Bottom-Up Engineering Strategies for High-Performance Thermoelectric Materials
Corresponding Author: Jianwei Xu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 119
Abstract
The recent advancements in thermoelectric materials are largely credited to two factors, namely established physical theories and advanced materials engineering methods. The developments in the physical theories have come a long way from the “phonon glass electron crystal” paradigm to the more recent band convergence and nanostructuring, which consequently results in drastic improvement in the thermoelectric figure of merit value. On the other hand, the progresses in materials fabrication methods and processing technologies have enabled the discovery of new physical mechanisms, hence further facilitating the emergence of high-performance thermoelectric materials. In recent years, many comprehensive review articles are focused on various aspects of thermoelectrics ranging from thermoelectric materials, physical mechanisms and materials process techniques in particular with emphasis on solid state reactions. While bottom-up approaches to obtain thermoelectric materials have widely been employed in thermoelectrics, comprehensive reviews on summarizing such methods are still rare. In this review, we will outline a variety of bottom-up strategies for preparing high-performance thermoelectric materials. In addition, state-of-art, challenges and future opportunities in this domain will be commented.
Highlights:
1 Recent advances of various bottom-up approaches for constructing nanostructured semiconductor thermoelectric materials with different dimensions are reviewed.
2 The relationships between the nanostructures and the key electronic and thermal transport parameters contributing to ZT are discussed.
3 The challenges of the bottom-up strategies and suggestions for future development toward thermoelectric applications are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhai, T. Wang, H. Wang, W. Su, X. Wang et al., Strategies for optimizing the thermoelectricity of PbTe alloys. Chin. Phys. B 27(4), 047306 (2018). https://doi.org/10.1088/1674-1056/27/4/047306/meta
- H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sust. Energ. Rev. 82, 4159–4169 (2018). https://doi.org/10.1016/j.rser.2017.10.112
- Y. Zheng, H. Xie, Q. Zhang, A. Suwardi, X. Cheng et al., Unraveling the critical role of melt-spinning atmosphere in enhancing the thermoelectric performance of p-type Bi0.52Sb1.48Te3 alloys. ACS Appl. Mater. Interfaces 12(32), 36186–36195 (2020). https://doi.org/10.1021/acsami.0c09656
- Y. Luo, S. Cai, X. Hua, H. Chen, Q. Liang et al., High thermoelectric performance in polycrystalline SnSe via dual-doping with Ag/Na and nanostructuring with Ag8SnSe6. Adv. Energy Mater. 9(2), 1803072 (2019). https://doi.org/10.1002/aenm.201803072
- Z.Z. Luo, X. Zhang, X. Hua, G. Tan, T.P. Bailey et al., High thermoelectric performance in supersaturated solid solutions and nanostructured n-type PbTe–GeTe. Adv. Funct. Mater. 28(31), 1801617 (2018). https://doi.org/10.1002/adfm.201801617
- Y. Luo, Y. Zheng, Z. Luo, S. Hao, C. Du et al., N-type SnSe2 oriented-nanoplate-based pellets for high thermoelectric performance. Adv. Energy Mater. 8(8), 1702167 (2018). https://doi.org/10.1002/aenm.201702167
- G. Tan, L.-D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116(19), 12123–12149 (2016). https://doi.org/10.1021/acs.chemrev.6b00255
- J. Mao, Z. Liu, J. Zhou, H. Zhu, Q. Zhang et al., Advances in thermoelectrics. Adv. Phys. 67(2), 69–147 (2018). https://doi.org/10.1080/00018732.2018.1551715
- D.V.M. Repaka, A. Suwardi, P. Kumar, New paradigm for efficient thermoelectrics. Energy Saving Coating Mater. (2020). https://doi.org/10.1016/B978-0-12-822103-7.00008-X
- X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 120(15), 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026
- E.S. Toberer, A. Zevalkink, G.J. Snyder, Phonon engineering through crystal chemistry. J. Mater. Chem. 21(40), 15843–15852 (2011). https://doi.org/10.1039/C1JM11754H
- J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888), 554–557 (2008). https://doi.org/10.1126/science.1159725
- Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen et al., Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473(7345), 66–69 (2011). https://doi.org/10.1038/nature09996
- L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan et al., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373–377 (2014). https://doi.org/10.1038/nature13184
- J. Recatala-Gomez, A. Suwardi, I. Nandhakumar, A. Abutaha, K. Hippalgaonkar, Toward accelerated thermoelectric materials and process discovery. ACS Appl. Energy Mater. 3(3), 2240–2257 (2020). https://doi.org/10.1021/acsaem.9b02222
- A. Suwardi, J. Cao, L. Hu, F. Wei, J. Wu et al., Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. J. Mater. Chem. A 8(36), 18880–18890 (2020). https://doi.org/10.1039/D0TA06013E
- Y. Pei, A.D. LaLonde, H. Wang, G.J. Snyder, Low effective mass leading to high thermoelectric performance. Energy Environ. Sci. 5(7), 7963–7969 (2012). https://doi.org/10.1039/C2EE21536E
- A. Suwardi, D. Bash, H.K. Ng, J.R. Gomez, D.M. Repaka et al., Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation. J. Mater. Chem. A 7(41), 23762–23769 (2019). https://doi.org/10.1039/C9TA05967A
- M. Dresselhaus, Y. Lin, G. Dresselhaus, X. Sun, Z. Zhang et al., Advances in 1D and 2D thermoelectric materials. In Eighteenth International Conference on Thermoelectrics Proceedings, ICT'99 (Cat No 99TH8407). 92–99 (1999). https://doi.org/https://doi.org/10.1109/ICT.1999.843342
- Y. Wu, Z. Chen, P. Nan, F. Xiong, S. Lin et al., Lattice strain advances thermoelectrics. Joule 3(5), 1276–1288 (2019). https://doi.org/10.1016/j.joule.2019.02.008
- T.G. Novak, K. Kim, S. Jeon, 2D and 3D nanostructuring strategies for thermoelectric materials. Nanoscale 11(42), 19684–19699 (2019). https://doi.org/10.1039/C9NR07406F
- S. Ortega, M. Ibáñez, Y. Liu, Y. Zhang, M.V. Kovalenko et al., Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem. Soc. Rev. 46(12), 3510–3528 (2017). https://doi.org/10.1039/C6CS00567E
- B. Xu, T. Feng, Z. Li, W. Zheng, Y. Wu, Large-scale, solution-synthesized nanostructured composites for thermoelectric applications. Adv. Mater. 30(48), 1801904 (2018). https://doi.org/10.1002/adma.201801904
- H. Alam, S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2(2), 190–212 (2013). https://doi.org/10.1016/j.nanoen.2012.10.005
- H.J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, 2010).
- J. Mao, W. Liu, Z. Ren, Carrier distribution in multi-band materials and its effect on thermoelectric properties. J. Materiomics 2(2), 203–211 (2016). https://doi.org/10.1016/j.jmat.2016.03.001
- Z.-G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. Mater. Int. 22(6), 535–549 (2012). https://doi.org/10.1016/j.pnsc.2012.11.011
- S. Lin, W. Li, Z. Bu, B. Gao, J. Li et al., Thermoelectric properties of Ag9GaS6 with ultralow lattice thermal conductivity. Mater. Today Phys. 6, 60–67 (2018). https://doi.org/10.1016/j.mtphys.2018.09.001
- W. Li, S. Lin, M. Weiss, Z. Chen, J. Li et al., Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag9AlSe6. Adv. Energy Mater. 8(18), 1800030 (2018). https://doi.org/10.1002/aenm.201800030
- G.J. Snyder, E.S. Toberer, Complex Thermoelectric Materials (World Scientific, Singapore, 2011), pp. 101–110
- A. Suwardi, L. Hu, X. Wang, X.Y. Tan, D.V.M. Repaka et al., Origin of high thermoelectric performance in earth-abundant phosphide–tetrahedrite. ACS Appl. Mater. Interfaces 12(8), 9150–9157 (2020). https://doi.org/10.1021/acsami.9b17269
- G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford, 2005).
- M. Lundstrom, J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation (Springer, Berlin, 2006).
- T.-H. Liu, J. Zhou, M. Li, Z. Ding, Q. Song et al., Electron mean-free-path filtering in dirac material for improved thermoelectric performance. PNAS 115(5), 879–884 (2018). https://doi.org/10.1073/pnas.1715477115
- J.-H. Lee, J. Grossman, J. Reed, G. Galli, Lattice thermal conductivity of nanoporous Si: molecular dynamics study. Appl. Phys. Lett. 91(22), 223110 (2007). https://doi.org/10.1063/1.2817739
- J.D. Chung, M. Kaviany, Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon. Int. J. Heat. Mass Transf. 43(4), 521–538 (2000). https://doi.org/10.1016/S0017-9310(99)00165-9
- K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414–418 (2012). https://doi.org/10.1038/nature11439
- D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46(10), 6131 (1992). https://doi.org/10.1103/PhysRevB.46.6131
- H. Wu, J. Carrete, Z. Zhang, Y. Qu, X. Shen et al., Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Mater. 6(6), e108–e108 (2014). https://doi.org/10.1038/am.2014.39
- S.Y. Ren, J.D. Dow, Thermal conductivity of superlattices. Phys. Rev. B 25(6), 3750 (1982). https://doi.org/10.1103/PhysRevB.25.3750
- J. Mao, Z. Liu, Z. Ren, Size effect in thermoelectric materials. NPJ Quantum Mater. 1(1), 1–9 (2016). https://doi.org/10.1038/npjquantmats.2016.28
- L. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47(19), 12727 (1993). https://doi.org/10.1103/PhysRevB.47.12727
- L. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47(24), 16631 (1993). https://doi.org/10.1103/PhysRevB.47.16631
- P. Pichanusakorn, P. Bandaru, Nanostructured thermoelectrics. Mater. Sci. Eng. R Rep. 67(2–4), 19–63 (2010). https://doi.org/10.1016/j.mser.2009.10.001
- C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22(36), 3970–3980 (2010). https://doi.org/10.1002/adma.201000839
- J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2(4), 152–158 (2010). https://doi.org/10.1038/asiamat.2010.138
- M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee et al., New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043–1053 (2007). https://doi.org/10.1002/adma.200600527
- L. Hicks, T. Harman, X. Sun, M. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53(16), R10493 (1996). https://doi.org/10.1103/PhysRevB.53.R10493
- E. Rogacheva, T. Tavrina, O. Nashchekina, S. Grigorov, K. Nasedkin et al., Quantum size effects in pbse quantum wells. Appl. Phys. Lett. 80(15), 2690–2692 (2002). https://doi.org/10.1063/1.1469677
- H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura et al., Giant thermoelectric seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6(2), 129–134 (2007). https://doi.org/10.1038/nmat1821
- A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard Iii et al., Silicon nanowires as efficient thermoelectric materials. Nature 451(7175), 168–171 (2008). https://doi.org/10.1038/nature06458
- P.M. Wu, J. Gooth, X. Zianni, S.F. Svensson, J.G.R. Gluschke et al., Large thermoelectric power factor enhancement observed in inas nanowires. Nano Lett. 13(9), 4080–4086 (2013). https://doi.org/10.1021/nl401501j
- T. Harman, D. Spears, M. Manfra, High thermoelectric figures of merit in pbte quantum wells. J. Electron. Mater. 25(7), 1121–1127 (1996). https://doi.org/10.1007/BF02659913
- T. Harman, P. Taylor, D. Spears, M. Walsh, Thermoelectric quantum-dot superlattices with high ZT. J. Electron Mater. 29(1), L1–L2 (2000). https://doi.org/10.1007/s11664-000-0117-1
- L. Wu, X. Li, S. Wang, T. Zhang, J. Yang et al., Resonant level-induced high thermoelectric response in indium-doped GeTe. NPG Asia Mater. 9(1), e343 (2017). https://doi.org/10.1038/am.2016.203
- A. Suwardi, J. Cao, Y. Zhao, J. Wu, S.W. Chien et al., Achieving high thermoelectric quality factor towards high figure of merit in GeTe. Mater. Today Phys. (2020). https://doi.org/10.1016/j.mtphys.2020.100239
- A.F. Ioffe, L. Stil’Bans, E. Iordanishvili, T. Stavitskaya, A. Gelbtuch et al., Semiconductor thermoelements and thermoelectric cooling. Phys. Today 12(5), 42 (1959). https://doi.org/10.1063/1.3060810
- D. Rowe, G. Min, Multiple potential barriers as a possible mechanism to increase the Seebeck coefficient and electrical power factor. AIP Conf. Proc. 316(1), 339–342 (1994). https://doi.org/10.1063/1.46827
- C. Li, S. Ma, P. Wei, W. Zhu, X. Nie et al., Magnetism-induced huge enhancement of the room-temperature thermoelectric and cooling performance of p-type BiSbTe alloys. Energy Environ. Sci. 13(2), 535–544 (2020). https://doi.org/10.1039/C9EE03446C
- Z. Liang, M.J. Boland, K. Butrouna, D.R. Strachan, K.R. Graham, Increased power factors of organic–inorganic nanocomposite thermoelectric materials and the role of energy filtering. J. Mater. Chem. A 5(30), 15891–15900 (2017). https://doi.org/10.1039/C7TA02307C
- N. Mingo, D. Hauser, N. Kobayashi, M. Plissonnier, A. Shakouri, “Nanoparticle-in-alloy” approach to efficient thermoelectrics: Silicides in SiGe. Nano Lett. 9(2), 711–715 (2009). https://doi.org/10.1021/nl8031982
- W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer et al., Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96(4), 045901 (2006). https://doi.org/10.1103/PhysRevLett.96.045901
- M.-S. Jeng, R. Yang, D. Song, G. Chen, Modeling the thermal conductivity and phonon transport in nanoparticle composites using monte carlo simulation. J. Heat Transf. 130(4), 042410 (2008). https://doi.org/10.1115/1.2818765
- A. Kundu, N. Mingo, D. Broido, D. Stewart, Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84(12), 125426 (2011). https://doi.org/10.1103/PhysRevB.84.125426
- H. Zhang, A.J. Minnich, The best nanoparticle size distribution for minimum thermal conductivity. Sci. Rep. 5, 8995 (2015). https://doi.org/10.1038/srep08995
- J. He, J.R. Sootsman, S.N. Girard, J.-C. Zheng, J. Wen et al., On the origin of increased phonon scattering in nanostructured pbte based thermoelectric materials. J. Am. Chem. Soc. 132(25), 8669–8675 (2010). https://doi.org/10.1021/ja1010948
- L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou et al., All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6(11), 3346–3355 (2013). https://doi.org/10.1039/C3EE42187B
- L.-D. Zhao, J. He, S. Hao, C.-I. Wu, T.P. Hogan et al., Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using cds and ZnS. J. Am. Chem. Soc. 134(39), 16327–16336 (2012). https://doi.org/10.1021/ja306527n
- L.-D. Zhao, J. He, C.-I. Wu, T.P. Hogan, X. Zhou et al., Thermoelectrics with earth abundant elements: High performance p-type PbS nanostructured with SrSand CaS. J. Am. Chem. Soc. 134(18), 7902–7912 (2012). https://doi.org/10.1021/ja301772w
- L.-D. Zhao, X. Zhang, H. Wu, G. Tan, Y. Pei et al., Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J. Am. Chem. Soc. 138(7), 2366–2373 (2016). https://doi.org/10.1021/jacs.5b13276
- J. Recatala-Gomez, H.K. Ng, P. Kumar, A. Suwardi, M. Zheng et al., Thermoelectric properties of substoichiometric electron beam patterned bismuth sulfide. ACS Appl. Mater. Interfaces 12(30), 33647–33655 (2020). https://doi.org/10.1021/acsami.0c06829
- L.P. Tan, T. Sun, S. Fan, L.Y. Ng, A. Suwardi et al., Facile synthesis of Cu7Te4 nanorods and the enhanced thermoelectric properties of Cu7Te4–Bi0.4Sb1.6Te3 nanocomposites. Nano Energy 2(1), 4–11 (2013). https://doi.org/10.1016/j.nanoen.2012.07.004
- X. Wang, A. Suwardi, Y. Zheng, H. Zhou, S.W. Chien et al., Enhanced thermoelectric performance of nanocrystalline indium tin oxide pellets by modulating the density and nanoporosity via spark plasma sintering. ACS Appl. Nano Mater. 3(10), 10156–10165 (2020). https://doi.org/10.1021/acsanm.0c02113
- A. Suwardi, S.H. Lim, Y. Zheng, X. Wang, S.W. Chien et al., Effective enhancement of thermoelectric and mechanical properties of germanium telluride via rhenium-doping. J. Mater. Chem. C 8(47), 16940–16948 (2020). https://doi.org/10.1039/D0TC04903D
- R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001). https://doi.org/10.1038/35098012
- H.-T. Chang, C.-C. Wang, J.-C. Hsu, M.-T. Hung, P.-W. Li et al., High quality multifold Ge/Si/Ge composite quantum dots for thermoelectric materials. Appl. Phys. Lett. 102(10), 101902 (2013). https://doi.org/10.1063/1.4794943
- H.-T. Chang, S.-Y. Wang, S.-W. Lee, Designer ge/si composite quantum dots with enhanced thermoelectric properties. Nanoscale 6(7), 3593–3598 (2014). https://doi.org/10.1039/C3NR06335F
- A. Nadtochiy, V. Kuryliuk, V. Strelchuk, O. Korotchenkov, P.-W. Li et al., Enhancing the seebeck effect in Ge/Si through the combination of interfacial design features. Sci. Rep. 9(1), 1–11 (2019). https://doi.org/10.1038/s41598-019-52654-z
- J. Chang, E.R. Waclawik, Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv. 4(45), 23505–23527 (2014). https://doi.org/10.1039/C4RA02684E
- N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews et al., 25th anniversary article: semiconductor nanowires–synthesis, characterization, and applications. Adv. Mater. 26(14), 2137–2184 (2014). https://doi.org/10.1002/adma.201305929
- X. Wang, A. Suwardi, S.L. Lim, F. Wei, J. Xu, Transparent flexible thin-film p–n junction thermoelectric module. NPJ Flex. Electron. 4(1), 1–9 (2020)
- R.Y. Wang, J.P. Feser, J.-S. Lee, D.V. Talapin, R. Segalman et al., Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett. 8(8), 2283–2288 (2008). https://doi.org/10.1021/nl8009704
- D. Yang, C. Lu, H. Yin, I.P. Herman, Thermoelectric performance of PbSe quantum dot films. Nanoscale 5(16), 7290–7296 (2013). https://doi.org/10.1039/C3NR01875J
- D. Ding, D. Wang, M. Zhao, J. Lv, H. Jiang et al., Interface engineering in solution-processed nanocrystal thin films for improved thermoelectric performance. Adv. Mater. 29(1), 1603444 (2017). https://doi.org/10.1002/adma.201603444
- M.I. Nugraha, H. Kim, B. Sun, S. Desai, F.P.G. de Arquer et al., Highly passivated n-type colloidal quantum dots for solution-processed thermoelectric generators with large output voltage. Adv. Energy Mater. 9(28), 1901244 (2019). https://doi.org/10.1002/aenm.201901244
- M. Ibáñez, R. Zamani, S. Gorsse, J. Fan, S. Ortega et al., Core–shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe–PbS thermoelectric properties. ACS Nano 7(3), 2573–2586 (2013). https://doi.org/10.1021/nn305971v
- C. Wang, G. Zhang, S. Fan, Y. Li, Hydrothermal synthesis of PbSe, PbTe semiconductor nanocrystals. J. Phys. Chem. Solids 62(11), 1957–1960 (2001). https://doi.org/10.1016/S0022-3697(01)00035-X
- H. Zhang, L.-P. Wang, H. Xiong, L. Hu, B. Yang et al., Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv. Mater. 15(20), 1712–1715 (2003). https://doi.org/10.1002/adma.200305653
- Q. Wang, D. Pan, S. Jiang, X. Ji, L. An et al., A solvothermal route to size-and shape-controlled CdSe and CdTe nanocrystals. J. Crystal Growth 286(1), 83–90 (2006). https://doi.org/10.1016/j.jcrysgro.2005.05.083
- Q. Wang, D. Pan, S. Jiang, X. Ji, L. An et al., Luminescent CdSe and CdSe/CdS core-shell nanocrystals synthesized via a combination of solvothermal and two-phase thermal routes. J. Lumin. 118(1), 91–98 (2006). https://doi.org/10.1016/j.jlumin.2005.06.010
- Z. Li, Y. Chen, J.-F. Li, H. Chen, L. Wang et al., Systhesizing snte nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method. Nano Energy 28, 78–86 (2016). https://doi.org/10.1016/j.nanoen.2016.08.008
- Y.-Q. Tang, Z.-H. Ge, J. Feng, Synthesis and thermoelectric properties of copper sulfides via solution phase methods and spark plasma sintering. Curr. Comput. Aided Drug Des. 7(5), 141 (2017). https://doi.org/10.3390/cryst7050141
- A. Datta, G.S. Nolas, Synthesis and characterization of nanocrystalline FeSb2 for thermoelectric applications. Eur. J. Inorg. Chem. 2012(1), 55–58 (2012). https://doi.org/10.1002/ejic.201100864
- Z. Shao, W. Zhu, Z. Li, Q. Yang, G. Wang, One-step fabrication of cds nanoparticle-sensitized TiO2 nanotube arrays via electrodeposition. J. Phys. Chem. C 116(3), 2438–2442 (2012). https://doi.org/10.1021/jp2078117
- S. Baeck, T. Jaramillo, G. Stucky, E. McFarland, Controlled electrodeposition of nanoparticulate tungsten oxide. Nano Lett. 2(8), 831–834 (2002). https://doi.org/10.1021/nl025587p
- J. Na, Y. Kim, T. Park, C. Park, E. Kim, Preparation of bismuth telluride films with high thermoelectric power factor. ACS Appl. Mater. Interfaces 8(47), 32392–32400 (2016). https://doi.org/10.1021/acsami.6b10188
- D. Zhao, J. Chen, Z. Ren, J. Chen, Q. Song et al., Thermoelectric transport and magnetoresistance of electrochemical deposited Bi2Te3 films at micrometer thickness. Ceram. Int. 46(3), 3339–3344 (2020). https://doi.org/10.1016/j.ceramint.2019.10.043
- T.H. Nguyen, J. Enju, T. Ono, Enhancement of thermoelectric properties of bismuth telluride composite with gold nano-particles inclusions using electrochemical co-deposition. J. Electrochem. Soc. 166(12), D508 (2019). https://doi.org/10.1149/2.1011912jes
- S. Wang, H. Li, R. Lu, G. Zheng, X. Tang, Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances. Nanotechnology 24(28), 285702 (2013)
- K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 490(7421), 570–570 (2012)
- D. Jung, K. Kurosaki, S. Seino, M. Ishimaru, K. Sato et al., Thermoelectric properties of au nanoparticle-supported Sb1.6Bi0.4Te3 synthesized by a γ-ray irradiation method. Phys. Status Solidi B 251(1), 162–167 (2014). https://doi.org/10.1002/pssb.201349226
- S. Fan, J. Zhao, Q. Yan, J. Ma, H.H. Hng, Influence of nanoinclusions on thermoelectric properties of n-type Bi2Te3 nanocomposites. J. Electron. Mater. 40(5), 1018–1023 (2011). https://doi.org/10.1007/s11664-010-1487-7
- Z. He, C. Stiewe, D. Platzek, G. Karpinski, E. Müller et al., Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2∕ CoSb3 composites. J. Appl. Phys. 101(4), 043707 (2007). https://doi.org/10.1063/1.2561628
- X. Zhou, G. Wang, L. Zhang, H. Chi, X. Su et al., Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. J. Mater. Chem. 22(7), 2958–2964 (2012). https://doi.org/10.1039/C2JM15010G
- J. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li et al., BiSbTe-based nanocomposites with high zt: the effect of sic nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23(35), 4317–4323 (2013). https://doi.org/10.1002/adfm.201300146
- S. Gupta, D.C. Agarwal, B. Sivaiah, S. Amrithpandian, K. Asokan et al., Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix. Beilstein J. Nanotechnol. 10(1), 634–643 (2019). https://doi.org/10.3762/bjnano.10.63
- T. Sun, M.K. Samani, N. Khosravian, K.M. Ang, Q. Yan et al., Enhanced thermoelectric properties of n-type Bi2Te2.7Se0.3 thin films through the introduction of Pt nanoinclusions by pulsed laser deposition. Nano Energy 8, 223–230 (2014). https://doi.org/10.1016/j.nanoen.2014.06.011
- Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo et al., Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv. Funct. Mater. 25(6), 966–976 (2015). https://doi.org/10.1002/adfm.201402663
- M. Ibánez, Z. Luo, A. Genc, L. Piveteau, S. Ortega et al., High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nat. Commun. 7(1), 1–7 (2016). https://doi.org/10.1038/ncomms10766
- H. Yang, E. Wong, T. Zhao, J.D. Lee, H.L. Xin et al., Charge transport modulation in PbSe nanocrystal solids by AuxAg1–x nanoparticle doping. ACS Nano 12(9), 9091–9100 (2018). https://doi.org/10.1021/acsnano.8b03112
- A. Tarachand, B. Mukherjee, M. Saxena, Y.-K. Kuo, G.S. Okram et al., Ag-nanoinclusion-induced enhanced thermoelectric properties of Ag2S. ACS Appl. Energy Mater. 2(9), 6383–6394 (2019). https://doi.org/10.1021/acsaem.9b01016
- K.H. Lim, K.W. Wong, Y. Liu, Y. Zhang, D. Cadavid et al., Critical role of nanoinclusions in silver selenide nanocomposites as a promising room temperature thermoelectric material. J. Mater. Chem. C 7(9), 2646–2652 (2019). https://doi.org/10.1039/C9TC00163H
- R. Chen, J. Lee, W. Lee, D. Li, Thermoelectrics of nanowires. Chem. Rev. 119(15), 9260–9302 (2019). https://doi.org/10.1021/acs.chemrev.8b00627
- Y. Qi, Z. Wang, M. Zhang, F. Yang, X. Wang, Thermoelectric devices based on one-dimensional nanostructures. J. Mater. Chem. A 1(20), 6110–6124 (2013). https://doi.org/10.1039/C3TA01594G
- K. Wang, H.-W. Liang, W.-T. Yao, S.-H. Yu, Templating synthesis of uniform Bi2Te3 nanowires with high aspect ratio in triethylene glycol (TEG) and their thermoelectric performance. J. Mater. Chem. 21(38), 15057–15062 (2011). https://doi.org/10.1039/C1JM12384J
- G. Zhang, B. Kirk, L.A. Jauregui, H. Yang, X. Xu et al., Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Lett. 12(1), 56–60 (2012). https://doi.org/10.1021/nl202935k
- S.W. Finefrock, G. Zhang, J.-H. Bahk, H. Fang, H. Yang et al., Structure and thermoelectric properties of spark plasma sintered ultrathin pbte nanowires. Nano Lett. 14(6), 3466–3473 (2014). https://doi.org/10.1021/nl500997w
- H.-W. Liang, S. Liu, Q.-S. Wu, S.-H. Yu, An efficient templating approach for synthesis of highly uniform cdte and PbTe nanowires. Inorg. Chem. 48(11), 4927–4933 (2009). https://doi.org/10.1021/ic900245w
- K. Wang, Y. Yang, H.-W. Liang, J.-W. Liu, S.-H. Yu, First sub-kilogram-scale synthesis of high quality ultrathin tellurium nanowires. Mater. Horizons 1(3), 338–343 (2014). https://doi.org/10.1039/C4MH00004H
- G. Zhang, H. Fang, H. Yang, L.A. Jauregui, Y.P. Chen et al., Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. Nano Lett. 12(7), 3627–3633 (2012). https://doi.org/10.1021/nl301327d
- Z. Xiong, Y. Cai, X. Ren, B. Cao, J. Liu et al., Solution-processed CdS/Cu2S superlattice nanowire with enhanced thermoelectric property. ACS Appl. Mater. Interfaces 9(38), 32424–32429 (2017). https://doi.org/10.1021/acsami.7b09346
- C. Zhou, C. Dun, K. Wang, X. Zhang, Z. Shi et al., General method of synthesis ultrathin ternary metal chalcogenide nanowires for potential thermoelectric applications. Nano Energy 30, 709–716 (2016). https://doi.org/10.1016/j.nanoen.2016.10.043
- H. Fang, H. Yang, Y. Wu, Thermoelectric properties of silver telluride–bismuth telluride nanowire heterostructure synthesized by site-selective conversion. Chem. Mater. 26(10), 3322–3327 (2014). https://doi.org/10.1021/cm501188c
- H. Fang, T. Feng, H. Yang, X. Ruan, Y. Wu, Synthesis and thermoelectric properties of compositional-modulated lead telluride–bismuth telluride nanowire heterostructures. Nano Lett. 13(5), 2058–2063 (2013). https://doi.org/10.1021/nl400319u
- H.-J. Choi, in Vapor–liquid–solid Growth of Semiconductor Nanowires. ed. by (Springer; 2012), pp. 1–36. https://doi.org/10.1007/978-3-642-22480-5_1
- K.W. Kolasinski, Catalytic growth of nanowires: vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth. Curr. Opin. Solid State Mater. Sci. 10(3–4), 182–191 (2006). https://doi.org/10.1016/j.cossms.2007.03.002
- D. Li, Y. Wu, P. Kim, L. Shi, P. Yang et al., Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83(14), 2934–2936 (2003). https://doi.org/10.1063/1.1616981
- D. Li, Y. Wu, R. Fan, P. Yang, A. Majumdar, Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83(15), 3186–3188 (2003). https://doi.org/10.1063/1.1619221
- I.D. Noyan, G. Gadea, M. Salleras, M. Pacios, C. Calaza et al., SiGe nanowire arrays based thermoelectric microgenerator. Nano Energy 57, 492–499 (2019). https://doi.org/10.1016/j.nanoen.2018.12.050
- Y.-H. Park, J. Kim, H. Kim, I. Kim, K.-Y. Lee et al., Thermal conductivity of VLS-grown rough si nanowires with various surface roughnesses and diameters. Appl. Phys. A 104(1), 7 (2011). https://doi.org/10.1007/s00339-011-6474-1
- H. Kim, Y.-H. Park, I. Kim, J. Kim, H.-J. Choi et al., Effect of surface roughness on thermal conductivity of VLS-grown rough Si1−xGex nanowires. Appl. Phys. A 104(1), 23–28 (2011). https://doi.org/10.1007/s00339-011-6475-0
- D. Dávila, A. Tarancón, C. Calaza, M. Salleras, M. Fernández-Regúlez et al., Improved thermal behavior of multiple linked arrays of silicon nanowires integrated into planar thermoelectric microgenerators. J. Electron. Mater. 42(7), 1918–1925 (2013). https://doi.org/10.1007/s11664-013-2470-x
- D. Dávila, R. Huber, C. Hierold, Bottom-up silicon nanowire-based thermoelectric microgenerators. J. Phys. Conf. Series 660(1), 012101 (2015)
- D.J. Hill, T.S. Teitsworth, S. Kim, J.D. Christesen, J.F. Cahoon, Encoding highly nonequilibrium boron concentrations and abrupt morphology in p-type/n-type silicon nanowire superlattices. ACS Appl. Mater. Interfaces 9(42), 37105–37111 (2017). https://doi.org/10.1021/acsami.7b08162
- F. Nasirpouri, in Template Electrodeposition of Nanowires Arrays. ed. by (Springer; 2017), pp. 187–259. https://doi.org/10.1007/978-3-319-44920-3_5
- L. Li, S. Xu, G. Li, Enhancement of thermoelectric properties in Bi–Sb–Te alloy nanowires by pulsed electrodeposition. Energy Technol. 3(8), 825–829 (2015). https://doi.org/10.1002/ente.201500071
- R.D. Reeves, L.A. Crosser, G.E. Chester, J.J. Hill, Thermoelectric property enhancement via pore confinement in template grown bismuth telluride nanowire arrays. Nanotechnology 28(50), 505401 (2017)
- M. Proenca, M. Rosmaninho, P. Resende, C. Sousa, J. Ventura et al., Tailoring bi-te based nanomaterials by electrodeposition: Morphology and crystalline structure. Mater. Des. 118, 168–174 (2017). https://doi.org/10.1016/j.matdes.2017.01.020
- J. Lee, S. Farhangfar, J. Lee, L. Cagnon, R. Scholz et al., Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition. Nanotechnology 19(36), 365701 (2008)
- J. Martín, C.V. Manzano, O. Caballero-Calero, M. Martín-González, High-aspect-ratio and highly ordered 15-nm porous alumina templates. ACS Appl. Mater. Interfaces 5(1), 72–79 (2013). https://doi.org/10.1021/am3020718
- J. Krieg, R. Giraud, H. Funke, J. Dufouleur, W. Escoffier et al., Magnetotransport measurements on Bi2Te3 nanowires electrodeposited in etched ion-track membranes. J. Phys. Chem. Solids 128, 360–366 (2019). https://doi.org/10.1016/j.jpcs.2018.02.002
- D. Kojda, R. Mitdank, A. Mogilatenko, W. Töllner, Z. Wang et al., The effect of a distinct diameter variation on the thermoelectric properties of individual Bi0.39Te0.61 nanowires. Semicond. Sci. Technol. 29(12), 124006 (2014)
- M. Muñoz Rojo, S. Grauby, J.-M. Rampnoux, O. Caballero-Calero, M. Martín-González et al., Fabrication of Bi2Te3 nanowire arrays and thermal conductivity measurement by 3ω-scanning thermal microscopy. J. Appl. Phys. 113(5), 054308 (2013). https://doi.org/10.1063/1.4790363
- A. Mavrokefalos, A.L. Moore, M.T. Pettes, L. Shi, W. Wang et al., Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires. J. Appl. Phys. 105(10), 104318 (2009). https://doi.org/10.1063/1.3133145
- M.M. Rojo, B. Abad, C.V. Manzano, P. Torres, X. Cartoixà et al., Thermal conductivity of Bi2Te3 nanowires: how size affects phonon scattering. Nanoscale 9(20), 6741–6747 (2017). https://doi.org/10.1039/C7NR02173A
- C. De Tomas, A. Cantarero, A. Lopeandia, F. Alvarez, From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures. J. Appl. Phys. 115(16), 164314 (2014). https://doi.org/10.1063/1.4871672
- P. Kumar, M. Pfeffer, N. Peranio, O. Eibl, S. Bäßler et al., Ternary, single-crystalline Bi2(Te, Se)3 nanowires grown by electrodeposition. Acta Mater. 125, 238–245 (2017). https://doi.org/10.1016/j.actamat.2016.11.057
- L. Li, C. Jin, S. Xu, J. Yang, H. Du et al., Thermal conductivity of a single Bi0.5Sb1.5Te3 single-crystalline nanowire. Nanotechnology 25(41), 415704 (2014)
- S. Bäßler, T. Böhnert, J. Gooth, C. Schumacher, E. Pippel et al., Thermoelectric power factor of ternary single-crystalline Sb2Te3-and Bi2Te3-based nanowires. Nanotechnology 24(49), 495402 (2013)
- C.-G. Kuo, Y.-T. Hsieh, C.-F. Yang, C.-H. Huang, C.-Y. Yen, Growth of anodic aluminum oxide templates and the application in fabrication of the BiSbTe-based thermoelectric nanowires. Int. J. Photoenergy (2014). https://doi.org/10.1155/2014/978184
- M. Hasan, D. Gautam, R. Enright, Electrodeposition of textured Bi27Sb28Te45 nanowires with enhanced electrical conductivity. Mater. Chem. Phys. 173, 438–445 (2016). https://doi.org/10.1016/j.matchemphys.2016.02.035
- A. Danine, J. Schoenleber, J. Ghanbaja, F. Montaigne, C. Boulanger et al., Microstructure and thermoelectric properties of p-type bismuth antimony telluride nanowires synthetized by template electrodeposition in polycarbonate membranes. Electrochim. Acta 279, 258–268 (2018). https://doi.org/10.1016/j.electacta.2018.05.071
- A. Datta, A. Sangle, N. Hardingham, C. Cooper, M. Kraan et al., Structure and thermoelectric properties of Bi2−xSbxTe3 nanowires grown in flexible nanoporous polycarbonate templates. Materials 10(5), 553 (2017). https://doi.org/10.3390/ma10050553
- J. Fu, J. Shen, H. Shi, Y. Liang, Z. Qu et al., Preparation and characterisation of single-crystalline structure Sb/Bi2Te3 superlattice nanowires. Micro Nano Lett. 11(11), 738–740 (2016). https://doi.org/10.1049/mnl.2015.0457
- B. Yoo, F. Xiao, K.N. Bozhilov, J. Herman, M.A. Ryan et al., Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater. 19(2), 296–299 (2007). https://doi.org/10.1002/adma.200600606
- S.J. Limmer, W.G. Yelton, M.P. Siegal, J.L. Lensch-Falk, J. Pillars et al., Electrochemical deposition of Bi2(Te, Se)3 nanowire arrays on Si. J. Electrochem. Soc. 159(4), D235 (2012)
- X. Li, K. Cai, D. Yu, Y. Wang, Electrodeposition and characterization of thermoelectric Bi2Te2Se/Te multilayer nanowire arrays. Superlattices Microstruct. 50(5), 557–562 (2011). https://doi.org/10.1016/j.spmi.2011.09.001
- D. Li, J.T. McCann, Y. Xia, M. Marquez, Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Ceram. Soc. 89(6), 1861–1869 (2006). https://doi.org/10.1111/j.1551-2916.2006.00989.x
- S.-X. Wang, C.C. Yap, J. He, C. Chen, S.Y. Wong et al., Electrospinning: A facile technique for fabricating functional nanofibers for environmental applications. Nanotechnol. Rev. 5(1), 51–73 (2016). https://doi.org/10.1515/ntrev-2015-0065
- T. Yin, D. Liu, Y. Ou, F. Ma, S. Xie et al., Nanocrystalline thermoelectric Ca3Co4O9 ceramics by sol−gel based electrospinning and spark plasma sintering. J. Phys. Chem. C 114(21), 10061–10065 (2010). https://doi.org/10.1021/jp1024872
- F. Ma, Y. Ou, Y. Yang, Y. Liu, S. Xie et al., Nanocrystalline structure and thermoelectric properties of electrospun NaCo2O4 nanofibers. J. Phys. Chem. C 114(50), 22038–22043 (2010). https://doi.org/10.1021/jp107488k
- W. Xu, Y. Shi, H. Hadim, The fabrication of thermoelectric La0.95Sr0.05CoO3 nanofibers and Seebeck coefficient measurement. Nanotechnology 21(39), 395303 (2010)
- K.-R. Park, H.-B. Cho, Y. Song, S. Kim, Y.-T. Kwon et al., Large-scale synthesis of lead telluride (PbTe) nanotube-based nanocomposites with tunable morphology, crystallinity and thermoelectric properties. Appl. Surf. Sci. 436, 785–790 (2018). https://doi.org/10.1016/j.apsusc.2017.12.102
- M. Zhang, S.-D. Park, J. Kim, M. Nalbandian, S. Kim et al., Synthesis and thermoelectric characterization of lead telluride hollow nanofibers. Front. Chem. 6, 436 (2018). https://doi.org/10.3389/fchem.2018.00436
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- X. Zhang, Y. Xie, Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem. Soc. Rev. 42(21), 8187–8199 (2013). https://doi.org/10.1039/C3CS60138B
- M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013). https://doi.org/10.1021/cr300263a
- H. Zhang, W. Zeng, C. Pan, L. Feng, M. Ou et al., SnTe@ MnO2-SP nanosheet–based intelligent nanoplatform for second near-infrared light–mediated cancer theranostics. Adv. Funct. Mater. 29(37), 1903791 (2019). https://doi.org/10.1002/adfm.201903791
- J.Y. Oh, J.H. Lee, S.W. Han, S.S. Chae, E.J. Bae et al., Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ. Sci. 9(5), 1696–1705 (2016). https://doi.org/10.1039/C5EE03813H
- Y. Huang, L. Li, Y.-H. Lin, C.-W. Nan, Liquid exfoliation few-layer snse nanosheets with tunable band gap. J. Phys. Chem. C 121(32), 17530–17537 (2017). https://doi.org/10.1021/acs.jpcc.7b06096
- W.J. Baumgardner, J.J. Choi, Y.-F. Lim, T. Hanrath, Snse nanocrystals: synthesis, structure, optical properties, and surface chemistry. J. Am. Chem. Soc. 132(28), 9519–9521 (2010). https://doi.org/10.1021/ja1013745
- Y.X. Chen, Z.H. Ge, M. Yin, D. Feng, X.Q. Huang et al., Understanding of the extremely low thermal conductivity in high-performance polycrystalline snse through potassium doping. Adv. Funct. Mater. 26(37), 6836–6845 (2016). https://doi.org/10.1002/adfm.201602652
- J.-H. Ahn, M.-J. Lee, H. Heo, J.H. Sung, K. Kim et al., Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 15(6), 3703–3708 (2015). https://doi.org/10.1021/acs.nanolett.5b00079
- X.-H. Ma, K.-H. Cho, Y.-M. Sung, Growth mechanism of vertically aligned SnSe nanosheets via physical vapour deposition. CrystEngComm 16(23), 5080–5086 (2014). https://doi.org/10.1039/C4CE00213J
- Z. Tian, C. Guo, M. Zhao, R. Li, J. Xue, Two-dimensional sns: A phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 11(2), 2219–2226 (2017). https://doi.org/10.1021/acsnano.6b08704
- S. Liu, N. Sun, M. Liu, S. Sucharitakul, X.P. Gao, Nanostructured snse: Synthesis, doping, and thermoelectric properties. J. Appl. Phys. 123(11), 115109 (2018). https://doi.org/10.1063/1.5018860
- H.-A. Chen, H. Sun, C.-R. Wu, Y.-X. Wang, P.-H. Lee et al., Single-crystal antimonene films prepared by molecular beam epitaxy: Selective growth and contact resistance reduction of the 2D material heterostructure. ACS Appl. Mater. Interfaces 10(17), 15058–15064 (2018). https://doi.org/10.1021/acsami.8b02394
- M. Fortin-Deschênes, O. Waller, T. Mentes, A. Locatelli, S. Mukherjee et al., Synthesis of antimonene on germanium. Nano Lett. 17(8), 4970–4975 (2017). https://doi.org/10.1021/acs.nanolett.7b02111
- X. Wu, Y. Shao, H. Liu, Z. Feng, Y.L. Wang et al., Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 29(11), 1605407 (2017). https://doi.org/10.1002/adma.201605407
- T. Nagao, T. Doi, T. Sekiguchi, S. Hasegawa, Epitaxial growth of single-crystal ultrathin films of bismuth on Si (111). Jpn. J. Appl. Phys. 39(7S), 4567 (2000)
- T. Nagao, J. Sadowski, M. Saito, S. Yaginuma, Y. Fujikawa et al., Nanofilm allotrope and phase transformation of ultrathin bi film on Si (111)−7×7. Phys. Rev. Lett. 93(10), 105501 (2004). https://doi.org/10.1103/PhysRevLett.93.105501
- T. Aizawa, I. Ohkubo, M.S. Lima, T. Sakurai, T. Mori, Fabrication of Mg2Sn (111) film by molecular beam epitaxy. J. Vac. Sci. Technol. A: Vac. Surfaces Films 37(6), 061513 (2019). https://doi.org/10.1116/1.5122844
- Z. Ye, S. Cui, T. Shu, S. Ma, Y. Liu et al., Electronic band structure of epitaxial pbte (111) thin films observed by angle-resolved photoemission spectroscopy. Phys. Rev. B 95(16), 165203 (2017). https://doi.org/10.1103/PhysRevB.95.165203
- W. Ren, H. Li, L. Gao, Y. Li, Z. Zhang et al., Epitaxial growth and thermal-conductivity limit of single-crystalline Bi2Se3/In2Se3 superlattices on mica. Nano Res. 10(1), 247–254 (2017). https://doi.org/10.1007/s12274-016-1282-8
- M.-W. Chen, H. Kim, D. Ovchinnikov, A. Kuc, T. Heine et al., Large-grain mbe-grown gase on gaas with a mexican hat-like valence band dispersion. NPJ 2D Mater. Appl. 2(1), 1–7 (2018). https://doi.org/10.1038/s41699-017-0047-x
- A. Rice, J. Kawasaki, N. Verma, D. Pennachio, B. Schultz et al., Structural and electronic properties of molecular beam epitaxially grown Ni1+xTiSn films. J. Crystal Growth 467, 71–76 (2017). https://doi.org/10.1016/j.jcrysgro.2017.03.015
- X. Chen, R. Fan, Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chem. Mater. 13(3), 802–805 (2001). https://doi.org/10.1021/cm000517+
- X. Zhang, G. Ma, J. Wang, Hydrothermal synthesis of two-dimensional MoS2 and its applications. Tungsten 1(1), 59–79 (2019). https://doi.org/10.1007/s42864-019-00014-9
- U. Alli, S.J. Hettiarachchi, S. Kellici, Chemical functionalisation of 2D materials by batch and continuous hydrothermal flow synthesis. Chem. Eur. J. 26(29), 6447–6460 (2020). https://doi.org/10.1002/chem.202000383
- X.L. Shi, X. Tao, J. Zou, Z.G. Chen, High-performance thermoelectric SnSe: aqueous synthesis, innovations, and challenges. Adv. Sci. 7(7), 1902923 (2020). https://doi.org/10.1002/advs.201902923
- S. Chandra, K. Biswas, Realization of high thermoelectric figure of merit in solution synthesized 2D SnSe nanoplates via Ge alloying. J. Am. Chem. Soc. 141(15), 6141–6145 (2019). https://doi.org/10.1021/jacs.9b01396
- W. Shi, L. Zhou, S. Song, J. Yang, H. Zhang, Hydrothermal synthesis and thermoelectric transport properties of impurity-free antimony telluride hexagonal nanoplates. Adv. Mater. 20(10), 1892–1897 (2008). https://doi.org/10.1002/adma.200702003
- J.G. Park, Y.H. Lee, High thermoelectric performance of Bi-Te alloy: defect engineering strategy. Curr. Appl. Phys. 16(9), 1202–1215 (2016). https://doi.org/10.1016/j.cap.2016.03.028
- Y. Hosokawa, K. Tomita, M. Takashiri, Growth of single-crystalline Bi2Te3 hexagonal nanoplates with and without single nanopores during temperature-controlled solvothermal synthesis. Sci. Rep. 9(1), 10790 (2019). https://doi.org/10.1038/s41598-019-47356-5
- R. Mori, Y. Mayuzumi, M. Yamaguchi, A. Kobayashi, Y. Seki et al., Improved thermoelectric properties of solvothermally synthesized Bi2Te3 nanoplate films with homogeneous interconnections using Bi2Te3 electrodeposited layers. J. Alloys Compd. 818, 152901 (2020). https://doi.org/10.1016/j.jallcom.2019.152901
- Y. Wang, W.-D. Liu, H. Gao, L.-J. Wang, M. Li et al., High porosity in nanostructured n-type Bi2Te3 obtaining ultralow lattice thermal conductivity. ACS Appl. Mater. Interfaces 11(34), 31237–31244 (2019). https://doi.org/10.1021/acsami.9b12079
- M. Hong, T.C. Chasapis, Z.-G. Chen, L. Yang, M.G. Kanatzidis et al., N-type Bi2Te3–xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 10(4), 4719–4727 (2016). https://doi.org/10.1021/acsnano.6b01156
- Y. Zhang, Y. Liu, C. Xing, T. Zhang, M. Li et al., Tin selenide molecular precursor for the solution processing of thermoelectric materials and devices. ACS Appl. Mater. Interfaces 12(24), 27104–27111 (2020). https://doi.org/10.1021/acsami.0c04331
- S. Saha, A. Banik, K. Biswas, Few-layer nanosheets of n-type SnSe2. Chem. Eur. J. 22(44), 15634–15638 (2016). https://doi.org/10.1002/chem.201604161
- S. Chandra, A. Banik, K. Biswas, N-type ultrathin few-layer nanosheets of bi-doped SnSe: synthesis and thermoelectric properties. ACS Energy Lett. 3(5), 1153–1158 (2018). https://doi.org/10.1021/acsenergylett.8b00399
- N.A. Rongione, M. Li, H. Wu, H.D. Nguyen, J.S. Kang et al., High-performance solution-processable flexible SnSe nanosheet films for lower grade waste heat recovery. Adv. Electron. Mater. 5(3), 1800774 (2019). https://doi.org/10.1002/aelm.201800774
- M. Hong, Z.-G. Chen, L. Yang, T.C. Chasapis, S.D. Kang et al., Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering. J. Mater. Chem. A 5(21), 10713–10721 (2017). https://doi.org/10.1039/C7TA02677C
- G. Han, S.R. Popuri, H.F. Greer, J.W.G. Bos, W. Zhou et al., Facile surfactant-free synthesis of p-type SnSe nanoplates with exceptional thermoelectric power factors. Angew. Chem. Int. Ed. 55(22), 6433–6437 (2016). https://doi.org/10.1002/anie.201601420
- J.S. Son, M.K. Choi, M.-K. Han, K. Park, J.-Y. Kim et al., N-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 12(2), 640–647 (2012). https://doi.org/10.1021/nl203389x
- M. Martín-González, O. Caballero-Calero, P. Díaz-Chao, Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field. Renew. Sust. Energ. Rev. 24, 288–305 (2013). https://doi.org/10.1016/j.rser.2013.03.008
- B. Xu, T. Feng, Z. Li, S.T. Pantelides, Y. Wu, Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals. Nano Lett. 18(6), 4034–4039 (2018). https://doi.org/10.1021/acs.nanolett.8b01691
- J. Shi, H. Chen, S. Jia, W. Wang, 3d printing fabrication of porous bismuth antimony telluride and study of the thermoelectric properties. J. Manuf. Process 37, 370–375 (2019). https://doi.org/10.1016/j.jmapro.2018.11.001
- S. Hong, J. Park, S.G. Jeon, K. Kim, S.H. Park et al., Monolithic Bi1.5Sb0.5Te3 ternary alloys with a periodic 3D nanostructure for enhancing thermoelectric performance. J. Mater. Chem. C 5(35), 8974–8980 (2017). https://doi.org/10.1039/C7TC02717F
- K. Kim, J. Park, S. Hong, S.H. Park, S.G. Jeon et al., Anomalous thermoelectricity of pure ZnO from 3D continuous ultrathin nanoshell structures. Nanoscale 10(6), 3046–3052 (2018). https://doi.org/10.1039/C7NR08167G
- G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang et al., Realizing high figure of merit in phase-separated polycrystalline Sn1–xPbxSe. J. Am. Chem. Soc. 138(41), 13647–13654 (2016). https://doi.org/10.1021/jacs.6b07010
- G. Tang, J. Liu, J. Zhang, D. Li, K.H. Rara et al., Realizing high thermoelectric performance below phase transition temperature in polycrystalline snse via lattice anharmonicity strengthening and strain engineering. ACS Appl. Mater. Interfaces 10(36), 30558–30565 (2018). https://doi.org/10.1021/acsami.8b10056
- Y. Gong, C. Chang, W. Wei, J. Liu, W. Xiong et al., Extremely low thermal conductivity and enhanced thermoelectric performance of polycrystalline SnSe by Cu doping. Scripta Mater. 147, 74–78 (2018). https://doi.org/10.1016/j.scriptamat.2017.12.035
- R. Xu, L. Huang, J. Zhang, D. Li, J. Liu et al., Nanostructured snse integrated with se quantum dots with ultrahigh power factor and thermoelectric performance from magnetic field-assisted hydrothermal synthesis. J. Mater. Chem. A 7(26), 15757–15765 (2019). https://doi.org/10.1039/C9TA03967H
- S. Li, X. Lou, X. Li, J. Zhang, D. Li et al., Realization of high thermoelectric performance in polycrystalline tin selenide through schottky vacancies and endotaxial nanostructuring. Chem. Mater. 32(22), 9761–9770 (2020). https://doi.org/10.1021/acs.chemmater.0c03657
- X. Shi, Z.-G. Chen, W. Liu, L. Yang, M. Hong et al., Achieving high figure of merit in p-type polycrystalline Sn0.98Se via self-doping and anisotropy-strengthening. Energy Storage Mater. 10, 130–138 (2018). https://doi.org/10.1016/j.ensm.2017.08.014
- X. Shi, A. Wu, W. Liu, R. Moshwan, Y. Wang et al., Polycrystalline snse with extraordinary thermoelectric property via nanoporous design. ACS Nano 12(11), 11417–11425 (2018). https://doi.org/10.1021/acsnano.8b06387
- X. Shi, K. Zheng, M. Hong, W. Liu, R. Moshwan et al., Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering. Chem. Sci. 9(37), 7376–7389 (2018). https://doi.org/10.1039/C8SC02397B
- X.L. Shi, W.D. Liu, A.Y. Wu, V.T. Nguyen, H. Gao et al., Optimization of sodium hydroxide for securing high thermoelectric performance in polycrystalline Sn1−xSe via anisotropy and vacancy synergy. InfoMat 2(6), 1201–1215 (2019). https://doi.org/10.1002/inf2.12057
- Y. Zheng, X.-L. Shi, H. Yuan, S. Lu, X. Qu et al., A synergy of strain loading and laser radiation in determining the high-performing electrical transports in the single Cu-doped SnSe microbelt. Mater. Today Phys. (2020). https://doi.org/10.1016/j.mtphys.2020.100198
- Y. Liu, G. García, S. Ortega, D. Cadavid, P. Palacios et al., Solution-based synthesis and processing of Sn-and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators. J. Mater. Chem. A 5(6), 2592–2602 (2017). https://doi.org/10.1039/C6TA08467B
- L. De Trizio, L. Manna, Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116(18), 10852–10887 (2016). https://doi.org/10.1021/acs.chemrev.5b00739
- F. Yang, J. Wu, A. Suwardi, Y. Zhao, B. Liang et al., Gate-tunable polar optical phonon to piezoelectric scattering in few-layer Bi2O2Se for high-performance thermoelectrics. Adv. Mater. (2020). https://doi.org/10.1002/adma.202004786
- S. Cecchi, D. Dragoni, D. Kriegner, E. Tisbi, E. Zallo et al., Interplay between structural and thermoelectric properties in epitaxial Sb2+xTe3 alloys. Adv. Funct. Mater. 29(2), 1805184 (2019). https://doi.org/10.1002/adfm.201805184
- D. Bao, J. Chen, Y. Yu, W. Liu, L. Huang et al., Texture-dependent thermoelectric properties of nano-structured Bi2Te3. Chem. Eng. J. 388, 124295 (2020). https://doi.org/10.1016/j.cej.2020.124295
- Y. Zhang, Y. Liu, C. Xing, T. Zhang, M. Li et al., Tin selenide molecular precursor for the solution-processing of thermoelectric materials and devices. ACS Appl. Mater. Interfaces 12(24), 27104–27111 (2020). https://doi.org/10.1021/acsami.0c04331
- X. Shi, A. Wu, T. Feng, K. Zheng, W. Liu et al., High thermoelectric performance in p-type polycrystalline Cd-doped SnSe achieved by a combination of cation vacancies and localized lattice engineering. Adv. Energy Mater. 9(11), 1803242 (2019). https://doi.org/10.1002/aenm.201803242
References
J. Zhai, T. Wang, H. Wang, W. Su, X. Wang et al., Strategies for optimizing the thermoelectricity of PbTe alloys. Chin. Phys. B 27(4), 047306 (2018). https://doi.org/10.1088/1674-1056/27/4/047306/meta
H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sust. Energ. Rev. 82, 4159–4169 (2018). https://doi.org/10.1016/j.rser.2017.10.112
Y. Zheng, H. Xie, Q. Zhang, A. Suwardi, X. Cheng et al., Unraveling the critical role of melt-spinning atmosphere in enhancing the thermoelectric performance of p-type Bi0.52Sb1.48Te3 alloys. ACS Appl. Mater. Interfaces 12(32), 36186–36195 (2020). https://doi.org/10.1021/acsami.0c09656
Y. Luo, S. Cai, X. Hua, H. Chen, Q. Liang et al., High thermoelectric performance in polycrystalline SnSe via dual-doping with Ag/Na and nanostructuring with Ag8SnSe6. Adv. Energy Mater. 9(2), 1803072 (2019). https://doi.org/10.1002/aenm.201803072
Z.Z. Luo, X. Zhang, X. Hua, G. Tan, T.P. Bailey et al., High thermoelectric performance in supersaturated solid solutions and nanostructured n-type PbTe–GeTe. Adv. Funct. Mater. 28(31), 1801617 (2018). https://doi.org/10.1002/adfm.201801617
Y. Luo, Y. Zheng, Z. Luo, S. Hao, C. Du et al., N-type SnSe2 oriented-nanoplate-based pellets for high thermoelectric performance. Adv. Energy Mater. 8(8), 1702167 (2018). https://doi.org/10.1002/aenm.201702167
G. Tan, L.-D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116(19), 12123–12149 (2016). https://doi.org/10.1021/acs.chemrev.6b00255
J. Mao, Z. Liu, J. Zhou, H. Zhu, Q. Zhang et al., Advances in thermoelectrics. Adv. Phys. 67(2), 69–147 (2018). https://doi.org/10.1080/00018732.2018.1551715
D.V.M. Repaka, A. Suwardi, P. Kumar, New paradigm for efficient thermoelectrics. Energy Saving Coating Mater. (2020). https://doi.org/10.1016/B978-0-12-822103-7.00008-X
X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 120(15), 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026
E.S. Toberer, A. Zevalkink, G.J. Snyder, Phonon engineering through crystal chemistry. J. Mater. Chem. 21(40), 15843–15852 (2011). https://doi.org/10.1039/C1JM11754H
J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888), 554–557 (2008). https://doi.org/10.1126/science.1159725
Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen et al., Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473(7345), 66–69 (2011). https://doi.org/10.1038/nature09996
L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan et al., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373–377 (2014). https://doi.org/10.1038/nature13184
J. Recatala-Gomez, A. Suwardi, I. Nandhakumar, A. Abutaha, K. Hippalgaonkar, Toward accelerated thermoelectric materials and process discovery. ACS Appl. Energy Mater. 3(3), 2240–2257 (2020). https://doi.org/10.1021/acsaem.9b02222
A. Suwardi, J. Cao, L. Hu, F. Wei, J. Wu et al., Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. J. Mater. Chem. A 8(36), 18880–18890 (2020). https://doi.org/10.1039/D0TA06013E
Y. Pei, A.D. LaLonde, H. Wang, G.J. Snyder, Low effective mass leading to high thermoelectric performance. Energy Environ. Sci. 5(7), 7963–7969 (2012). https://doi.org/10.1039/C2EE21536E
A. Suwardi, D. Bash, H.K. Ng, J.R. Gomez, D.M. Repaka et al., Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation. J. Mater. Chem. A 7(41), 23762–23769 (2019). https://doi.org/10.1039/C9TA05967A
M. Dresselhaus, Y. Lin, G. Dresselhaus, X. Sun, Z. Zhang et al., Advances in 1D and 2D thermoelectric materials. In Eighteenth International Conference on Thermoelectrics Proceedings, ICT'99 (Cat No 99TH8407). 92–99 (1999). https://doi.org/https://doi.org/10.1109/ICT.1999.843342
Y. Wu, Z. Chen, P. Nan, F. Xiong, S. Lin et al., Lattice strain advances thermoelectrics. Joule 3(5), 1276–1288 (2019). https://doi.org/10.1016/j.joule.2019.02.008
T.G. Novak, K. Kim, S. Jeon, 2D and 3D nanostructuring strategies for thermoelectric materials. Nanoscale 11(42), 19684–19699 (2019). https://doi.org/10.1039/C9NR07406F
S. Ortega, M. Ibáñez, Y. Liu, Y. Zhang, M.V. Kovalenko et al., Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem. Soc. Rev. 46(12), 3510–3528 (2017). https://doi.org/10.1039/C6CS00567E
B. Xu, T. Feng, Z. Li, W. Zheng, Y. Wu, Large-scale, solution-synthesized nanostructured composites for thermoelectric applications. Adv. Mater. 30(48), 1801904 (2018). https://doi.org/10.1002/adma.201801904
H. Alam, S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2(2), 190–212 (2013). https://doi.org/10.1016/j.nanoen.2012.10.005
H.J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, 2010).
J. Mao, W. Liu, Z. Ren, Carrier distribution in multi-band materials and its effect on thermoelectric properties. J. Materiomics 2(2), 203–211 (2016). https://doi.org/10.1016/j.jmat.2016.03.001
Z.-G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. Mater. Int. 22(6), 535–549 (2012). https://doi.org/10.1016/j.pnsc.2012.11.011
S. Lin, W. Li, Z. Bu, B. Gao, J. Li et al., Thermoelectric properties of Ag9GaS6 with ultralow lattice thermal conductivity. Mater. Today Phys. 6, 60–67 (2018). https://doi.org/10.1016/j.mtphys.2018.09.001
W. Li, S. Lin, M. Weiss, Z. Chen, J. Li et al., Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag9AlSe6. Adv. Energy Mater. 8(18), 1800030 (2018). https://doi.org/10.1002/aenm.201800030
G.J. Snyder, E.S. Toberer, Complex Thermoelectric Materials (World Scientific, Singapore, 2011), pp. 101–110
A. Suwardi, L. Hu, X. Wang, X.Y. Tan, D.V.M. Repaka et al., Origin of high thermoelectric performance in earth-abundant phosphide–tetrahedrite. ACS Appl. Mater. Interfaces 12(8), 9150–9157 (2020). https://doi.org/10.1021/acsami.9b17269
G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford, 2005).
M. Lundstrom, J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation (Springer, Berlin, 2006).
T.-H. Liu, J. Zhou, M. Li, Z. Ding, Q. Song et al., Electron mean-free-path filtering in dirac material for improved thermoelectric performance. PNAS 115(5), 879–884 (2018). https://doi.org/10.1073/pnas.1715477115
J.-H. Lee, J. Grossman, J. Reed, G. Galli, Lattice thermal conductivity of nanoporous Si: molecular dynamics study. Appl. Phys. Lett. 91(22), 223110 (2007). https://doi.org/10.1063/1.2817739
J.D. Chung, M. Kaviany, Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon. Int. J. Heat. Mass Transf. 43(4), 521–538 (2000). https://doi.org/10.1016/S0017-9310(99)00165-9
K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414–418 (2012). https://doi.org/10.1038/nature11439
D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46(10), 6131 (1992). https://doi.org/10.1103/PhysRevB.46.6131
H. Wu, J. Carrete, Z. Zhang, Y. Qu, X. Shen et al., Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Mater. 6(6), e108–e108 (2014). https://doi.org/10.1038/am.2014.39
S.Y. Ren, J.D. Dow, Thermal conductivity of superlattices. Phys. Rev. B 25(6), 3750 (1982). https://doi.org/10.1103/PhysRevB.25.3750
J. Mao, Z. Liu, Z. Ren, Size effect in thermoelectric materials. NPJ Quantum Mater. 1(1), 1–9 (2016). https://doi.org/10.1038/npjquantmats.2016.28
L. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47(19), 12727 (1993). https://doi.org/10.1103/PhysRevB.47.12727
L. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47(24), 16631 (1993). https://doi.org/10.1103/PhysRevB.47.16631
P. Pichanusakorn, P. Bandaru, Nanostructured thermoelectrics. Mater. Sci. Eng. R Rep. 67(2–4), 19–63 (2010). https://doi.org/10.1016/j.mser.2009.10.001
C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22(36), 3970–3980 (2010). https://doi.org/10.1002/adma.201000839
J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2(4), 152–158 (2010). https://doi.org/10.1038/asiamat.2010.138
M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee et al., New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043–1053 (2007). https://doi.org/10.1002/adma.200600527
L. Hicks, T. Harman, X. Sun, M. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53(16), R10493 (1996). https://doi.org/10.1103/PhysRevB.53.R10493
E. Rogacheva, T. Tavrina, O. Nashchekina, S. Grigorov, K. Nasedkin et al., Quantum size effects in pbse quantum wells. Appl. Phys. Lett. 80(15), 2690–2692 (2002). https://doi.org/10.1063/1.1469677
H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura et al., Giant thermoelectric seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6(2), 129–134 (2007). https://doi.org/10.1038/nmat1821
A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard Iii et al., Silicon nanowires as efficient thermoelectric materials. Nature 451(7175), 168–171 (2008). https://doi.org/10.1038/nature06458
P.M. Wu, J. Gooth, X. Zianni, S.F. Svensson, J.G.R. Gluschke et al., Large thermoelectric power factor enhancement observed in inas nanowires. Nano Lett. 13(9), 4080–4086 (2013). https://doi.org/10.1021/nl401501j
T. Harman, D. Spears, M. Manfra, High thermoelectric figures of merit in pbte quantum wells. J. Electron. Mater. 25(7), 1121–1127 (1996). https://doi.org/10.1007/BF02659913
T. Harman, P. Taylor, D. Spears, M. Walsh, Thermoelectric quantum-dot superlattices with high ZT. J. Electron Mater. 29(1), L1–L2 (2000). https://doi.org/10.1007/s11664-000-0117-1
L. Wu, X. Li, S. Wang, T. Zhang, J. Yang et al., Resonant level-induced high thermoelectric response in indium-doped GeTe. NPG Asia Mater. 9(1), e343 (2017). https://doi.org/10.1038/am.2016.203
A. Suwardi, J. Cao, Y. Zhao, J. Wu, S.W. Chien et al., Achieving high thermoelectric quality factor towards high figure of merit in GeTe. Mater. Today Phys. (2020). https://doi.org/10.1016/j.mtphys.2020.100239
A.F. Ioffe, L. Stil’Bans, E. Iordanishvili, T. Stavitskaya, A. Gelbtuch et al., Semiconductor thermoelements and thermoelectric cooling. Phys. Today 12(5), 42 (1959). https://doi.org/10.1063/1.3060810
D. Rowe, G. Min, Multiple potential barriers as a possible mechanism to increase the Seebeck coefficient and electrical power factor. AIP Conf. Proc. 316(1), 339–342 (1994). https://doi.org/10.1063/1.46827
C. Li, S. Ma, P. Wei, W. Zhu, X. Nie et al., Magnetism-induced huge enhancement of the room-temperature thermoelectric and cooling performance of p-type BiSbTe alloys. Energy Environ. Sci. 13(2), 535–544 (2020). https://doi.org/10.1039/C9EE03446C
Z. Liang, M.J. Boland, K. Butrouna, D.R. Strachan, K.R. Graham, Increased power factors of organic–inorganic nanocomposite thermoelectric materials and the role of energy filtering. J. Mater. Chem. A 5(30), 15891–15900 (2017). https://doi.org/10.1039/C7TA02307C
N. Mingo, D. Hauser, N. Kobayashi, M. Plissonnier, A. Shakouri, “Nanoparticle-in-alloy” approach to efficient thermoelectrics: Silicides in SiGe. Nano Lett. 9(2), 711–715 (2009). https://doi.org/10.1021/nl8031982
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer et al., Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96(4), 045901 (2006). https://doi.org/10.1103/PhysRevLett.96.045901
M.-S. Jeng, R. Yang, D. Song, G. Chen, Modeling the thermal conductivity and phonon transport in nanoparticle composites using monte carlo simulation. J. Heat Transf. 130(4), 042410 (2008). https://doi.org/10.1115/1.2818765
A. Kundu, N. Mingo, D. Broido, D. Stewart, Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84(12), 125426 (2011). https://doi.org/10.1103/PhysRevB.84.125426
H. Zhang, A.J. Minnich, The best nanoparticle size distribution for minimum thermal conductivity. Sci. Rep. 5, 8995 (2015). https://doi.org/10.1038/srep08995
J. He, J.R. Sootsman, S.N. Girard, J.-C. Zheng, J. Wen et al., On the origin of increased phonon scattering in nanostructured pbte based thermoelectric materials. J. Am. Chem. Soc. 132(25), 8669–8675 (2010). https://doi.org/10.1021/ja1010948
L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou et al., All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6(11), 3346–3355 (2013). https://doi.org/10.1039/C3EE42187B
L.-D. Zhao, J. He, S. Hao, C.-I. Wu, T.P. Hogan et al., Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using cds and ZnS. J. Am. Chem. Soc. 134(39), 16327–16336 (2012). https://doi.org/10.1021/ja306527n
L.-D. Zhao, J. He, C.-I. Wu, T.P. Hogan, X. Zhou et al., Thermoelectrics with earth abundant elements: High performance p-type PbS nanostructured with SrSand CaS. J. Am. Chem. Soc. 134(18), 7902–7912 (2012). https://doi.org/10.1021/ja301772w
L.-D. Zhao, X. Zhang, H. Wu, G. Tan, Y. Pei et al., Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J. Am. Chem. Soc. 138(7), 2366–2373 (2016). https://doi.org/10.1021/jacs.5b13276
J. Recatala-Gomez, H.K. Ng, P. Kumar, A. Suwardi, M. Zheng et al., Thermoelectric properties of substoichiometric electron beam patterned bismuth sulfide. ACS Appl. Mater. Interfaces 12(30), 33647–33655 (2020). https://doi.org/10.1021/acsami.0c06829
L.P. Tan, T. Sun, S. Fan, L.Y. Ng, A. Suwardi et al., Facile synthesis of Cu7Te4 nanorods and the enhanced thermoelectric properties of Cu7Te4–Bi0.4Sb1.6Te3 nanocomposites. Nano Energy 2(1), 4–11 (2013). https://doi.org/10.1016/j.nanoen.2012.07.004
X. Wang, A. Suwardi, Y. Zheng, H. Zhou, S.W. Chien et al., Enhanced thermoelectric performance of nanocrystalline indium tin oxide pellets by modulating the density and nanoporosity via spark plasma sintering. ACS Appl. Nano Mater. 3(10), 10156–10165 (2020). https://doi.org/10.1021/acsanm.0c02113
A. Suwardi, S.H. Lim, Y. Zheng, X. Wang, S.W. Chien et al., Effective enhancement of thermoelectric and mechanical properties of germanium telluride via rhenium-doping. J. Mater. Chem. C 8(47), 16940–16948 (2020). https://doi.org/10.1039/D0TC04903D
R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001). https://doi.org/10.1038/35098012
H.-T. Chang, C.-C. Wang, J.-C. Hsu, M.-T. Hung, P.-W. Li et al., High quality multifold Ge/Si/Ge composite quantum dots for thermoelectric materials. Appl. Phys. Lett. 102(10), 101902 (2013). https://doi.org/10.1063/1.4794943
H.-T. Chang, S.-Y. Wang, S.-W. Lee, Designer ge/si composite quantum dots with enhanced thermoelectric properties. Nanoscale 6(7), 3593–3598 (2014). https://doi.org/10.1039/C3NR06335F
A. Nadtochiy, V. Kuryliuk, V. Strelchuk, O. Korotchenkov, P.-W. Li et al., Enhancing the seebeck effect in Ge/Si through the combination of interfacial design features. Sci. Rep. 9(1), 1–11 (2019). https://doi.org/10.1038/s41598-019-52654-z
J. Chang, E.R. Waclawik, Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv. 4(45), 23505–23527 (2014). https://doi.org/10.1039/C4RA02684E
N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews et al., 25th anniversary article: semiconductor nanowires–synthesis, characterization, and applications. Adv. Mater. 26(14), 2137–2184 (2014). https://doi.org/10.1002/adma.201305929
X. Wang, A. Suwardi, S.L. Lim, F. Wei, J. Xu, Transparent flexible thin-film p–n junction thermoelectric module. NPJ Flex. Electron. 4(1), 1–9 (2020)
R.Y. Wang, J.P. Feser, J.-S. Lee, D.V. Talapin, R. Segalman et al., Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett. 8(8), 2283–2288 (2008). https://doi.org/10.1021/nl8009704
D. Yang, C. Lu, H. Yin, I.P. Herman, Thermoelectric performance of PbSe quantum dot films. Nanoscale 5(16), 7290–7296 (2013). https://doi.org/10.1039/C3NR01875J
D. Ding, D. Wang, M. Zhao, J. Lv, H. Jiang et al., Interface engineering in solution-processed nanocrystal thin films for improved thermoelectric performance. Adv. Mater. 29(1), 1603444 (2017). https://doi.org/10.1002/adma.201603444
M.I. Nugraha, H. Kim, B. Sun, S. Desai, F.P.G. de Arquer et al., Highly passivated n-type colloidal quantum dots for solution-processed thermoelectric generators with large output voltage. Adv. Energy Mater. 9(28), 1901244 (2019). https://doi.org/10.1002/aenm.201901244
M. Ibáñez, R. Zamani, S. Gorsse, J. Fan, S. Ortega et al., Core–shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe–PbS thermoelectric properties. ACS Nano 7(3), 2573–2586 (2013). https://doi.org/10.1021/nn305971v
C. Wang, G. Zhang, S. Fan, Y. Li, Hydrothermal synthesis of PbSe, PbTe semiconductor nanocrystals. J. Phys. Chem. Solids 62(11), 1957–1960 (2001). https://doi.org/10.1016/S0022-3697(01)00035-X
H. Zhang, L.-P. Wang, H. Xiong, L. Hu, B. Yang et al., Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv. Mater. 15(20), 1712–1715 (2003). https://doi.org/10.1002/adma.200305653
Q. Wang, D. Pan, S. Jiang, X. Ji, L. An et al., A solvothermal route to size-and shape-controlled CdSe and CdTe nanocrystals. J. Crystal Growth 286(1), 83–90 (2006). https://doi.org/10.1016/j.jcrysgro.2005.05.083
Q. Wang, D. Pan, S. Jiang, X. Ji, L. An et al., Luminescent CdSe and CdSe/CdS core-shell nanocrystals synthesized via a combination of solvothermal and two-phase thermal routes. J. Lumin. 118(1), 91–98 (2006). https://doi.org/10.1016/j.jlumin.2005.06.010
Z. Li, Y. Chen, J.-F. Li, H. Chen, L. Wang et al., Systhesizing snte nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method. Nano Energy 28, 78–86 (2016). https://doi.org/10.1016/j.nanoen.2016.08.008
Y.-Q. Tang, Z.-H. Ge, J. Feng, Synthesis and thermoelectric properties of copper sulfides via solution phase methods and spark plasma sintering. Curr. Comput. Aided Drug Des. 7(5), 141 (2017). https://doi.org/10.3390/cryst7050141
A. Datta, G.S. Nolas, Synthesis and characterization of nanocrystalline FeSb2 for thermoelectric applications. Eur. J. Inorg. Chem. 2012(1), 55–58 (2012). https://doi.org/10.1002/ejic.201100864
Z. Shao, W. Zhu, Z. Li, Q. Yang, G. Wang, One-step fabrication of cds nanoparticle-sensitized TiO2 nanotube arrays via electrodeposition. J. Phys. Chem. C 116(3), 2438–2442 (2012). https://doi.org/10.1021/jp2078117
S. Baeck, T. Jaramillo, G. Stucky, E. McFarland, Controlled electrodeposition of nanoparticulate tungsten oxide. Nano Lett. 2(8), 831–834 (2002). https://doi.org/10.1021/nl025587p
J. Na, Y. Kim, T. Park, C. Park, E. Kim, Preparation of bismuth telluride films with high thermoelectric power factor. ACS Appl. Mater. Interfaces 8(47), 32392–32400 (2016). https://doi.org/10.1021/acsami.6b10188
D. Zhao, J. Chen, Z. Ren, J. Chen, Q. Song et al., Thermoelectric transport and magnetoresistance of electrochemical deposited Bi2Te3 films at micrometer thickness. Ceram. Int. 46(3), 3339–3344 (2020). https://doi.org/10.1016/j.ceramint.2019.10.043
T.H. Nguyen, J. Enju, T. Ono, Enhancement of thermoelectric properties of bismuth telluride composite with gold nano-particles inclusions using electrochemical co-deposition. J. Electrochem. Soc. 166(12), D508 (2019). https://doi.org/10.1149/2.1011912jes
S. Wang, H. Li, R. Lu, G. Zheng, X. Tang, Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances. Nanotechnology 24(28), 285702 (2013)
K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 490(7421), 570–570 (2012)
D. Jung, K. Kurosaki, S. Seino, M. Ishimaru, K. Sato et al., Thermoelectric properties of au nanoparticle-supported Sb1.6Bi0.4Te3 synthesized by a γ-ray irradiation method. Phys. Status Solidi B 251(1), 162–167 (2014). https://doi.org/10.1002/pssb.201349226
S. Fan, J. Zhao, Q. Yan, J. Ma, H.H. Hng, Influence of nanoinclusions on thermoelectric properties of n-type Bi2Te3 nanocomposites. J. Electron. Mater. 40(5), 1018–1023 (2011). https://doi.org/10.1007/s11664-010-1487-7
Z. He, C. Stiewe, D. Platzek, G. Karpinski, E. Müller et al., Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2∕ CoSb3 composites. J. Appl. Phys. 101(4), 043707 (2007). https://doi.org/10.1063/1.2561628
X. Zhou, G. Wang, L. Zhang, H. Chi, X. Su et al., Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. J. Mater. Chem. 22(7), 2958–2964 (2012). https://doi.org/10.1039/C2JM15010G
J. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li et al., BiSbTe-based nanocomposites with high zt: the effect of sic nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23(35), 4317–4323 (2013). https://doi.org/10.1002/adfm.201300146
S. Gupta, D.C. Agarwal, B. Sivaiah, S. Amrithpandian, K. Asokan et al., Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix. Beilstein J. Nanotechnol. 10(1), 634–643 (2019). https://doi.org/10.3762/bjnano.10.63
T. Sun, M.K. Samani, N. Khosravian, K.M. Ang, Q. Yan et al., Enhanced thermoelectric properties of n-type Bi2Te2.7Se0.3 thin films through the introduction of Pt nanoinclusions by pulsed laser deposition. Nano Energy 8, 223–230 (2014). https://doi.org/10.1016/j.nanoen.2014.06.011
Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo et al., Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv. Funct. Mater. 25(6), 966–976 (2015). https://doi.org/10.1002/adfm.201402663
M. Ibánez, Z. Luo, A. Genc, L. Piveteau, S. Ortega et al., High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nat. Commun. 7(1), 1–7 (2016). https://doi.org/10.1038/ncomms10766
H. Yang, E. Wong, T. Zhao, J.D. Lee, H.L. Xin et al., Charge transport modulation in PbSe nanocrystal solids by AuxAg1–x nanoparticle doping. ACS Nano 12(9), 9091–9100 (2018). https://doi.org/10.1021/acsnano.8b03112
A. Tarachand, B. Mukherjee, M. Saxena, Y.-K. Kuo, G.S. Okram et al., Ag-nanoinclusion-induced enhanced thermoelectric properties of Ag2S. ACS Appl. Energy Mater. 2(9), 6383–6394 (2019). https://doi.org/10.1021/acsaem.9b01016
K.H. Lim, K.W. Wong, Y. Liu, Y. Zhang, D. Cadavid et al., Critical role of nanoinclusions in silver selenide nanocomposites as a promising room temperature thermoelectric material. J. Mater. Chem. C 7(9), 2646–2652 (2019). https://doi.org/10.1039/C9TC00163H
R. Chen, J. Lee, W. Lee, D. Li, Thermoelectrics of nanowires. Chem. Rev. 119(15), 9260–9302 (2019). https://doi.org/10.1021/acs.chemrev.8b00627
Y. Qi, Z. Wang, M. Zhang, F. Yang, X. Wang, Thermoelectric devices based on one-dimensional nanostructures. J. Mater. Chem. A 1(20), 6110–6124 (2013). https://doi.org/10.1039/C3TA01594G
K. Wang, H.-W. Liang, W.-T. Yao, S.-H. Yu, Templating synthesis of uniform Bi2Te3 nanowires with high aspect ratio in triethylene glycol (TEG) and their thermoelectric performance. J. Mater. Chem. 21(38), 15057–15062 (2011). https://doi.org/10.1039/C1JM12384J
G. Zhang, B. Kirk, L.A. Jauregui, H. Yang, X. Xu et al., Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Lett. 12(1), 56–60 (2012). https://doi.org/10.1021/nl202935k
S.W. Finefrock, G. Zhang, J.-H. Bahk, H. Fang, H. Yang et al., Structure and thermoelectric properties of spark plasma sintered ultrathin pbte nanowires. Nano Lett. 14(6), 3466–3473 (2014). https://doi.org/10.1021/nl500997w
H.-W. Liang, S. Liu, Q.-S. Wu, S.-H. Yu, An efficient templating approach for synthesis of highly uniform cdte and PbTe nanowires. Inorg. Chem. 48(11), 4927–4933 (2009). https://doi.org/10.1021/ic900245w
K. Wang, Y. Yang, H.-W. Liang, J.-W. Liu, S.-H. Yu, First sub-kilogram-scale synthesis of high quality ultrathin tellurium nanowires. Mater. Horizons 1(3), 338–343 (2014). https://doi.org/10.1039/C4MH00004H
G. Zhang, H. Fang, H. Yang, L.A. Jauregui, Y.P. Chen et al., Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. Nano Lett. 12(7), 3627–3633 (2012). https://doi.org/10.1021/nl301327d
Z. Xiong, Y. Cai, X. Ren, B. Cao, J. Liu et al., Solution-processed CdS/Cu2S superlattice nanowire with enhanced thermoelectric property. ACS Appl. Mater. Interfaces 9(38), 32424–32429 (2017). https://doi.org/10.1021/acsami.7b09346
C. Zhou, C. Dun, K. Wang, X. Zhang, Z. Shi et al., General method of synthesis ultrathin ternary metal chalcogenide nanowires for potential thermoelectric applications. Nano Energy 30, 709–716 (2016). https://doi.org/10.1016/j.nanoen.2016.10.043
H. Fang, H. Yang, Y. Wu, Thermoelectric properties of silver telluride–bismuth telluride nanowire heterostructure synthesized by site-selective conversion. Chem. Mater. 26(10), 3322–3327 (2014). https://doi.org/10.1021/cm501188c
H. Fang, T. Feng, H. Yang, X. Ruan, Y. Wu, Synthesis and thermoelectric properties of compositional-modulated lead telluride–bismuth telluride nanowire heterostructures. Nano Lett. 13(5), 2058–2063 (2013). https://doi.org/10.1021/nl400319u
H.-J. Choi, in Vapor–liquid–solid Growth of Semiconductor Nanowires. ed. by (Springer; 2012), pp. 1–36. https://doi.org/10.1007/978-3-642-22480-5_1
K.W. Kolasinski, Catalytic growth of nanowires: vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth. Curr. Opin. Solid State Mater. Sci. 10(3–4), 182–191 (2006). https://doi.org/10.1016/j.cossms.2007.03.002
D. Li, Y. Wu, P. Kim, L. Shi, P. Yang et al., Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83(14), 2934–2936 (2003). https://doi.org/10.1063/1.1616981
D. Li, Y. Wu, R. Fan, P. Yang, A. Majumdar, Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83(15), 3186–3188 (2003). https://doi.org/10.1063/1.1619221
I.D. Noyan, G. Gadea, M. Salleras, M. Pacios, C. Calaza et al., SiGe nanowire arrays based thermoelectric microgenerator. Nano Energy 57, 492–499 (2019). https://doi.org/10.1016/j.nanoen.2018.12.050
Y.-H. Park, J. Kim, H. Kim, I. Kim, K.-Y. Lee et al., Thermal conductivity of VLS-grown rough si nanowires with various surface roughnesses and diameters. Appl. Phys. A 104(1), 7 (2011). https://doi.org/10.1007/s00339-011-6474-1
H. Kim, Y.-H. Park, I. Kim, J. Kim, H.-J. Choi et al., Effect of surface roughness on thermal conductivity of VLS-grown rough Si1−xGex nanowires. Appl. Phys. A 104(1), 23–28 (2011). https://doi.org/10.1007/s00339-011-6475-0
D. Dávila, A. Tarancón, C. Calaza, M. Salleras, M. Fernández-Regúlez et al., Improved thermal behavior of multiple linked arrays of silicon nanowires integrated into planar thermoelectric microgenerators. J. Electron. Mater. 42(7), 1918–1925 (2013). https://doi.org/10.1007/s11664-013-2470-x
D. Dávila, R. Huber, C. Hierold, Bottom-up silicon nanowire-based thermoelectric microgenerators. J. Phys. Conf. Series 660(1), 012101 (2015)
D.J. Hill, T.S. Teitsworth, S. Kim, J.D. Christesen, J.F. Cahoon, Encoding highly nonequilibrium boron concentrations and abrupt morphology in p-type/n-type silicon nanowire superlattices. ACS Appl. Mater. Interfaces 9(42), 37105–37111 (2017). https://doi.org/10.1021/acsami.7b08162
F. Nasirpouri, in Template Electrodeposition of Nanowires Arrays. ed. by (Springer; 2017), pp. 187–259. https://doi.org/10.1007/978-3-319-44920-3_5
L. Li, S. Xu, G. Li, Enhancement of thermoelectric properties in Bi–Sb–Te alloy nanowires by pulsed electrodeposition. Energy Technol. 3(8), 825–829 (2015). https://doi.org/10.1002/ente.201500071
R.D. Reeves, L.A. Crosser, G.E. Chester, J.J. Hill, Thermoelectric property enhancement via pore confinement in template grown bismuth telluride nanowire arrays. Nanotechnology 28(50), 505401 (2017)
M. Proenca, M. Rosmaninho, P. Resende, C. Sousa, J. Ventura et al., Tailoring bi-te based nanomaterials by electrodeposition: Morphology and crystalline structure. Mater. Des. 118, 168–174 (2017). https://doi.org/10.1016/j.matdes.2017.01.020
J. Lee, S. Farhangfar, J. Lee, L. Cagnon, R. Scholz et al., Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition. Nanotechnology 19(36), 365701 (2008)
J. Martín, C.V. Manzano, O. Caballero-Calero, M. Martín-González, High-aspect-ratio and highly ordered 15-nm porous alumina templates. ACS Appl. Mater. Interfaces 5(1), 72–79 (2013). https://doi.org/10.1021/am3020718
J. Krieg, R. Giraud, H. Funke, J. Dufouleur, W. Escoffier et al., Magnetotransport measurements on Bi2Te3 nanowires electrodeposited in etched ion-track membranes. J. Phys. Chem. Solids 128, 360–366 (2019). https://doi.org/10.1016/j.jpcs.2018.02.002
D. Kojda, R. Mitdank, A. Mogilatenko, W. Töllner, Z. Wang et al., The effect of a distinct diameter variation on the thermoelectric properties of individual Bi0.39Te0.61 nanowires. Semicond. Sci. Technol. 29(12), 124006 (2014)
M. Muñoz Rojo, S. Grauby, J.-M. Rampnoux, O. Caballero-Calero, M. Martín-González et al., Fabrication of Bi2Te3 nanowire arrays and thermal conductivity measurement by 3ω-scanning thermal microscopy. J. Appl. Phys. 113(5), 054308 (2013). https://doi.org/10.1063/1.4790363
A. Mavrokefalos, A.L. Moore, M.T. Pettes, L. Shi, W. Wang et al., Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires. J. Appl. Phys. 105(10), 104318 (2009). https://doi.org/10.1063/1.3133145
M.M. Rojo, B. Abad, C.V. Manzano, P. Torres, X. Cartoixà et al., Thermal conductivity of Bi2Te3 nanowires: how size affects phonon scattering. Nanoscale 9(20), 6741–6747 (2017). https://doi.org/10.1039/C7NR02173A
C. De Tomas, A. Cantarero, A. Lopeandia, F. Alvarez, From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures. J. Appl. Phys. 115(16), 164314 (2014). https://doi.org/10.1063/1.4871672
P. Kumar, M. Pfeffer, N. Peranio, O. Eibl, S. Bäßler et al., Ternary, single-crystalline Bi2(Te, Se)3 nanowires grown by electrodeposition. Acta Mater. 125, 238–245 (2017). https://doi.org/10.1016/j.actamat.2016.11.057
L. Li, C. Jin, S. Xu, J. Yang, H. Du et al., Thermal conductivity of a single Bi0.5Sb1.5Te3 single-crystalline nanowire. Nanotechnology 25(41), 415704 (2014)
S. Bäßler, T. Böhnert, J. Gooth, C. Schumacher, E. Pippel et al., Thermoelectric power factor of ternary single-crystalline Sb2Te3-and Bi2Te3-based nanowires. Nanotechnology 24(49), 495402 (2013)
C.-G. Kuo, Y.-T. Hsieh, C.-F. Yang, C.-H. Huang, C.-Y. Yen, Growth of anodic aluminum oxide templates and the application in fabrication of the BiSbTe-based thermoelectric nanowires. Int. J. Photoenergy (2014). https://doi.org/10.1155/2014/978184
M. Hasan, D. Gautam, R. Enright, Electrodeposition of textured Bi27Sb28Te45 nanowires with enhanced electrical conductivity. Mater. Chem. Phys. 173, 438–445 (2016). https://doi.org/10.1016/j.matchemphys.2016.02.035
A. Danine, J. Schoenleber, J. Ghanbaja, F. Montaigne, C. Boulanger et al., Microstructure and thermoelectric properties of p-type bismuth antimony telluride nanowires synthetized by template electrodeposition in polycarbonate membranes. Electrochim. Acta 279, 258–268 (2018). https://doi.org/10.1016/j.electacta.2018.05.071
A. Datta, A. Sangle, N. Hardingham, C. Cooper, M. Kraan et al., Structure and thermoelectric properties of Bi2−xSbxTe3 nanowires grown in flexible nanoporous polycarbonate templates. Materials 10(5), 553 (2017). https://doi.org/10.3390/ma10050553
J. Fu, J. Shen, H. Shi, Y. Liang, Z. Qu et al., Preparation and characterisation of single-crystalline structure Sb/Bi2Te3 superlattice nanowires. Micro Nano Lett. 11(11), 738–740 (2016). https://doi.org/10.1049/mnl.2015.0457
B. Yoo, F. Xiao, K.N. Bozhilov, J. Herman, M.A. Ryan et al., Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater. 19(2), 296–299 (2007). https://doi.org/10.1002/adma.200600606
S.J. Limmer, W.G. Yelton, M.P. Siegal, J.L. Lensch-Falk, J. Pillars et al., Electrochemical deposition of Bi2(Te, Se)3 nanowire arrays on Si. J. Electrochem. Soc. 159(4), D235 (2012)
X. Li, K. Cai, D. Yu, Y. Wang, Electrodeposition and characterization of thermoelectric Bi2Te2Se/Te multilayer nanowire arrays. Superlattices Microstruct. 50(5), 557–562 (2011). https://doi.org/10.1016/j.spmi.2011.09.001
D. Li, J.T. McCann, Y. Xia, M. Marquez, Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Ceram. Soc. 89(6), 1861–1869 (2006). https://doi.org/10.1111/j.1551-2916.2006.00989.x
S.-X. Wang, C.C. Yap, J. He, C. Chen, S.Y. Wong et al., Electrospinning: A facile technique for fabricating functional nanofibers for environmental applications. Nanotechnol. Rev. 5(1), 51–73 (2016). https://doi.org/10.1515/ntrev-2015-0065
T. Yin, D. Liu, Y. Ou, F. Ma, S. Xie et al., Nanocrystalline thermoelectric Ca3Co4O9 ceramics by sol−gel based electrospinning and spark plasma sintering. J. Phys. Chem. C 114(21), 10061–10065 (2010). https://doi.org/10.1021/jp1024872
F. Ma, Y. Ou, Y. Yang, Y. Liu, S. Xie et al., Nanocrystalline structure and thermoelectric properties of electrospun NaCo2O4 nanofibers. J. Phys. Chem. C 114(50), 22038–22043 (2010). https://doi.org/10.1021/jp107488k
W. Xu, Y. Shi, H. Hadim, The fabrication of thermoelectric La0.95Sr0.05CoO3 nanofibers and Seebeck coefficient measurement. Nanotechnology 21(39), 395303 (2010)
K.-R. Park, H.-B. Cho, Y. Song, S. Kim, Y.-T. Kwon et al., Large-scale synthesis of lead telluride (PbTe) nanotube-based nanocomposites with tunable morphology, crystallinity and thermoelectric properties. Appl. Surf. Sci. 436, 785–790 (2018). https://doi.org/10.1016/j.apsusc.2017.12.102
M. Zhang, S.-D. Park, J. Kim, M. Nalbandian, S. Kim et al., Synthesis and thermoelectric characterization of lead telluride hollow nanofibers. Front. Chem. 6, 436 (2018). https://doi.org/10.3389/fchem.2018.00436
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
X. Zhang, Y. Xie, Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem. Soc. Rev. 42(21), 8187–8199 (2013). https://doi.org/10.1039/C3CS60138B
M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013). https://doi.org/10.1021/cr300263a
H. Zhang, W. Zeng, C. Pan, L. Feng, M. Ou et al., SnTe@ MnO2-SP nanosheet–based intelligent nanoplatform for second near-infrared light–mediated cancer theranostics. Adv. Funct. Mater. 29(37), 1903791 (2019). https://doi.org/10.1002/adfm.201903791
J.Y. Oh, J.H. Lee, S.W. Han, S.S. Chae, E.J. Bae et al., Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ. Sci. 9(5), 1696–1705 (2016). https://doi.org/10.1039/C5EE03813H
Y. Huang, L. Li, Y.-H. Lin, C.-W. Nan, Liquid exfoliation few-layer snse nanosheets with tunable band gap. J. Phys. Chem. C 121(32), 17530–17537 (2017). https://doi.org/10.1021/acs.jpcc.7b06096
W.J. Baumgardner, J.J. Choi, Y.-F. Lim, T. Hanrath, Snse nanocrystals: synthesis, structure, optical properties, and surface chemistry. J. Am. Chem. Soc. 132(28), 9519–9521 (2010). https://doi.org/10.1021/ja1013745
Y.X. Chen, Z.H. Ge, M. Yin, D. Feng, X.Q. Huang et al., Understanding of the extremely low thermal conductivity in high-performance polycrystalline snse through potassium doping. Adv. Funct. Mater. 26(37), 6836–6845 (2016). https://doi.org/10.1002/adfm.201602652
J.-H. Ahn, M.-J. Lee, H. Heo, J.H. Sung, K. Kim et al., Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 15(6), 3703–3708 (2015). https://doi.org/10.1021/acs.nanolett.5b00079
X.-H. Ma, K.-H. Cho, Y.-M. Sung, Growth mechanism of vertically aligned SnSe nanosheets via physical vapour deposition. CrystEngComm 16(23), 5080–5086 (2014). https://doi.org/10.1039/C4CE00213J
Z. Tian, C. Guo, M. Zhao, R. Li, J. Xue, Two-dimensional sns: A phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 11(2), 2219–2226 (2017). https://doi.org/10.1021/acsnano.6b08704
S. Liu, N. Sun, M. Liu, S. Sucharitakul, X.P. Gao, Nanostructured snse: Synthesis, doping, and thermoelectric properties. J. Appl. Phys. 123(11), 115109 (2018). https://doi.org/10.1063/1.5018860
H.-A. Chen, H. Sun, C.-R. Wu, Y.-X. Wang, P.-H. Lee et al., Single-crystal antimonene films prepared by molecular beam epitaxy: Selective growth and contact resistance reduction of the 2D material heterostructure. ACS Appl. Mater. Interfaces 10(17), 15058–15064 (2018). https://doi.org/10.1021/acsami.8b02394
M. Fortin-Deschênes, O. Waller, T. Mentes, A. Locatelli, S. Mukherjee et al., Synthesis of antimonene on germanium. Nano Lett. 17(8), 4970–4975 (2017). https://doi.org/10.1021/acs.nanolett.7b02111
X. Wu, Y. Shao, H. Liu, Z. Feng, Y.L. Wang et al., Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 29(11), 1605407 (2017). https://doi.org/10.1002/adma.201605407
T. Nagao, T. Doi, T. Sekiguchi, S. Hasegawa, Epitaxial growth of single-crystal ultrathin films of bismuth on Si (111). Jpn. J. Appl. Phys. 39(7S), 4567 (2000)
T. Nagao, J. Sadowski, M. Saito, S. Yaginuma, Y. Fujikawa et al., Nanofilm allotrope and phase transformation of ultrathin bi film on Si (111)−7×7. Phys. Rev. Lett. 93(10), 105501 (2004). https://doi.org/10.1103/PhysRevLett.93.105501
T. Aizawa, I. Ohkubo, M.S. Lima, T. Sakurai, T. Mori, Fabrication of Mg2Sn (111) film by molecular beam epitaxy. J. Vac. Sci. Technol. A: Vac. Surfaces Films 37(6), 061513 (2019). https://doi.org/10.1116/1.5122844
Z. Ye, S. Cui, T. Shu, S. Ma, Y. Liu et al., Electronic band structure of epitaxial pbte (111) thin films observed by angle-resolved photoemission spectroscopy. Phys. Rev. B 95(16), 165203 (2017). https://doi.org/10.1103/PhysRevB.95.165203
W. Ren, H. Li, L. Gao, Y. Li, Z. Zhang et al., Epitaxial growth and thermal-conductivity limit of single-crystalline Bi2Se3/In2Se3 superlattices on mica. Nano Res. 10(1), 247–254 (2017). https://doi.org/10.1007/s12274-016-1282-8
M.-W. Chen, H. Kim, D. Ovchinnikov, A. Kuc, T. Heine et al., Large-grain mbe-grown gase on gaas with a mexican hat-like valence band dispersion. NPJ 2D Mater. Appl. 2(1), 1–7 (2018). https://doi.org/10.1038/s41699-017-0047-x
A. Rice, J. Kawasaki, N. Verma, D. Pennachio, B. Schultz et al., Structural and electronic properties of molecular beam epitaxially grown Ni1+xTiSn films. J. Crystal Growth 467, 71–76 (2017). https://doi.org/10.1016/j.jcrysgro.2017.03.015
X. Chen, R. Fan, Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chem. Mater. 13(3), 802–805 (2001). https://doi.org/10.1021/cm000517+
X. Zhang, G. Ma, J. Wang, Hydrothermal synthesis of two-dimensional MoS2 and its applications. Tungsten 1(1), 59–79 (2019). https://doi.org/10.1007/s42864-019-00014-9
U. Alli, S.J. Hettiarachchi, S. Kellici, Chemical functionalisation of 2D materials by batch and continuous hydrothermal flow synthesis. Chem. Eur. J. 26(29), 6447–6460 (2020). https://doi.org/10.1002/chem.202000383
X.L. Shi, X. Tao, J. Zou, Z.G. Chen, High-performance thermoelectric SnSe: aqueous synthesis, innovations, and challenges. Adv. Sci. 7(7), 1902923 (2020). https://doi.org/10.1002/advs.201902923
S. Chandra, K. Biswas, Realization of high thermoelectric figure of merit in solution synthesized 2D SnSe nanoplates via Ge alloying. J. Am. Chem. Soc. 141(15), 6141–6145 (2019). https://doi.org/10.1021/jacs.9b01396
W. Shi, L. Zhou, S. Song, J. Yang, H. Zhang, Hydrothermal synthesis and thermoelectric transport properties of impurity-free antimony telluride hexagonal nanoplates. Adv. Mater. 20(10), 1892–1897 (2008). https://doi.org/10.1002/adma.200702003
J.G. Park, Y.H. Lee, High thermoelectric performance of Bi-Te alloy: defect engineering strategy. Curr. Appl. Phys. 16(9), 1202–1215 (2016). https://doi.org/10.1016/j.cap.2016.03.028
Y. Hosokawa, K. Tomita, M. Takashiri, Growth of single-crystalline Bi2Te3 hexagonal nanoplates with and without single nanopores during temperature-controlled solvothermal synthesis. Sci. Rep. 9(1), 10790 (2019). https://doi.org/10.1038/s41598-019-47356-5
R. Mori, Y. Mayuzumi, M. Yamaguchi, A. Kobayashi, Y. Seki et al., Improved thermoelectric properties of solvothermally synthesized Bi2Te3 nanoplate films with homogeneous interconnections using Bi2Te3 electrodeposited layers. J. Alloys Compd. 818, 152901 (2020). https://doi.org/10.1016/j.jallcom.2019.152901
Y. Wang, W.-D. Liu, H. Gao, L.-J. Wang, M. Li et al., High porosity in nanostructured n-type Bi2Te3 obtaining ultralow lattice thermal conductivity. ACS Appl. Mater. Interfaces 11(34), 31237–31244 (2019). https://doi.org/10.1021/acsami.9b12079
M. Hong, T.C. Chasapis, Z.-G. Chen, L. Yang, M.G. Kanatzidis et al., N-type Bi2Te3–xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 10(4), 4719–4727 (2016). https://doi.org/10.1021/acsnano.6b01156
Y. Zhang, Y. Liu, C. Xing, T. Zhang, M. Li et al., Tin selenide molecular precursor for the solution processing of thermoelectric materials and devices. ACS Appl. Mater. Interfaces 12(24), 27104–27111 (2020). https://doi.org/10.1021/acsami.0c04331
S. Saha, A. Banik, K. Biswas, Few-layer nanosheets of n-type SnSe2. Chem. Eur. J. 22(44), 15634–15638 (2016). https://doi.org/10.1002/chem.201604161
S. Chandra, A. Banik, K. Biswas, N-type ultrathin few-layer nanosheets of bi-doped SnSe: synthesis and thermoelectric properties. ACS Energy Lett. 3(5), 1153–1158 (2018). https://doi.org/10.1021/acsenergylett.8b00399
N.A. Rongione, M. Li, H. Wu, H.D. Nguyen, J.S. Kang et al., High-performance solution-processable flexible SnSe nanosheet films for lower grade waste heat recovery. Adv. Electron. Mater. 5(3), 1800774 (2019). https://doi.org/10.1002/aelm.201800774
M. Hong, Z.-G. Chen, L. Yang, T.C. Chasapis, S.D. Kang et al., Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering. J. Mater. Chem. A 5(21), 10713–10721 (2017). https://doi.org/10.1039/C7TA02677C
G. Han, S.R. Popuri, H.F. Greer, J.W.G. Bos, W. Zhou et al., Facile surfactant-free synthesis of p-type SnSe nanoplates with exceptional thermoelectric power factors. Angew. Chem. Int. Ed. 55(22), 6433–6437 (2016). https://doi.org/10.1002/anie.201601420
J.S. Son, M.K. Choi, M.-K. Han, K. Park, J.-Y. Kim et al., N-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 12(2), 640–647 (2012). https://doi.org/10.1021/nl203389x
M. Martín-González, O. Caballero-Calero, P. Díaz-Chao, Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field. Renew. Sust. Energ. Rev. 24, 288–305 (2013). https://doi.org/10.1016/j.rser.2013.03.008
B. Xu, T. Feng, Z. Li, S.T. Pantelides, Y. Wu, Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals. Nano Lett. 18(6), 4034–4039 (2018). https://doi.org/10.1021/acs.nanolett.8b01691
J. Shi, H. Chen, S. Jia, W. Wang, 3d printing fabrication of porous bismuth antimony telluride and study of the thermoelectric properties. J. Manuf. Process 37, 370–375 (2019). https://doi.org/10.1016/j.jmapro.2018.11.001
S. Hong, J. Park, S.G. Jeon, K. Kim, S.H. Park et al., Monolithic Bi1.5Sb0.5Te3 ternary alloys with a periodic 3D nanostructure for enhancing thermoelectric performance. J. Mater. Chem. C 5(35), 8974–8980 (2017). https://doi.org/10.1039/C7TC02717F
K. Kim, J. Park, S. Hong, S.H. Park, S.G. Jeon et al., Anomalous thermoelectricity of pure ZnO from 3D continuous ultrathin nanoshell structures. Nanoscale 10(6), 3046–3052 (2018). https://doi.org/10.1039/C7NR08167G
G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang et al., Realizing high figure of merit in phase-separated polycrystalline Sn1–xPbxSe. J. Am. Chem. Soc. 138(41), 13647–13654 (2016). https://doi.org/10.1021/jacs.6b07010
G. Tang, J. Liu, J. Zhang, D. Li, K.H. Rara et al., Realizing high thermoelectric performance below phase transition temperature in polycrystalline snse via lattice anharmonicity strengthening and strain engineering. ACS Appl. Mater. Interfaces 10(36), 30558–30565 (2018). https://doi.org/10.1021/acsami.8b10056
Y. Gong, C. Chang, W. Wei, J. Liu, W. Xiong et al., Extremely low thermal conductivity and enhanced thermoelectric performance of polycrystalline SnSe by Cu doping. Scripta Mater. 147, 74–78 (2018). https://doi.org/10.1016/j.scriptamat.2017.12.035
R. Xu, L. Huang, J. Zhang, D. Li, J. Liu et al., Nanostructured snse integrated with se quantum dots with ultrahigh power factor and thermoelectric performance from magnetic field-assisted hydrothermal synthesis. J. Mater. Chem. A 7(26), 15757–15765 (2019). https://doi.org/10.1039/C9TA03967H
S. Li, X. Lou, X. Li, J. Zhang, D. Li et al., Realization of high thermoelectric performance in polycrystalline tin selenide through schottky vacancies and endotaxial nanostructuring. Chem. Mater. 32(22), 9761–9770 (2020). https://doi.org/10.1021/acs.chemmater.0c03657
X. Shi, Z.-G. Chen, W. Liu, L. Yang, M. Hong et al., Achieving high figure of merit in p-type polycrystalline Sn0.98Se via self-doping and anisotropy-strengthening. Energy Storage Mater. 10, 130–138 (2018). https://doi.org/10.1016/j.ensm.2017.08.014
X. Shi, A. Wu, W. Liu, R. Moshwan, Y. Wang et al., Polycrystalline snse with extraordinary thermoelectric property via nanoporous design. ACS Nano 12(11), 11417–11425 (2018). https://doi.org/10.1021/acsnano.8b06387
X. Shi, K. Zheng, M. Hong, W. Liu, R. Moshwan et al., Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering. Chem. Sci. 9(37), 7376–7389 (2018). https://doi.org/10.1039/C8SC02397B
X.L. Shi, W.D. Liu, A.Y. Wu, V.T. Nguyen, H. Gao et al., Optimization of sodium hydroxide for securing high thermoelectric performance in polycrystalline Sn1−xSe via anisotropy and vacancy synergy. InfoMat 2(6), 1201–1215 (2019). https://doi.org/10.1002/inf2.12057
Y. Zheng, X.-L. Shi, H. Yuan, S. Lu, X. Qu et al., A synergy of strain loading and laser radiation in determining the high-performing electrical transports in the single Cu-doped SnSe microbelt. Mater. Today Phys. (2020). https://doi.org/10.1016/j.mtphys.2020.100198
Y. Liu, G. García, S. Ortega, D. Cadavid, P. Palacios et al., Solution-based synthesis and processing of Sn-and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators. J. Mater. Chem. A 5(6), 2592–2602 (2017). https://doi.org/10.1039/C6TA08467B
L. De Trizio, L. Manna, Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116(18), 10852–10887 (2016). https://doi.org/10.1021/acs.chemrev.5b00739
F. Yang, J. Wu, A. Suwardi, Y. Zhao, B. Liang et al., Gate-tunable polar optical phonon to piezoelectric scattering in few-layer Bi2O2Se for high-performance thermoelectrics. Adv. Mater. (2020). https://doi.org/10.1002/adma.202004786
S. Cecchi, D. Dragoni, D. Kriegner, E. Tisbi, E. Zallo et al., Interplay between structural and thermoelectric properties in epitaxial Sb2+xTe3 alloys. Adv. Funct. Mater. 29(2), 1805184 (2019). https://doi.org/10.1002/adfm.201805184
D. Bao, J. Chen, Y. Yu, W. Liu, L. Huang et al., Texture-dependent thermoelectric properties of nano-structured Bi2Te3. Chem. Eng. J. 388, 124295 (2020). https://doi.org/10.1016/j.cej.2020.124295
Y. Zhang, Y. Liu, C. Xing, T. Zhang, M. Li et al., Tin selenide molecular precursor for the solution-processing of thermoelectric materials and devices. ACS Appl. Mater. Interfaces 12(24), 27104–27111 (2020). https://doi.org/10.1021/acsami.0c04331
X. Shi, A. Wu, T. Feng, K. Zheng, W. Liu et al., High thermoelectric performance in p-type polycrystalline Cd-doped SnSe achieved by a combination of cation vacancies and localized lattice engineering. Adv. Energy Mater. 9(11), 1803242 (2019). https://doi.org/10.1002/aenm.201803242