Y. Dong et al., Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 70, 4840–4849 (2010). https://doi.org/10.1158/0008-5472.CAN-10-0269
- S.X. Liu, H.H. Gustafson, D.L. Jackson, S.H. Pun, C. Trapnell, Trajectory analysis quantifies transcriptional plasticity during macrophage polarization. Sci. Rep. 10, 12273 (2020). https://doi.org/10.1038/s41598-020-68766-w
- M.M. Sunay, J.B. Foote, J.M. Leatherman, J.P. Edwards, T.D. Armstrong et al., Sorafenib combined with HER-2 targeted vaccination can promote effective T cell immunity in vivo. Int. Immunopharmacol. 46, 112–123 (2017). https://doi.org/10.1016/j.intimp.2017.02.028
- M.F. Sprinzl, A. Puschnik, A.M. Schlitter, A. Schad, K. Ackermann et al., Sorafenib inhibits macrophage-induced growth of hepatoma cells by interference with insulin-like growth factor-1 secretion. J. Hepatol. 62, 863–870 (2015). https://doi.org/10.1016/j.jhep.2014.11.011
- J.P. Edwards, L.A. Emens, The multikinase inhibitor sorafenib reverses the suppression of IL-12 and enhancement of IL-10 by PGE(2) in murine macrophages. Int. Immunopharmacol. 10, 1220–1228 (2010). https://doi.org/10.1016/j.intimp.2010.07.002
- T. Calandra, T. Roger, Macrophage migration inhibitory factor: a regulator of innate immunity. Nat. Rev. Immunol. 3, 791–800 (2003). https://doi.org/10.1038/nri1200
- G. Shi, Q. Yang, Y. Zhang, Q. Jiang, Y. Lin et al., Modulating the Tumor Microenvironment via oncolytic viruses and CSF-1R inhibition synergistically enhances anti-PD-1 immunotherapy. Mol. Ther. 27, 244–260 (2019). https://doi.org/10.1016/j.ymthe.2018.11.010
- Y. Zhang, H. Chen, H. Wang, T. Wang, H. Pan et al., A synergistic cancer immunotherapy nano-system for preventing tumor growth. Chem. Eng. J. 380, 122472 (2020). https://doi.org/10.1016/j.cej.2019.122472
- M.P. Chao, I.L. Weissman, R. Majeti, The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 24, 225–232 (2012). https://doi.org/10.1016/j.coi.2012.01.010
- M.P. Chao, A.A. Alizadeh, C. Tang, J.H. Myklebust, B. Varghese, Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010). https://doi.org/10.1016/j.cell.2010.07.044
- X. Liu, Y. Pu, K. Cron, L. Deng, J. Kline et al., CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat. Med. 21, 1209–1215 (2015). https://doi.org/10.1038/nm.3931
- M.N. McCracken, A.C. Cha, I.L. Weissman, Molecular pathways: activating t cells after cancer cell phagocytosis from blockade of CD47 “don’t eat me” signals. Clin. Cancer Res. 21, 3597–3601 (2015). https://doi.org/10.1158/1078-0432.CCR-14-2520
- J.T. Sockolosky, M. Dougan, J.R. Ingram, C.C.M. Ho, M.J. Kauke et al., Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc. Natl. Acad. Sci. USA 113, 2646–2654 (2016). https://doi.org/10.1073/pnas.1604268113
- Y. Huang, Y. Ma, P. Gao, Z. Yao, Targeting CD47: the achievements and concerns of current studies on cancer immunotherapy. J. Thorac. Dis. 9, E168–E174 (2017)
- R.R. Herberman, J.R. Ortaldo, G.D. Bonnard, Augmentation by interferon of human natural and antibody-dependent cell-mediated cytotoxicity. Nature 277, 221–223 (1979). https://doi.org/10.1038/277221a0
- C. Wang, J.Q. Wang, X.D. Zhang, S.J. Yu, D. Wen et al., In situ formed reactive oxygen species-responsive matrix with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 10, 3682 (2018). https://doi.org/10.1126/scitranslmed.aan3682
- Y. He, X. Li, J. Ma, G. Ni, G. Yang et al., Programmable codelivery of doxorubicin and apatinib using an implantable hierarchical-structured fiber device for overcoming cancer multidrug resistance. Small 15, 1804397 (2019). https://doi.org/10.1002/smll.201804397
- X. Wang, L. Huang, Y. Zhang, F. Meng, M. Donoso et al., Tunable two-compartment on-demand sustained drug release based on lipid gels. J. Pharm. Sci. 109, 1059–1067 (2020). https://doi.org/10.1016/j.xphs.2019.10.021
- L. Gu, D.J. Mooney, Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat. Rev. Cancer 16, 56–66 (2016). https://doi.org/10.1038/nrc.2015.3
- C. Wang, Y. Ye, Q. Hu, A. Bellotti, Z. Gu, Tailoring biomaterials for cancer immunotherapy: emerging trends and future outlook. Adv. Mater. 29, 1606036 (2017). https://doi.org/10.1002/adma.201606036
- C. Hage, S. Hoves, L. Strauss, S. Bissinger, Y. Prinz et al., Sorafenib induces pyroptosis in macrophages and triggers natural killer cell–mediated cytotoxicity against hepatocellular carcinoma. Hepatology 70, 1280–1297 (2019). https://doi.org/10.1002/hep.30666
- S.N. Wang, S.C. Chuang, K.T. Lee, Efficacy of sorafenib as adjuvant therapy to prevent early recurrence of hepatocellular carcinoma after curative surgery: a pilot study. Hepatol. Res. 44, 523–531 (2014). https://doi.org/10.1111/hepr.12159
- H.Y. Chuang, Y.F. Chang, R.S. Liu, J.J. Hwang, Serial low doses of sorafenib enhance therapeutic efficacy of adoptive T cell therapy in a murine model by improving tumor microenvironment. PLoS ONE 9, 109992 (2014). https://doi.org/10.1371/journal.pone.0109992
- D. Quandt, S. Jasinski-Bergner, U. Müller, B. Schulze, B. Seliger, Synergistic effects of IL-4 and TNFα on the induction of B7–H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J. Transl. Med. 12, 1–12 (2014). https://doi.org/10.1186/1479-5876-12-151
- J.J. O’Shea, R. Visconti, Type 1 IFNs and regulation of TH1 responses: enigmas both resolved and emerge. Nat. Immunol. 1, 17–19 (2000). https://doi.org/10.1038/76872
- D.A. Hafler, M. Miyara, S. Sakaguchi, C.M. Costantino, FOXP3 + regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010). https://doi.org/10.1038/nri2785
- Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng et al., Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016). https://doi.org/10.1038/ncomms13193
- E.J. Wherry, V. Teichgräber, T.C. Becker, D. Masopust, S.M. Kaech et al., Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003). https://doi.org/10.1038/ni889
- S.M. Kaech, W.E. John, A. Raft, Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002). https://doi.org/10.1038/nri778
References
Z. Zhang, G. Kuang, S. Zong, S. Liu, H. Xiao et al., Sandwich-like fibers/sponge composite combining chemotherapy and hemostasis for efficient postoperative prevention of tumor recurrence and metastasis. Adv. Mater. 30, 1803217 (2018). https://doi.org/10.1002/adma.201803217
S. Paik, S. Shak, G. Tang, C. Kim, J. Baker, M. Cronin et al., A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004). https://doi.org/10.1056/NEJMoa041588
A.M. Abulafi, N.S. Williams, Local recurrence of colorectal cancer: the problem, mechanisms, management and adjuvant therapy. BJS (British Journal of Surgery) 81, 7–19 (1994). https://doi.org/10.1002/bjs.1800810106
H. Pan, R. Gray, J. Braybrooke, C. Davies, C. Taylor et al., 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 377, 1836 (2017). https://doi.org/10.1056/NEJMoa1701830
H. Phuengkham, C. Song, Y.T. Lim, A designer matrix with immune nanoconverters for reverting immunosuppression and enhancing immune checkpoint blockade therapy. Adv. Mater. 31, 1903242 (2019). https://doi.org/10.1002/adma.201903242
D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013). https://doi.org/10.1038/nm.3394
L. Ren, Y.T. Lim, Degradation-regulatable architectured implantable macroporous matrix for the spatiotemporal modulation of immunosuppressive microenvironment and enhanced combination cancer immunotherapy. Adv. Funct. Mater. 28, 1804490 (2018). https://doi.org/10.1002/adfm.201804490
K.S. Albain, R.S. Swann, V.W. Rusch, A.T. Turrisi, F.A. Shepherd et al., Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet 374, 379–386 (2009). https://doi.org/10.1016/S0140-6736(09)60737-6
L. Huang, Y. Li, Y. Du, Y. Zhang, X. Wang et al., Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 10, 4871 (2019). https://doi.org/10.1038/s41467-019-12771-9
Y. Qu, B.Y. Chu, J.R. Peng, J.F. Liao, T.T. Qi et al., A biodegradable thermo-responsive hybrid hydrogel: therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Mater. 7, 207 (2015). https://doi.org/10.1038/am.2015.83
L. Zitvogel, L. Apetoh, F. Ghiringhelli, F. Andre, A. Tesniere et al., The anticancer immune response: indispensable for therapeutic success? J. Clin. Invest. 118, 1991–2001 (2008). https://doi.org/10.1172/JCI35180
C.J. Batty, P. Tiet, E.M. Bachelder, K.M. Ainslie, Drug delivery for cancer immunotherapy and vaccines. Pharm. Nanotechnol. 6, 232–244 (2018). https://doi.org/10.2174/2211738506666180918122337
T.R. Medler, T. Cotechini, L.M. Coussens, Immune response to cancer therapy: mounting an effective antitumor response and mechanisms of resistance. Trends Cancer 1, 66–75 (2015). https://doi.org/10.1016/j.trecan.2015.07.008
Q. Chen, C. Wang, X. Zhang, G. Chen, Q. Hu et al., In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019). https://doi.org/10.1038/s41565-018-0319-4
B.V. Hogan, M.B. Peter, H.G. Shenoy, K. Horgan, T.A. Hughes, Surgery induced immunosuppression. Surgeon 9, 38–43 (2011). https://doi.org/10.1016/j.surge.2010.07.011
G.J. Szebeni, C. Vizler, L.I. Nagy, K. Kitajka, L.G. Puskas, Pro-tumoral inflammatory myeloid cells as emerging therapeutic targets. Int. J. Mol. Sci. 17(11), 1958 (2016). https://doi.org/10.3390/ijms17111958
M. Hildebrandt, K. Peggs, L. Uharek, C.M. Bollard, H.E. Heslop, Immunotherapy: opportunities, risks and future perspectives. Cytotherapy 16, S120–S129 (2014). https://doi.org/10.1016/j.jcyt.2014.02.001
M. Sambi, L. Bagheri, M.R. Szewczuk, Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J. Oncol. 2019, 4508794 (2019). https://doi.org/10.1155/2019/4508794
J. Condeelis, J.W. Pollard, Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006). https://doi.org/10.1016/j.cell.2006.01.007
S. Gordon, Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003). https://doi.org/10.1038/nri978
T. Lawrence, G. Natoli, Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761 (2011). https://doi.org/10.1038/nri3088
D.M. Mosser, J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008). https://doi.org/10.1038/nri2448
Y.-C. Wang, F. He, F. Feng, X.-W. Liu, G.-Y. Dong et al., Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 70, 4840–4849 (2010). https://doi.org/10.1158/0008-5472.CAN-10-0269
S.X. Liu, H.H. Gustafson, D.L. Jackson, S.H. Pun, C. Trapnell, Trajectory analysis quantifies transcriptional plasticity during macrophage polarization. Sci. Rep. 10, 12273 (2020). https://doi.org/10.1038/s41598-020-68766-w
M.M. Sunay, J.B. Foote, J.M. Leatherman, J.P. Edwards, T.D. Armstrong et al., Sorafenib combined with HER-2 targeted vaccination can promote effective T cell immunity in vivo. Int. Immunopharmacol. 46, 112–123 (2017). https://doi.org/10.1016/j.intimp.2017.02.028
M.F. Sprinzl, A. Puschnik, A.M. Schlitter, A. Schad, K. Ackermann et al., Sorafenib inhibits macrophage-induced growth of hepatoma cells by interference with insulin-like growth factor-1 secretion. J. Hepatol. 62, 863–870 (2015). https://doi.org/10.1016/j.jhep.2014.11.011
J.P. Edwards, L.A. Emens, The multikinase inhibitor sorafenib reverses the suppression of IL-12 and enhancement of IL-10 by PGE(2) in murine macrophages. Int. Immunopharmacol. 10, 1220–1228 (2010). https://doi.org/10.1016/j.intimp.2010.07.002
T. Calandra, T. Roger, Macrophage migration inhibitory factor: a regulator of innate immunity. Nat. Rev. Immunol. 3, 791–800 (2003). https://doi.org/10.1038/nri1200
G. Shi, Q. Yang, Y. Zhang, Q. Jiang, Y. Lin et al., Modulating the Tumor Microenvironment via oncolytic viruses and CSF-1R inhibition synergistically enhances anti-PD-1 immunotherapy. Mol. Ther. 27, 244–260 (2019). https://doi.org/10.1016/j.ymthe.2018.11.010
Y. Zhang, H. Chen, H. Wang, T. Wang, H. Pan et al., A synergistic cancer immunotherapy nano-system for preventing tumor growth. Chem. Eng. J. 380, 122472 (2020). https://doi.org/10.1016/j.cej.2019.122472
M.P. Chao, I.L. Weissman, R. Majeti, The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 24, 225–232 (2012). https://doi.org/10.1016/j.coi.2012.01.010
M.P. Chao, A.A. Alizadeh, C. Tang, J.H. Myklebust, B. Varghese, Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010). https://doi.org/10.1016/j.cell.2010.07.044
X. Liu, Y. Pu, K. Cron, L. Deng, J. Kline et al., CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat. Med. 21, 1209–1215 (2015). https://doi.org/10.1038/nm.3931
M.N. McCracken, A.C. Cha, I.L. Weissman, Molecular pathways: activating t cells after cancer cell phagocytosis from blockade of CD47 “don’t eat me” signals. Clin. Cancer Res. 21, 3597–3601 (2015). https://doi.org/10.1158/1078-0432.CCR-14-2520
J.T. Sockolosky, M. Dougan, J.R. Ingram, C.C.M. Ho, M.J. Kauke et al., Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc. Natl. Acad. Sci. USA 113, 2646–2654 (2016). https://doi.org/10.1073/pnas.1604268113
Y. Huang, Y. Ma, P. Gao, Z. Yao, Targeting CD47: the achievements and concerns of current studies on cancer immunotherapy. J. Thorac. Dis. 9, E168–E174 (2017)
R.R. Herberman, J.R. Ortaldo, G.D. Bonnard, Augmentation by interferon of human natural and antibody-dependent cell-mediated cytotoxicity. Nature 277, 221–223 (1979). https://doi.org/10.1038/277221a0
C. Wang, J.Q. Wang, X.D. Zhang, S.J. Yu, D. Wen et al., In situ formed reactive oxygen species-responsive matrix with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 10, 3682 (2018). https://doi.org/10.1126/scitranslmed.aan3682
Y. He, X. Li, J. Ma, G. Ni, G. Yang et al., Programmable codelivery of doxorubicin and apatinib using an implantable hierarchical-structured fiber device for overcoming cancer multidrug resistance. Small 15, 1804397 (2019). https://doi.org/10.1002/smll.201804397
X. Wang, L. Huang, Y. Zhang, F. Meng, M. Donoso et al., Tunable two-compartment on-demand sustained drug release based on lipid gels. J. Pharm. Sci. 109, 1059–1067 (2020). https://doi.org/10.1016/j.xphs.2019.10.021
L. Gu, D.J. Mooney, Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat. Rev. Cancer 16, 56–66 (2016). https://doi.org/10.1038/nrc.2015.3
C. Wang, Y. Ye, Q. Hu, A. Bellotti, Z. Gu, Tailoring biomaterials for cancer immunotherapy: emerging trends and future outlook. Adv. Mater. 29, 1606036 (2017). https://doi.org/10.1002/adma.201606036
C. Hage, S. Hoves, L. Strauss, S. Bissinger, Y. Prinz et al., Sorafenib induces pyroptosis in macrophages and triggers natural killer cell–mediated cytotoxicity against hepatocellular carcinoma. Hepatology 70, 1280–1297 (2019). https://doi.org/10.1002/hep.30666
S.N. Wang, S.C. Chuang, K.T. Lee, Efficacy of sorafenib as adjuvant therapy to prevent early recurrence of hepatocellular carcinoma after curative surgery: a pilot study. Hepatol. Res. 44, 523–531 (2014). https://doi.org/10.1111/hepr.12159
H.Y. Chuang, Y.F. Chang, R.S. Liu, J.J. Hwang, Serial low doses of sorafenib enhance therapeutic efficacy of adoptive T cell therapy in a murine model by improving tumor microenvironment. PLoS ONE 9, 109992 (2014). https://doi.org/10.1371/journal.pone.0109992
D. Quandt, S. Jasinski-Bergner, U. Müller, B. Schulze, B. Seliger, Synergistic effects of IL-4 and TNFα on the induction of B7–H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J. Transl. Med. 12, 1–12 (2014). https://doi.org/10.1186/1479-5876-12-151
J.J. O’Shea, R. Visconti, Type 1 IFNs and regulation of TH1 responses: enigmas both resolved and emerge. Nat. Immunol. 1, 17–19 (2000). https://doi.org/10.1038/76872
D.A. Hafler, M. Miyara, S. Sakaguchi, C.M. Costantino, FOXP3 + regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010). https://doi.org/10.1038/nri2785
Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng et al., Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016). https://doi.org/10.1038/ncomms13193
E.J. Wherry, V. Teichgräber, T.C. Becker, D. Masopust, S.M. Kaech et al., Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003). https://doi.org/10.1038/ni889
S.M. Kaech, W.E. John, A. Raft, Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002). https://doi.org/10.1038/nri778