Targeted Sub-Attomole Cancer Biomarker Detection Based on Phase Singularity 2D Nanomaterial-Enhanced Plasmonic Biosensor
Corresponding Author: Ho‑Pui Ho
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 96
Abstract
Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer, monitoring treatment and detecting relapse. Here, a highly enhanced plasmonic biosensor that can overcome this challenge is developed using atomically thin two-dimensional phase change nanomaterial. By precisely engineering the configuration with atomically thin materials, the phase singularity has been successfully achieved with a significantly enhanced lateral position shift effect. Based on our knowledge, it is the first experimental demonstration of a lateral position signal change > 340 μm at a sensing interface from all optical techniques. With this enhanced plasmonic effect, the detection limit has been experimentally demonstrated to be 10–15 mol L−1 for TNF-α cancer marker, which has been found in various human diseases including inflammatory diseases and different kinds of cancer. The as-reported novel integration of atomically thin Ge2Sb2Te5 with plasmonic substrate, which results in a phase singularity and thus a giant lateral position shift, enables the detection of cancer markers with low molecular weight at femtomolar level. These results will definitely hold promising potential in biomedical application and clinical diagnostics.
Highlights:
1 A zero-reflection-induced phase singularity is achieved through precisely controlling the resonance characteristics using two-dimensional nanomaterials.
2 An atomically thin nano-layer having a high absorption coefficient is exploited to enhance the zero-reflection dip, which has led to the subsequent phase singularity and thus a giant lateral position shift.
3 We have improved the detection limit of low molecular weight molecules by more than three orders of magnitude compared to current state-of-art nanomaterial-enhanced plasmonic sensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Cheng, D. Du, X. Wang, D. Liu, W. Xu et al., Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol. 37, 1236–1254 (2019). https://doi.org/10.1016/j.tibtech.2019.04.008
- Z. Wang, W. Cui, Crispr-cas system for biomedical diagnostic platforms. View 1, 200008 (2020). https://doi.org/10.1002/viw.20200008
- G. Yang, Z. Xiao, C. Tang, Y. Deng, H. Huang et al., Recent advances in biosensor for detection of lung cancer biomarkers. Biosens. Bioelectron. 141, 111416 (2019). https://doi.org/10.1016/j.bios.2019.111416
- M. Yamashita, E. Passegue, TNF-alpha coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell 25, 357–372 (2019). https://doi.org/10.1016/j.stem.2019.05.019
- J. Silke, E.L. Hartland, Masters, marionettes and modulators: Intersection of pathogen virulence factors and mammalian death receptor signaling. Curr. Opin. Immunol. 25, 436–440 (2013). https://doi.org/10.1016/j.coi.2013.05.011
- D. Brenner, H. Blaser, T.W. Mak, Regulation of tumour necrosis factor signalling: Live or let die. Nat. Rev. Immunol. 15, 362–374 (2015). https://doi.org/10.1038/nri3834
- B. Ungar, I. Levy, Y. Yavne, M. Yavzori, O. Picard et al., Optimizing anti-TNF-α therapy: Serum levels of infliximab and adalimumab are associated with mucosal healing in patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 14, 550-557.e552 (2016). https://doi.org/10.1016/j.cgh.2015.10.025
- Y. Wang, J. Xu, X. Zhang, C. Wang, Y. Huang et al., TNF-α-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death Dis. 8, e2715 (2017). https://doi.org/10.1038/cddis.2017.129
- M. Kapoor, J. Martel-Pelletier, D. Lajeunesse, J.P. Pelletier, H. Fahmi, Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011). https://doi.org/10.1038/nrrheum.2010.196
- Q. Zhang, D. Dehaini, Y. Zhang, J. Zhou, X. Chen et al., Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13, 1182–1190 (2018). https://doi.org/10.1038/s41565-018-0254-4
- H.A. Sahibzada, Z. Khurshid, R.S. Khan, M. Naseem, K.M. Siddique et al., Salivary IL-8, IL-6 and TNF-alpha as potential diagnostic biomarkers for oral cancer. Diagnostics 7(2), 21 (2017). https://doi.org/10.3390/diagnostics7020021
- Y. Ma, Y. Ren, Z.J. Dai, C.J. Wu, Y.H. Ji et al., IL-6, IL-8 and TNF-alpha levels correlate with disease stage in breast cancer patients. Adv. Clin. Exp. Med. 26, 421–426 (2017). https://doi.org/10.17219/acem/62120
- C. Agnoli, S. Grioni, V. Pala, A. Allione, G. Matullo et al., Biomarkers of inflammation and breast cancer risk: A case-control study nested in the epic-varese cohort. Sci. Rep. 7, 12708 (2017). https://doi.org/10.1038/s41598-017-12703-x
- E. Dalaveris, T. Kerenidi, A. Katsabeki-Katsafli, T. Kiropoulos, K. Tanou et al., VEGF, TNF-alpha and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer 64, 219–225 (2009). https://doi.org/10.1016/j.lungcan.2008.08.015
- M. Komatsu, D. Kobayashi, K. Saito, D. Furuya, A. Yagihashi et al., Tumor necrosis factor-a in serum of patients with inflammatory bowel disease as measured by a highly sensitive immuno-PCR. Clin. Chem. 47, 1297–1301 (2001). https://doi.org/10.1093/clinchem/47.7.1297
- G. La Rocca, S.H. Olejniczak, A.J. Gonzalez, D. Briskin, J.A. Vidigal et al., In vivo, argonaute-bound micrornas exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc. Natl. Acad. Sci. USA 112, 767–772 (2015). https://doi.org/10.1073/pnas.1424217112
- W. Hu, G. He, H. Zhang, X. Wu, J. Li et al., Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker. Anal. Chem. 86, 4488–4493 (2014). https://doi.org/10.1021/ac5003905
- S.B. Nimse, M.D. Sonawane, K.S. Song, T. Kim, Biomarker detection technologies and future directions. Analyst 141, 740–755 (2016). https://doi.org/10.1039/c5an01790d
- V. Jayanthi, A.B. Das, U. Saxena, Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 91, 15–23 (2017). https://doi.org/10.1016/j.bios.2016.12.014
- S. Yadav, N. Kashaninejad, M.K. Masud, Y. Yamauchi, N.T. Nguyen et al., Autoantibodies as diagnostic and prognostic cancer biomarker: Detection techniques and approaches. Biosens. Bioelectron. 139, 111315 (2019). https://doi.org/10.1016/j.bios.2019.111315
- H. Filik, A.A. Avan, Nanostructures for nonlabeled and labeled electrochemical immunosensors: Simultaneous electrochemical detection of cancer markers: A review. Talanta 205, 120153 (2019). https://doi.org/10.1016/j.talanta.2019.120153
- L. Miccio, F. Cimmino, I. Kurelac, M.M. Villone, V. Bianco et al., Perspectives on liquid biopsy for label-free detection of “circulating tumor cells” through intelligent lab-on-chips. View 1, 20200034 (2020). https://doi.org/10.1002/viw.20200034
- L. Huang, D.D. Gurav, S. Wu, W. Xu, V. Vedarethinam et al., A multifunctional platinum nanoreactor for point-of-care metabolic analysis. Matter 1, 1669–1680 (2019). https://doi.org/10.1016/j.matt.2019.08.014
- C. Pei, C. Liu, Y. Wang, D. Cheng, R. Li et al., FeOOH@metal-organic framework core-satellite nanocomposites for the serum metabolic fingerprinting of gynecological cancers. Angew. Chem. Int. Ed. 59, 10831–10835 (2020). https://doi.org/10.1002/anie.202001135
- W. Shu, Y. Wang, C. Liu, R. Li, C. Pei et al., Construction of a plasmonic chip for metabolic analysis in cervical cancer screening and evaluation. Small Methods 4, 1900469 (2020). https://doi.org/10.1002/smtd.201900469
- J. Cao, X. Shi, D.D. Gurav, L. Huang, H. Su et al., Metabolic fingerprinting on synthetic alloys for medulloblastoma diagnosis and radiotherapy evaluation. Adv. Mater. 32, e2000906 (2020). https://doi.org/10.1002/adma.202000906
- L. Huang, L. Wang, X. Hu, S. Chen, Y. Tao et al., Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma. Nat. Commun. 11, 3556 (2020). https://doi.org/10.1038/s41467-020-17347-6
- H. Sipova, J. Homola, Surface plasmon resonance sensing of nucleic acids: A review. Anal. Chim. Acta 773, 9–23 (2013). https://doi.org/10.1016/j.aca.2012.12.040
- P. Singh, Spr biosensors: Historical perspectives and current challenges. Sens. Actuat. B: Chem. 229, 110–130 (2016). https://doi.org/10.1016/j.snb.2016.01.118
- D.E.P. Souto, J. Volpe, C.C. Goncalves, C.H.I. Ramos, L.T. Kubota, A brief review on the strategy of developing SPR-based biosensors for application to the diagnosis of neglected tropical diseases. Talanta 205, 120122 (2019). https://doi.org/10.1016/j.talanta.2019.120122
- S. Zeng, D. Baillargeat, H.P. Ho, K.T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 43, 3426–3452 (2014). https://doi.org/10.1039/c3cs60479a
- B.P. Nelson, A.G. Frutos, J.M. Brockman, R.M. Corn, Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal. Chem. 71, 3928–3934 (1999). https://doi.org/10.1021/ac990517x
- S. Wang, X. Shan, U. Patel, X. Huang, J. Lu et al., Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc. Natl. Acad Sci. USA 107, 16028–16032 (2010). https://doi.org/10.1073/pnas.1005264107
- J. Cao, M.H. Tu, T. Sun, K.T.V. Grattan, Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sens. Actuat. B: Chem. 181, 611–619 (2013). https://doi.org/10.1016/j.snb.2013.02.052
- E. Kazuma, T. Tatsuma, Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips. Nanoscale 6, 2397–2405 (2014). https://doi.org/10.1039/c3nr05846h
- G. Xu, M. Tazawa, P. Jin, S. Nakao, K. Yoshimura, Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl. Phys. Lett. 82, 3811–3813 (2003). https://doi.org/10.1063/1.1578518
- V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev et al., Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12, 304–309 (2013). https://doi.org/10.1038/nmat3537
- Y.H. Huang, H.P. Ho, S.Y. Wu, S.K. Kong, Detecting phase shifts in surface plasmon resonance: A review. Adv. Optical Technol. 2012, 1–12 (2012). https://doi.org/10.1155/2012/471957
- F. Yesilkoy, R.A. Terborg, J. Pello, A.A. Belushkin, Y. Jahani et al., Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light Sci. Appl. 7, 17152–17152 (2017). https://doi.org/10.1038/lsa.2017.152
- C. Coutant, S. Ravaine, X. Wang, J. Toudert, V. Ponsinet et al., Plasmonic metamaterials for ultra-sensitive sensing: Topological darkness. Rendiconti Lincei 26, 175–182 (2015). https://doi.org/10.1007/s12210-015-0404-7
- L. Malassis, P. Masse, M. Treguer-Delapierre, S. Mornet et al., Topological darkness in self-assembled plasmonic metamaterials. Adv. Mater. 26, 324–330 (2014). https://doi.org/10.1002/adma.201303426
- Q. You, Y. Shan, S. Gan, Y. Zhao, X. Dai et al., Giant and controllable goos-hänchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure. Opt. Mater. Express 8, 3036–3048 (2018). https://doi.org/10.1364/ome.8.003036
- X. Yin, L. Hesselink, Goos-hänchen shift surface plasmon resonance sensor. Appl. Phys. Lett. 89, 261108 (2006). https://doi.org/10.1063/1.2424277
- T. Cao, C. Wei, R.E. Simpson, L. Zhang, M.J. Cryan, Rapid phase transition of a phase-change metamaterial perfect absorber. Opt. Mater. Express 3, 1101–1110 (2013). https://doi.org/10.1364/ome.3.001101
- D.G. Baranov, A. Krasnok, T. Shegai, A. Alù, Y. Chong, Coherent perfect absorbers: Linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017). https://doi.org/10.1038/natrevmats.2017.64
- C. Xu, J. Xu, G. Song, C. Zhu, Y. Yang et al., Enhanced displacements in reflected beams at hyperbolic metamaterials. Opt. Express 24, 21767–21776 (2016). https://doi.org/10.1364/OE.24.021767
- R.-G. Wan, M.S. Zubairy, Tunable and enhanced Goos-Hänchen shift via surface plasmon resonance assisted by a coherent medium. Opt. Express 28, 6036–6047 (2020). https://doi.org/10.1364/oe.384419
- J.H. Kang, S. Wang, Z. Shi, W. Zhao, E. Yablonovitch et al., Goos-Hanchen shift and even-odd peak oscillations in edge-reflections of surface polaritons in atomically thin crystals. Nano Lett. 17, 1768–1774 (2017). https://doi.org/10.1021/acs.nanolett.6b05077
- Y. Xu, C.T. Chan, H. Chen, Goos-Hanchen effect in epsilon-near-zero metamaterials. Sci. Rep. 5, 8681 (2015). https://doi.org/10.1038/srep08681
- X. Ding, W. Cheng, Y. Li, J. Wu, X. Li et al., An enzyme-free surface plasmon resonance biosensing strategy for detection of DNA and small molecule based on nonlinear hybridization chain reaction. Biosens. Bioelectron. 87, 345–351 (2017). https://doi.org/10.1016/j.bios.2016.08.077
- G. Qiu, S.P. Ng, C.L. Wu, Label-free surface plasmon resonance biosensing with titanium nitride thin film. Biosens. Bioelectron. 106, 129–135 (2018). https://doi.org/10.1016/j.bios.2018.02.006
- A. Kumar, G. Sachdeva, R. Pandey, S.P. Karna, Optical absorbance in multilayer two-dimensional materials: Graphene and antimonene. Appl. Phys. Lett. 116, 263102 (2020). https://doi.org/10.1063/5.0010794
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der waals heterostructures. Science 353, aac9439 (2016). https://doi.org/10.1126/science.aac9439
- Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photonics 10, 227–238 (2016). https://doi.org/10.1038/nphoton.2016.15
- C.-F. Li, Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects. Phys. Rev. Lett. 91, 133903 (2003). https://doi.org/10.1103/PhysRevLett.91.133903
- F. Yesilkoy, R.A. Terborg, J. Pello, A.A. Belushkin, Y. Jahani et al., Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light Sci. Appl. 7, 17152–17152 (2018). https://doi.org/10.1038/lsa.2017.152
- F. Feng, G. Si, C. Min, X. Yuan, M. Somekh, On-chip plasmonic spin-hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci. Appl. 9, 95 (2020). https://doi.org/10.1038/s41377-020-0330-z
- W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu et al., Transitional Goos-Hanchen effect due to the topological phase transitions. Opt. Express 26, 23705–23713 (2018). https://doi.org/10.1364/OE.26.023705
- C. Luo, J. Guo, Q. Wang, Y. Xiang, S. Wen, Electrically controlled Goos-Hanchen shift of a light beam reflected from the metal-insulator-semiconductor structure. Opt. Express 21, 10430–10439 (2013). https://doi.org/10.1364/OE.21.010430
- S. Lee, L. Li, Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy. Opt. Commun. 334, 253–257 (2015). https://doi.org/10.1016/j.optcom.2014.08.048
- A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz et al., Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009). https://doi.org/10.1038/nmat2546
- M. Focsan, A. Campu, A.-M. Craciun, M. Potara, C. Leordean et al., A simple and efficient design to improve the detection of biotin-streptavidin interaction with plasmonic nanobiosensors. Biosens. Bioelectron. 86, 728–735 (2016). https://doi.org/10.1016/j.bios.2016.07.054
- K.V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski et al., Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016). https://doi.org/10.1038/nmat4609
- R. Ahirwar, S. Bariar, A. Balakrishnan, P. Nahar, Bsa blocking in enzyme-linked immunosorbent assays is a non-mandatory step: A perspective study on mechanism of bsa blocking in common elisa protocols. RSC Adv. 5, 100077–100083 (2015). https://doi.org/10.1039/c5ra20750a
- J. Lee, I.S. Park, H. Kim, J.S. Woo, B.S. Choi et al., BSA as additive: A simple strategy for practical applications of PNA in bioanalysis. Biosens. Bioelectron. 69, 167–173 (2015). https://doi.org/10.1016/j.bios.2015.02.030
- R. Wang, X. Zhou, X. Zhu, C. Yang, L. Liu et al., Isoelectric bovine serum albumin: Robust blocking agent for enhanced performance in optical-fiber based DNA sensing. ACS Sens. 2, 257–262 (2017). https://doi.org/10.1021/acssensors.6b00746
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- C. Tan, P. Yu, Y. Hu, J. Chen, Y. Huang et al., High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J. Am. Chem. Soc. 137, 10430–10436 (2015). https://doi.org/10.1021/jacs.5b06982
- S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh et al., Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuat. B: Chem. 207, 801–810 (2015). https://doi.org/10.1016/j.snb.2014.10.124
References
N. Cheng, D. Du, X. Wang, D. Liu, W. Xu et al., Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol. 37, 1236–1254 (2019). https://doi.org/10.1016/j.tibtech.2019.04.008
Z. Wang, W. Cui, Crispr-cas system for biomedical diagnostic platforms. View 1, 200008 (2020). https://doi.org/10.1002/viw.20200008
G. Yang, Z. Xiao, C. Tang, Y. Deng, H. Huang et al., Recent advances in biosensor for detection of lung cancer biomarkers. Biosens. Bioelectron. 141, 111416 (2019). https://doi.org/10.1016/j.bios.2019.111416
M. Yamashita, E. Passegue, TNF-alpha coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell 25, 357–372 (2019). https://doi.org/10.1016/j.stem.2019.05.019
J. Silke, E.L. Hartland, Masters, marionettes and modulators: Intersection of pathogen virulence factors and mammalian death receptor signaling. Curr. Opin. Immunol. 25, 436–440 (2013). https://doi.org/10.1016/j.coi.2013.05.011
D. Brenner, H. Blaser, T.W. Mak, Regulation of tumour necrosis factor signalling: Live or let die. Nat. Rev. Immunol. 15, 362–374 (2015). https://doi.org/10.1038/nri3834
B. Ungar, I. Levy, Y. Yavne, M. Yavzori, O. Picard et al., Optimizing anti-TNF-α therapy: Serum levels of infliximab and adalimumab are associated with mucosal healing in patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 14, 550-557.e552 (2016). https://doi.org/10.1016/j.cgh.2015.10.025
Y. Wang, J. Xu, X. Zhang, C. Wang, Y. Huang et al., TNF-α-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death Dis. 8, e2715 (2017). https://doi.org/10.1038/cddis.2017.129
M. Kapoor, J. Martel-Pelletier, D. Lajeunesse, J.P. Pelletier, H. Fahmi, Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011). https://doi.org/10.1038/nrrheum.2010.196
Q. Zhang, D. Dehaini, Y. Zhang, J. Zhou, X. Chen et al., Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13, 1182–1190 (2018). https://doi.org/10.1038/s41565-018-0254-4
H.A. Sahibzada, Z. Khurshid, R.S. Khan, M. Naseem, K.M. Siddique et al., Salivary IL-8, IL-6 and TNF-alpha as potential diagnostic biomarkers for oral cancer. Diagnostics 7(2), 21 (2017). https://doi.org/10.3390/diagnostics7020021
Y. Ma, Y. Ren, Z.J. Dai, C.J. Wu, Y.H. Ji et al., IL-6, IL-8 and TNF-alpha levels correlate with disease stage in breast cancer patients. Adv. Clin. Exp. Med. 26, 421–426 (2017). https://doi.org/10.17219/acem/62120
C. Agnoli, S. Grioni, V. Pala, A. Allione, G. Matullo et al., Biomarkers of inflammation and breast cancer risk: A case-control study nested in the epic-varese cohort. Sci. Rep. 7, 12708 (2017). https://doi.org/10.1038/s41598-017-12703-x
E. Dalaveris, T. Kerenidi, A. Katsabeki-Katsafli, T. Kiropoulos, K. Tanou et al., VEGF, TNF-alpha and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer 64, 219–225 (2009). https://doi.org/10.1016/j.lungcan.2008.08.015
M. Komatsu, D. Kobayashi, K. Saito, D. Furuya, A. Yagihashi et al., Tumor necrosis factor-a in serum of patients with inflammatory bowel disease as measured by a highly sensitive immuno-PCR. Clin. Chem. 47, 1297–1301 (2001). https://doi.org/10.1093/clinchem/47.7.1297
G. La Rocca, S.H. Olejniczak, A.J. Gonzalez, D. Briskin, J.A. Vidigal et al., In vivo, argonaute-bound micrornas exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc. Natl. Acad. Sci. USA 112, 767–772 (2015). https://doi.org/10.1073/pnas.1424217112
W. Hu, G. He, H. Zhang, X. Wu, J. Li et al., Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker. Anal. Chem. 86, 4488–4493 (2014). https://doi.org/10.1021/ac5003905
S.B. Nimse, M.D. Sonawane, K.S. Song, T. Kim, Biomarker detection technologies and future directions. Analyst 141, 740–755 (2016). https://doi.org/10.1039/c5an01790d
V. Jayanthi, A.B. Das, U. Saxena, Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 91, 15–23 (2017). https://doi.org/10.1016/j.bios.2016.12.014
S. Yadav, N. Kashaninejad, M.K. Masud, Y. Yamauchi, N.T. Nguyen et al., Autoantibodies as diagnostic and prognostic cancer biomarker: Detection techniques and approaches. Biosens. Bioelectron. 139, 111315 (2019). https://doi.org/10.1016/j.bios.2019.111315
H. Filik, A.A. Avan, Nanostructures for nonlabeled and labeled electrochemical immunosensors: Simultaneous electrochemical detection of cancer markers: A review. Talanta 205, 120153 (2019). https://doi.org/10.1016/j.talanta.2019.120153
L. Miccio, F. Cimmino, I. Kurelac, M.M. Villone, V. Bianco et al., Perspectives on liquid biopsy for label-free detection of “circulating tumor cells” through intelligent lab-on-chips. View 1, 20200034 (2020). https://doi.org/10.1002/viw.20200034
L. Huang, D.D. Gurav, S. Wu, W. Xu, V. Vedarethinam et al., A multifunctional platinum nanoreactor for point-of-care metabolic analysis. Matter 1, 1669–1680 (2019). https://doi.org/10.1016/j.matt.2019.08.014
C. Pei, C. Liu, Y. Wang, D. Cheng, R. Li et al., FeOOH@metal-organic framework core-satellite nanocomposites for the serum metabolic fingerprinting of gynecological cancers. Angew. Chem. Int. Ed. 59, 10831–10835 (2020). https://doi.org/10.1002/anie.202001135
W. Shu, Y. Wang, C. Liu, R. Li, C. Pei et al., Construction of a plasmonic chip for metabolic analysis in cervical cancer screening and evaluation. Small Methods 4, 1900469 (2020). https://doi.org/10.1002/smtd.201900469
J. Cao, X. Shi, D.D. Gurav, L. Huang, H. Su et al., Metabolic fingerprinting on synthetic alloys for medulloblastoma diagnosis and radiotherapy evaluation. Adv. Mater. 32, e2000906 (2020). https://doi.org/10.1002/adma.202000906
L. Huang, L. Wang, X. Hu, S. Chen, Y. Tao et al., Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma. Nat. Commun. 11, 3556 (2020). https://doi.org/10.1038/s41467-020-17347-6
H. Sipova, J. Homola, Surface plasmon resonance sensing of nucleic acids: A review. Anal. Chim. Acta 773, 9–23 (2013). https://doi.org/10.1016/j.aca.2012.12.040
P. Singh, Spr biosensors: Historical perspectives and current challenges. Sens. Actuat. B: Chem. 229, 110–130 (2016). https://doi.org/10.1016/j.snb.2016.01.118
D.E.P. Souto, J. Volpe, C.C. Goncalves, C.H.I. Ramos, L.T. Kubota, A brief review on the strategy of developing SPR-based biosensors for application to the diagnosis of neglected tropical diseases. Talanta 205, 120122 (2019). https://doi.org/10.1016/j.talanta.2019.120122
S. Zeng, D. Baillargeat, H.P. Ho, K.T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 43, 3426–3452 (2014). https://doi.org/10.1039/c3cs60479a
B.P. Nelson, A.G. Frutos, J.M. Brockman, R.M. Corn, Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal. Chem. 71, 3928–3934 (1999). https://doi.org/10.1021/ac990517x
S. Wang, X. Shan, U. Patel, X. Huang, J. Lu et al., Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc. Natl. Acad Sci. USA 107, 16028–16032 (2010). https://doi.org/10.1073/pnas.1005264107
J. Cao, M.H. Tu, T. Sun, K.T.V. Grattan, Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sens. Actuat. B: Chem. 181, 611–619 (2013). https://doi.org/10.1016/j.snb.2013.02.052
E. Kazuma, T. Tatsuma, Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips. Nanoscale 6, 2397–2405 (2014). https://doi.org/10.1039/c3nr05846h
G. Xu, M. Tazawa, P. Jin, S. Nakao, K. Yoshimura, Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl. Phys. Lett. 82, 3811–3813 (2003). https://doi.org/10.1063/1.1578518
V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev et al., Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12, 304–309 (2013). https://doi.org/10.1038/nmat3537
Y.H. Huang, H.P. Ho, S.Y. Wu, S.K. Kong, Detecting phase shifts in surface plasmon resonance: A review. Adv. Optical Technol. 2012, 1–12 (2012). https://doi.org/10.1155/2012/471957
F. Yesilkoy, R.A. Terborg, J. Pello, A.A. Belushkin, Y. Jahani et al., Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light Sci. Appl. 7, 17152–17152 (2017). https://doi.org/10.1038/lsa.2017.152
C. Coutant, S. Ravaine, X. Wang, J. Toudert, V. Ponsinet et al., Plasmonic metamaterials for ultra-sensitive sensing: Topological darkness. Rendiconti Lincei 26, 175–182 (2015). https://doi.org/10.1007/s12210-015-0404-7
L. Malassis, P. Masse, M. Treguer-Delapierre, S. Mornet et al., Topological darkness in self-assembled plasmonic metamaterials. Adv. Mater. 26, 324–330 (2014). https://doi.org/10.1002/adma.201303426
Q. You, Y. Shan, S. Gan, Y. Zhao, X. Dai et al., Giant and controllable goos-hänchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure. Opt. Mater. Express 8, 3036–3048 (2018). https://doi.org/10.1364/ome.8.003036
X. Yin, L. Hesselink, Goos-hänchen shift surface plasmon resonance sensor. Appl. Phys. Lett. 89, 261108 (2006). https://doi.org/10.1063/1.2424277
T. Cao, C. Wei, R.E. Simpson, L. Zhang, M.J. Cryan, Rapid phase transition of a phase-change metamaterial perfect absorber. Opt. Mater. Express 3, 1101–1110 (2013). https://doi.org/10.1364/ome.3.001101
D.G. Baranov, A. Krasnok, T. Shegai, A. Alù, Y. Chong, Coherent perfect absorbers: Linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017). https://doi.org/10.1038/natrevmats.2017.64
C. Xu, J. Xu, G. Song, C. Zhu, Y. Yang et al., Enhanced displacements in reflected beams at hyperbolic metamaterials. Opt. Express 24, 21767–21776 (2016). https://doi.org/10.1364/OE.24.021767
R.-G. Wan, M.S. Zubairy, Tunable and enhanced Goos-Hänchen shift via surface plasmon resonance assisted by a coherent medium. Opt. Express 28, 6036–6047 (2020). https://doi.org/10.1364/oe.384419
J.H. Kang, S. Wang, Z. Shi, W. Zhao, E. Yablonovitch et al., Goos-Hanchen shift and even-odd peak oscillations in edge-reflections of surface polaritons in atomically thin crystals. Nano Lett. 17, 1768–1774 (2017). https://doi.org/10.1021/acs.nanolett.6b05077
Y. Xu, C.T. Chan, H. Chen, Goos-Hanchen effect in epsilon-near-zero metamaterials. Sci. Rep. 5, 8681 (2015). https://doi.org/10.1038/srep08681
X. Ding, W. Cheng, Y. Li, J. Wu, X. Li et al., An enzyme-free surface plasmon resonance biosensing strategy for detection of DNA and small molecule based on nonlinear hybridization chain reaction. Biosens. Bioelectron. 87, 345–351 (2017). https://doi.org/10.1016/j.bios.2016.08.077
G. Qiu, S.P. Ng, C.L. Wu, Label-free surface plasmon resonance biosensing with titanium nitride thin film. Biosens. Bioelectron. 106, 129–135 (2018). https://doi.org/10.1016/j.bios.2018.02.006
A. Kumar, G. Sachdeva, R. Pandey, S.P. Karna, Optical absorbance in multilayer two-dimensional materials: Graphene and antimonene. Appl. Phys. Lett. 116, 263102 (2020). https://doi.org/10.1063/5.0010794
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der waals heterostructures. Science 353, aac9439 (2016). https://doi.org/10.1126/science.aac9439
Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photonics 10, 227–238 (2016). https://doi.org/10.1038/nphoton.2016.15
C.-F. Li, Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects. Phys. Rev. Lett. 91, 133903 (2003). https://doi.org/10.1103/PhysRevLett.91.133903
F. Yesilkoy, R.A. Terborg, J. Pello, A.A. Belushkin, Y. Jahani et al., Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light Sci. Appl. 7, 17152–17152 (2018). https://doi.org/10.1038/lsa.2017.152
F. Feng, G. Si, C. Min, X. Yuan, M. Somekh, On-chip plasmonic spin-hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci. Appl. 9, 95 (2020). https://doi.org/10.1038/s41377-020-0330-z
W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu et al., Transitional Goos-Hanchen effect due to the topological phase transitions. Opt. Express 26, 23705–23713 (2018). https://doi.org/10.1364/OE.26.023705
C. Luo, J. Guo, Q. Wang, Y. Xiang, S. Wen, Electrically controlled Goos-Hanchen shift of a light beam reflected from the metal-insulator-semiconductor structure. Opt. Express 21, 10430–10439 (2013). https://doi.org/10.1364/OE.21.010430
S. Lee, L. Li, Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy. Opt. Commun. 334, 253–257 (2015). https://doi.org/10.1016/j.optcom.2014.08.048
A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz et al., Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009). https://doi.org/10.1038/nmat2546
M. Focsan, A. Campu, A.-M. Craciun, M. Potara, C. Leordean et al., A simple and efficient design to improve the detection of biotin-streptavidin interaction with plasmonic nanobiosensors. Biosens. Bioelectron. 86, 728–735 (2016). https://doi.org/10.1016/j.bios.2016.07.054
K.V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski et al., Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016). https://doi.org/10.1038/nmat4609
R. Ahirwar, S. Bariar, A. Balakrishnan, P. Nahar, Bsa blocking in enzyme-linked immunosorbent assays is a non-mandatory step: A perspective study on mechanism of bsa blocking in common elisa protocols. RSC Adv. 5, 100077–100083 (2015). https://doi.org/10.1039/c5ra20750a
J. Lee, I.S. Park, H. Kim, J.S. Woo, B.S. Choi et al., BSA as additive: A simple strategy for practical applications of PNA in bioanalysis. Biosens. Bioelectron. 69, 167–173 (2015). https://doi.org/10.1016/j.bios.2015.02.030
R. Wang, X. Zhou, X. Zhu, C. Yang, L. Liu et al., Isoelectric bovine serum albumin: Robust blocking agent for enhanced performance in optical-fiber based DNA sensing. ACS Sens. 2, 257–262 (2017). https://doi.org/10.1021/acssensors.6b00746
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
C. Tan, P. Yu, Y. Hu, J. Chen, Y. Huang et al., High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J. Am. Chem. Soc. 137, 10430–10436 (2015). https://doi.org/10.1021/jacs.5b06982
S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh et al., Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuat. B: Chem. 207, 801–810 (2015). https://doi.org/10.1016/j.snb.2014.10.124