Recent Advancements in Nanomedicine for ‘Cold’ Tumor Immunotherapy
Corresponding Author: Chen Jiang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 92
Abstract
Although current anticancer immunotherapies using immune checkpoint inhibitors (ICIs) have been reported with a high clinical success rate, numerous patients still bear ‘cold’ tumors with insufficient T cell infiltration and low immunogenicity, responding poorly to ICI therapy. Considering the advancements in precision medicine, in-depth mechanism studies on the tumor immune microenvironment (TIME) among cold tumors are required to improve the treatment for these patients. Nanomedicine has emerged as a promising drug delivery system in anticancer immunotherapy, activates immune function, modulates the TIME, and has been applied in combination with other anticancer therapeutic strategies. This review initially summarizes the mechanisms underlying immunosuppressive TIME in cold tumors and addresses the recent advancements in nanotechnology for cold TIME reversal-based therapies, as well as a brief talk about the feasibility of clinical translation.
Highlights:
1 Mechanisms underlying immunosuppressive tumor immune microenvironment (TIME) in ‘cold’ tumor are summarized.
2 Recent nanotechnology-based strategies for ‘cold’ TIME firing up are emphasized.
3 Challenges and perspectives of nanomedicines for ‘cold’ tumor treatment are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Iwai, J. Hamanishi, K. Chamoto, T. Honjo, Cancer immunotherapies targeting the PD-1 signaling pathway. J. Biomed. Sci. 24(1), 26 (2017). https://doi.org/10.1186/s12929-017-0329-9
- C. Zheng, L. Zheng, J.-K. Yoo, H. Guo, Y. Zhang et al., Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169(7), 1342–1356 (2017). https://doi.org/10.1016/j.cell.2017.05.035
- S. Spranger, Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int. Immunol. 28(8), 383–391 (2016). https://doi.org/10.1093/intimm/dxw014
- S. Pan, Y. Zhan, X. Chen, B. Wu, B. Liu, Bladder cancer exhibiting high immune infiltration shows the lowest response rate to immune checkpoint inhibitors. Front. Oncol. 9, 1101 (2019). https://doi.org/10.3389/fonc.2019.01101
- G. Roviello, F. Andre, S. Venturini, B. Pistilli, G. Curigliano et al., Response rate as a potential surrogate for survival and efficacy in patients treated with novel immune checkpoint inhibitors: A meta-regression of randomised prospective studies. Eur. J. Cancer 86, 257–265 (2017). https://doi.org/10.1016/j.ejca.2017.09.018
- R.W. Jenkins, D.A. Barbie, K.T. Flaherty, Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118(1), 9–16 (2018). https://doi.org/10.1038/bjc.2017.434
- P. Andre, C. Denis, C. Soulas, C. Bourbon-Caillet, J. Lopez et al., Anti-NKG2A mab is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175(7), 1731–1743 (2018). https://doi.org/10.1016/j.cell.2018.10.014
- D. Sun, J. Ma, J. Wang, F. Zhang, L. Wang et al., Clinical observation of immune checkpoint inhibitors in the treatment of advanced pancreatic cancer: a real-world study in Chinese cohort. Ther. Clin. Risk Manag. 14, 1691–1700 (2018). https://doi.org/10.2147/tcrm.S173041
- M. Kowanetz, W. Zou, S.N. Gettinger, H. Koeppen, M. Kockx et al., Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with Atezolizumab (anti-PD-L1). Proc. Natl. Acad. Sci. USA. 115(43), E10119–E10126 (2018). https://doi.org/10.1073/pnas.1802166115
- Y. Liu, J. Zugazagoitia, F.S. Ahmed, B.S. Henick, S.N. Gettinger et al., Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy. Clin. Cancer Res. 26(4), 970–977 (2020). https://doi.org/10.1158/1078-0432.CCR-19-1040z
- L. Li, R. Sun, Y. Miao, T. Tran, L. Adams et al., PD-1/PD-L1 expression and interaction by automated quantitative immunofluorescent analysis show adverse prognosticiImpact in patients with diffuse large B-cell lymphoma having T-cell infiltration: a study from the international DLBCL consortium program. Mod. Pathol. 32(6), 741–754 (2019). https://doi.org/10.1038/s41379-018-0193-5
- Y. Jiang, M. Chen, H. Nie, Y. Yuan, PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum. Vaccin. Immunother 15(5), 1111–1122 (2019). https://doi.org/10.1080/21645515.2019.1571892
- R.H. Vonderheide, The immune revolution: a case for priming, not checkpoint. Cancer Cell 33(4), 563–569 (2018). https://doi.org/10.1016/j.ccell.2018.03.008
- S. Spranger, R.M. Spaapen, Y. Zha, J. Williams, Y. Meng et al., Up-regulation of PD-L1, IDO, and T-regs in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci. Transl. Med. 5(200), 200ra116 (2013). https://doi.org/10.1126/scitranslmed.3006504
- P. Sharma, J.P. Allison, The future of immune checkpoint therapy. Science 348(6230), 56–61 (2015). https://doi.org/10.1126/science.aaa8172
- R.N. Ramos, E. Piaggio, E. Romano, Mechanisms of resistance to immune checkpoint antibodies. Handb. Exp. Pharmaco. 249, 109–128 (2018). https://doi.org/10.1007/164_2017_11
- I. Melero, D.M. Berman, M. Angela, A.J. Korman, J.L. Perez et al., Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer 15(8), 457–472 (2015). https://doi.org/10.1038/nrc3973
- M. Anraku, K.S. Cunningham, Z. Yun, M.-S. Tsao, L. Zhang et al., Impact of tumor-infiltrating T cells on survival in patients with malignant pleural mesothelioma. J. Thorac. Cardiovasc. Surg. 135(4), 823–829 (2008). https://doi.org/10.1016/j.jtcvs.2007.10.026
- W.-T. Hwang, S.F. Adams, E. Tahirovic, I.S. Hagemann, G. Coukos, Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a Meta-Analysis. Gynecol. Oncol. 124(2), 192–198 (2012). https://doi.org/10.1016/j.ygyno.2011.09.039
- W. Ding, X. Xu, Y. Qian, W. Xue, Y. Wang et al., Prognostic value of tumor-infiltrating lymphocytes in hepatocellular carcinoma a meta-analysis. Medicine 97(50), e13301 (2018). https://doi.org/10.1097/md.0000000000013301
- M. Peled, A. Onn, R.S. Herbst, Tumor-infiltrating lymphocytes-location for prognostic evaluation. Clin. Cancer Res. 25(5), 1449–1451 (2019). https://doi.org/10.1158/1078-0432.Ccr-18-3803
- W.-C. Cheng, P.-C. Ho, Firing up cold tumors. Trends. Cancer 5(9), 528–530 (2019). https://doi.org/10.1016/j.trecan.2019.06.005
- K. Paul, D. Kretzschmar, A. Yilmaz, B. Baerthlein, S. Titze et al., Circulating dendritic cell precursors in chronic kidney disease: a cross-sectional study. BMC Nephrol. 14, 274 (2013). https://doi.org/10.1186/1471-2369-14-274
- J. Liu, E.A. Rozeman, J.S. O’Donnell, S. Allen, L. Fanchi et al., Batf3+ DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy. Oncoimmunology 8(2), e1546068 (2019). https://doi.org/10.1080/2162402x.2018.1546068
- J.J. Engelhardt, B. Boldajipour, P. Beemiller, P. Pandurangi, C. Sorensen et al., Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21(3), 402–417 (2012). https://doi.org/10.1016/j.ccr.2012.01.008
- J.-M. Williford, J. Ishihara, A. Ishihara, A. Mansurov, P. Hosseinchi et al., Recruitment of CD103(+) dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci. Adv. 5(12), eaay1357 (2019). https://doi.org/10.1126/sciadv.aay1357
- K. Hildner, B.T. Edelson, W.E. Purtha, M. Diamond, H. Matsushita et al., Batf3 deficiency reveals a critical role for CD8 Alpha(+) dendritic cells in cytotoxic T cell immunity. Science 322(5904), 1097–1100 (2008). https://doi.org/10.1126/science.1164206
- Y. Mi, C.T. Hagan, B.G. Vincent, A.Z. Wang, Emerging nano-/microapproaches for cancer immunotherapy. Adv. Sci. 6(6), 1801847 (2019). https://doi.org/10.1002/advs.201801847
- T. Gajewski, Y. Zha, K. Hernandez, Y. Li, R. Bao et al., Density of immunogenic antigens and presence or absence of the T cell-inflamed tumor microenvironment in metastatic melanoma. J. Clin. Oncol. 33(15), suppl.3002 (2015). https://doi.org/10.1200/jco.2015.33.15_suppl.3002
- M.E. Mikucki, D.T. Fisher, J. Matsuzaki, J.J. Skitzki, N.B. Gaulin et al., Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat. Commun. 6, 7458 (2015). https://doi.org/10.1038/ncomms8458
- Y. Zhang, W. Chen, C. Yang, Q. Fan, W. Wu et al., Enhancing tumor penetration and targeting using size-minimized and zwitterionic nanomedicines. J. Controlled Release 237, 115–124 (2016). https://doi.org/10.1016/j.jconrel.2016.07.011
- K. Ley, C. Laudanna, M.I. Cybulsky, S. Nourshargh, Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7(9), 678–689 (2007). https://doi.org/10.1038/nri2156
- B.Y. Kim, J.T. Rutka, W.C. Chan, Nanomedicine. N. Engl. J. Med. 363(25), 2434–2443 (2010). https://doi.org/10.1056/NEJMra0912273
- F. Scaletti, J. Hardie, Y.-W. Lee, D.C. Luther, M. Ray et al., Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem. Soc. Rev. 47(10), 3421–3432 (2018). https://doi.org/10.1039/c8cs00008e
- S.M. Dadfar, K. Roemhild, N.I. Drude, S. von Stillfried, R. Knuechel et al., Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv. Drug Delivery Rev. 138, 302–325 (2019). https://doi.org/10.1016/j.addr.2019.01.005
- C. Saraiva, C. Praca, R. Ferreira, T. Santos, L. Ferreira et al., Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J. Controlled Release 235, 34–47 (2016). https://doi.org/10.1016/j.jconrel.2016.05.0444
- N. Amreddy, A. Babu, R. Muralidharan, J. Panneerselvam, A. Srivastava et al., In Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. ed. by TEW K D, FISHER P B 2018), pp. 115–170
- A. Gupta, S. Mumtaz, C.-H. Li, I. Hussain, V.M. Rotello, Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 48(2), 415–427 (2019). https://doi.org/10.1039/c7cs00748e
- Y. Min, J.M. Caster, M.J. Eblan, A.Z. Wang, Clinical translation of nanomedicine. Chem. Rev. 115(19), 11147–11190 (2015). https://doi.org/10.1021/acs.chemrev.5b00116
- Y. Shi, Clinical translation of nanomedicine and biomaterials for cancer immunotherapy: progress and perspectives. Adv. Ther. 3(9), 1900215 (2020). https://doi.org/10.1002/adtp.201900215
- M.A. Postow, R. Sidlow, M.D. Hellmann, Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378(2), 158–168 (2018). https://doi.org/10.1056/NEJMra1703481
- D. Schmid, C.G. Park, C.A. Hartl, N. Subedi, A.N. Cartwright et al., T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8(1), 1747 (2017). https://doi.org/10.1038/s41467-017-01830-8
- C.F. Friedman, T.A. Proverbs-Singh, M.A. Postow, Treatment of the immune-related adverse effects of immune checkpoint inhibitors a review. JAMA Oncol. 2(10), 1346–1353 (2016). https://doi.org/10.1001/jamaoncol.2016.1051
- A.C. Anselmo, S. Mitragotri, Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 4(3), e10143 (2019). https://doi.org/10.1002/btm2.10143
- S. Vecchi, S. Bufali, T. Uno, T. Wu, L. Arcidiacono et al., Conjugation of a TLR7 agonist and antigen enhances protection in the S. pneumoniae murine infection model. Eur. J. Pharm. Biopharm. 87(2), 310–317 (2014). https://doi.org/10.1016/j.ejpb.2014.01.002
- D.S. Wilson, S. Hirosue, M.M. Raczy, L. Bonilla-Ramirez, L. Jeanbart et al., Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater. 18(2), 175–185 (2019). https://doi.org/10.1038/s41563-018-0256-5
- D. Passlick, K. Piradashvili, D. Bamberger, M. Li, S. Jiang et al., Delivering all in one: antigen-nanocapsule loaded with dual adjuvant yields superadditive effects by DC-directed T cell stimulation. J. Controlled Release 289, 23–34 (2018). https://doi.org/10.1016/j.jconrel.2018.09.008
- S. Gujar, J.G. Pol, G. Kroemer, Heating it up: Oncolytic viruses make tumors “hot’’ and suitable for checkpoint blockade immunotherapies.” Oncoimmunology 7(8), e1442169 (2018). https://doi.org/10.1080/2162402x.2018.1442169
- H. Phuengkham, C. Song, S.H. Um, Y.T. Lim, Implantable synthetic immune niche for spatiotemporal modulation of tumor-derived immunosuppression and systemic antitumor immunity: postoperative immunotherapy. Adv. Mater. 30(18), e1706719 (2018). https://doi.org/10.1002/adma.201706719
- L.L. van der Woude, M.A.J. Gorris, A. Halilovic, C.G. Figdor, I.J.M. de Vries, Migrating into the tumor: a roadmap for T cells. Trends. Cancer 3(11), 797–808 (2017). https://doi.org/10.1016/j.trecan.2017.09.006
- W. Song, L. Shen, Y. Wang, Q. Liu, T.J. Goodwin et al., Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 9(1), 2237 (2018). https://doi.org/10.1038/s41467-018-04605-x
- F. Zhou, B. Feng, H. Yu, D. Wang, T. Wang, Y. Ma, S. Wang, Y. Li, Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv. Mater. 31(14), e1805888 (2019). https://doi.org/10.1002/adma.201805888
- Q. Sun, X. Bai, A.M. Sofias, R. van der Meel, E. Ruiz-Hernandez, G. Storm et al., Cancer nanomedicine meets immunotherapy: Opportunities and challenges. Acta Pharmacol. Sin. 41(7), 954–958 (2020). https://doi.org/10.1038/s41401-020-0448-9
- T.F. Gajewski, H. Schreiber, Y.X. Fu, Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14(10), 1014–1022 (2013). https://doi.org/10.1038/ni.2703
- S. Spranger, R. Bao, T.F. Gajewski, Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559), 231-U261 (2015). https://doi.org/10.1038/nature14404
- L. Ding, H.-J. Kim, Q. Wang, M. Kearns, T. Jiang et al., Parp Inhibition elicits STING-dependent antitumor immunity in brca1-deficient ovarian cancer. Cell Rep. 25(11), 2972–2980 (2018). https://doi.org/10.1016/j.celrep.2018.11.054
- C. Menetrier-Caux, G. Montmain, M.C. Dieu, C. Bain, M.C. Favrot et al., Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92(12), 4778–4791 (1998). https://doi.org/10.1182/blood.V92.12.4778
- G. Li, S. Abediankenari, Y.-J. Kim, T.B. Campbell, S. Ito et al., TGF-beta combined with M-CSF and IL-4 induces generation of immune inhibitory cord blood dendritic cells capable of enhancing cytokine-induced ex vivo expansion of myeloid progenitors. Blood 110(8), 2872–2879 (2007). https://doi.org/10.1182/blood-2006-10-050583
- H. Kitamura, Y. Ohno, Y. Toyoshima, J. Ohtake, S. Homma et al., Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci. 108(10), 1947–1952 (2017). https://doi.org/10.1111/cas.13332
- J. Qiao, Z. Liu, C. Dong, Y. Luan, A. Zhang et al., Targeting tumors with IL-10 prevents dendritic cell-mediated CD8(+) T cell apoptosis. Cancer Cell 35(6), 901–915 (2019). https://doi.org/10.1016/j.ccell.2019.05.005
- S. Jaiswal, C.H.M. Jamieson, W.W. Pang, C.Y. Park, M.P. Chao et al., CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138(2), 271–285 (2009). https://doi.org/10.1016/j.cell.2009.05.046
- E. Reeves, E. James, Antigen processing and immune regulation in the response to tumours. Immunology 150(1), 16–24 (2017). https://doi.org/10.1111/imm.12675
- A. Rousseau, A. Bertolotti, Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol. 19(11), 697–712 (2018). https://doi.org/10.1038/s41580-018-0040-z
- T. Blankenstein, P.G. Coulie, E. Gilboa, E.M. Jaffee, The determinants of tumour immunogenicity. Nat. Rev. Cancer 12(4), 307–313 (2012). https://doi.org/10.1038/nrc3246
- M. Leclerc, L. Mezquita, G.G. De Nerville, I. Tihy, I. Malenica et al., Recent advances in lung cancer immunotherapy: Input of T-cell epitopes associated with impaired peptide processing. Front. Immunol. 10, 1505 (2019). https://doi.org/10.3389/fimmu.2019.01505
- W. Ji, L. Niu, W. Peng, Y. Zhang, H. Cheng et al., Salt bridge-forming residues positioned over viral peptides presented by MHC Class I impacts T-cell recognition in a binding-dependent manner. Mol. Immunol. 112, 274–282 (2019). https://doi.org/10.1016/j.molimm.2019.06.005
- T. Pradeu, E.D. Carosella, On the definition of a criterion of immunogenicity. Proc. Natl. Acad. Sci. USA 103(47), 17858–17861 (2006). https://doi.org/10.1073/pnas.0608683103
- K. Rezvani, H. de Lavallade, Vaccination strategies in lymphomas and leukaemias recent progress. Drugs 71(13), 1659–1674 (2011). https://doi.org/10.2165/11593270-000000000-00000
- D. Laheru, E.M. Jaffee, Immunotherapy for pancreatic cancer - science driving clinical progress. Nat. Rev. Cancer 5(6), 459–467 (2005). https://doi.org/10.1038/nrc1630
- S. Spranger, T.F. Gajewski, Tumor-intrinsic oncogene pathways mediating immune avoidance. Oncoimmunology 5(3), e1086862 (2016). https://doi.org/10.1080/2162402x.2015.1086862
- Y. Wang, Y.-X. Lin, J. Wang, S.-L. Qiao, Y.-Y. Liu et al., In situ manipulation of dendritic cells by an autophagy-regulative nanoactivator enables effective cancer immunotherapy. ACS Nano 13(7), 7568–7577 (2019). https://doi.org/10.1021/acsnano.9b00143
- J. Sprooten, P. Agostinis, A.D. Garg, in Type I Interferons and Dendritic Cells in Cancer Immunotherapy. ed.by LHUILLIER C, GALLUZZI L 2019), pp. 217–262
- Y. Liu, W.N. Crowe, L. Wang, Y. Lu, W.J. Petty et al., An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 10(1), 5108 (2019). https://doi.org/10.1038/s41467-019-13094-5
- G. Tresset, W.C.D. Cheong, Y.L.S. Tan, J. Boulaire, Y.M. Lam, Phospholipid-based artificial viruses assembled by multivalent cations. Biophys. J. 93(2), 637–644 (2007). https://doi.org/10.1529/biophysj.107.104448
- K.B. Knudsen, H. Northeved, P.E.K. Kumar, A. Permin, T. Gjetting et al., In vivo toxicity of cationic micelles and liposomes. Nanomedicine 11(2), 467–477 (2015). https://doi.org/10.1016/j.nano.2014.08.004
- D. Shae, K.W. Becker, P. Christov, D.S. Yun, A.K.R. Lytton-Jean et al., Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14(3), 269–278 (2019). https://doi.org/10.1038/s41565-018-0342-5
- R.D. Junkins, M.D. Gallovic, B.M. Johnson, M.A. Collier, R. Watkins-Schulz et al., A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J. Controlled Release 270, 1–13 (2018). https://doi.org/10.1016/j.jconrel.2017.11.030
- D.G. Leach, N. Dharmaraj, S.L. Piotrowski, T.L. Lopez-Silva, Y.L. Lei et al., Stingel: controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials 163, 67–75 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.035
- S.H. Van der Burg, R. Arens, F. Ossendorp, T. van Hall, C.J. Melief, Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 16(4), 219–233 (2016). https://doi.org/10.1038/nrc.2016.16
- K. Takeda, S. Akira, Toll-like receptors. Curr. Protoc. Immunol. 109(1), 14.12.11–14.12.10 (2015). https://doi.org/10.1002/0471142735.im1412s109
- G. Traini, A. Ruiz-de-Angulo, J.B. Blanco-Canosa, K. Zamacola Bascarán, A. Molinaro et al., Cancer immunotherapy of TLR4 agonist-antigen constructs enhanced with pathogen-mimicking magnetite nanoparticles and checkpoint blockade of PD-L1. Small 15(4), e1803993 (2019). https://doi.org/10.1002/smll.201803993
- L. Nuhn, S. De Koker, S. Van Lint, Z. Zhong, J.P. Catani et al., Nanoparticle-conjugate TLR7/8 agonist localized immunotherapy provokes safe antitumoral responses. Adv. Mater. 30(45), e1803397 (2018). https://doi.org/10.1002/adma.201803397
- B. Wang, S. Van Herck, Y. Chen, X. Bai, Z. Zhong et al., Potent and prolonged innate immune activation by enzyme-responsive imidazoquinoline TLR7/8 agonist prodrug vesicles. J. Am. Chem. Soc. 142(28), 12133–12139 (2020). https://doi.org/10.1021/jacs.0c01928
- S. Cheng, C. Xu, Y. Jin, Y. Li, C. Zhong et al., Artificial mini dendritic cells boost T cell-based immunotherapy for ovarian cancer. Adv. Sci. 7(7), 1903301 (2020). https://doi.org/10.1002/advs.201903301
- T. Wu, Y. Qi, D. Zhang, Q. Song, C. Yang et al., Bone marrow dendritic cells derived microvesicles for combinational immunochemotherapy against tumor. Adv. Funct. Mater. 27(42), 1703191 (2017). https://doi.org/10.1002/adfm.201703191
- A. Jain, C. Pasare, Innate control of adaptive immunity: Beyond the three-signal paradigm. J. Immunol. 198(10), 3791–3800 (2017). https://doi.org/10.4049/jimmunol.1602000
- S.G. Reed, M.T. Orr, C.B. Fox, Key roles of adjuvants in modern vaccines. Nat. Med. 19(12), 1597–1608 (2013). https://doi.org/10.1038/nm.3409
- T. Storni, T.M. Kundig, G. Senti, P. Johansen, Immunity in response to particulate antigen-delivery systems. Adv. Drug Delivery Rev. 57(3), 333–355 (2005). https://doi.org/10.1016/j.addr.2004.09.008
- X. Duan, C. Chan, W. Lin, Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem. Int. Ed. 58(3), 670–680 (2019). https://doi.org/10.1002/anie.201804882
- K. Wang, S. Wen, L. He, A. Li, Y. Li et al., “Minimalist” nanovaccine constituted from near whole antigen for cancer immunotherapy. ACS Nano 12(7), 6398–6409 (2018). https://doi.org/10.1021/acsnano.8b00558
- R. Verbeke, I. Lentacker, L. Wayteck, K. Breckpot, M. Van Bockstal et al., Co-delivery of nucleoside-modified mRNA and TLR agonists for cancer immunotherapy: restoring the immunogenicity of immunosilent mRNA. J. Controlled Release 266, 287–300 (2017). https://doi.org/10.1016/j.jconrel.2017.09.041
- Y.-C. Lu, W.-C. Yeh, P.S. Ohashi, LPS/TLR4 signal transduction pathway. Cytokine 42(2), 145–151 (2008). https://doi.org/10.1016/j.cyto.2008.01.006
- M.P. Schoen, M. Schoen, TLR7 and TLR8 as targets in cancer therapy. Oncogene 27(2), 190–199 (2008). https://doi.org/10.1038/sj.onc.1210913
- Y. Yoshizaki, E. Yuba, N. Sakaguchi, K. Koiwai, A. Harada et al., pH-sensitive polymer-modified liposome-based immunity-inducing system: effects of inclusion of cationic lipid and CPG-DNA. Biomaterials 141, 272–283 (2017). https://doi.org/10.1016/j.biomaterials.2017.07.001
- J.-O. Jin, H. Kim, Y.H. Huh, A. Herrmann, M. Kwak, Soft matter DNA nanoparticles hybridized with CPG motifs andpPeptide nucleic acids enable immunological treatment of cancer. J. Controlled Release 315, 76–84 (2019). https://doi.org/10.1016/j.jconrel.2019.09.013
- G.M. Lynn, C. Sedlik, F. Baharom, Y. Zhu, R.A. Ramirez-Valdez et al., Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat. Biotechnol. 38(3), 320–332 (2020). https://doi.org/10.1038/s41587-019-0390-x
- J.H. Wang, E.L. Reinherz, Structural basis of cell-cell interactions in the immune system. Curr. Opin. Struct. Biol. 10(6), 656–661 (2000). https://doi.org/10.1016/s0959-440x(00)00150-0
- A.L. Blasius, Beutler B. Intracellular toll-like receptors. Immunity 32(3), 305–315 (2010). https://doi.org/10.1016/j.immuni.2010.03.012
- J.B. Ulmer, Geall AJ. Recent innovations in mRNA vaccines. Curr. Opin. Immunol. 41, 18–22 (2016). https://doi.org/10.1016/j.coi.2016.05.008
- U. Sahin, K. Kariko, O. Tuereci, mRNA-based therapeutics - developing a new class of drugs. Nat. Rev. Drug Discov. 13(10), 759–780 (2014). https://doi.org/10.1038/nrd4278
- M.A. Kutzler, D.B. Weiner, DNA vaccines: ready for prime time? Nat. Rev. Genet. 9(10), 776–788 (2008). https://doi.org/10.1038/nrg2432
- A. De Beuckelaer, C. Pollard, S. Van Lint, K. Roose, L. Van Hoecke et al., Type I interferons interfere with the capacity of mRNA lipoplex vaccines to elicit cytolytic T cell responses. Mol. Ther. 24(11), 2012–2020 (2016). https://doi.org/10.1038/mt.2016.161
- T. Pepini, A.-M. Pulichino, T. Carsillo, A.L. Carlson, F. Sari-Sarraf et al., Induction of an IFN-mdiated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J. Immunol. 198(10), 4012–4024 (2017). https://doi.org/10.4049/jimmunol.1601877
- R. Verbeke, I. Lentacker, K. Breckpot, J. Janssens, S. Van Calenbergh et al., Broadening the Message: A nanovaccine co-loaded with messenger RNA and alpha-galcer induces antitumor immunity through conventional and natural killer T cells. ACS Nano 13(2), 1655–1669 (2019). https://doi.org/10.1021/acsnano.8b07660
- T.J. Moyer, A.C. Zmolek, D.J. Irvine, Beyond antigens and adjuvants: formulating future vaccines. J. Clin. Invest. 126(3), 799–808 (2016). https://doi.org/10.1172/jci81083
- X. Ke, G.P. Howard, H. Tang, B. Cheng, M.T. Saung et al., Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv. Drug Delivery Rev. 151–152, 72–93 (2019). https://doi.org/10.1016/j.addr.2019.09.005
- Y. Chen, S. De Koker, B.G. De, Geest Engineering strategies for lymph node targeted immune activation. Acc. Chem. Res. 53(10), 2055–2067 (2020). https://doi.org/10.1021/acs.accounts.0c00260
- T. Nakamura, M. Kawai, Y. Sato, M. Maeki, M. Tokeshi et al., The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol. Pharm. 17(3), 944–953 (2020). https://doi.org/10.1021/acs.molpharmaceut.9b01182
- J.M. Irache, H.H. Salman, C. Gamazo, S. Espuelas, Mannose-targeted systems for the delivery of therapeutics. Expert Opin. Drug Delivery 5(6), 703–724 (2008). https://doi.org/10.1517/17425247.5.6.703
- W. Wang, Z. Liu, X. Zhou, Z. Guo, J. Zhang et al., Ferritin nanoparticle-based spytag/spycatcher-enabled click vaccine for tumor immunotherapy. Nanomedicine 16, 69–78 (2019). https://doi.org/10.1016/j.nano.2018.11.009
- C. Zhang, G. Shi, J. Zhang, H. Song, J. Niu et al., Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer Immunotherapy. J. Controlled Release 256, 170–181 (2017). https://doi.org/10.1016/j.jconrel.2017.04.020
- H. Liu, K.D. Moynihan, Y. Zheng, G.L. Szeto, A.V. Li et al., Structure-based programming of lymph-node targeting in nolecular vaccines. Nature 507(7493), 519–522 (2014). https://doi.org/10.1038/nature12978
- L.F. Sestito, S.N. Thomas, Lymph-directed nitric oxide increases immune cell access to lymph-borne nanoscale solutes. Biomaterials 265, 120411 (2021). https://doi.org/10.1016/j.biomaterials.2020.120411
- J. Park, R. Ramanathan, L. Pham, K.A. Woodrow, Chitosan enhances nanoparticle delivery from the reproductive tract to target draining lymphoid organs. Nanomedicine 13(6), 2015–2025 (2017). https://doi.org/10.1016/j.nano.2017.04.012
- V. Bhurani, A. Mohankrishnan, A. Morrot, S.K. Dalai, Developing effective Vvccines: cues from natural infection. Int. Rev. Immunol. 37(5), 249–265 (2018). https://doi.org/10.1080/08830185.2018.1471479
- R.S. Gejman, A.Y. Chang, H.F. Jones, K. DiKun, A.A. Hakimi et al., Rejection of immunogenic tumor clones is limited by clonal fraction. Elife 7, e41090 (2018). https://doi.org/10.7554/eLife.41090
- E.R. Miller, P.L. Moro, M. Cano, T.T. Shimabukuro, Deaths following vaccination: what does the evidence show? Vaccine 33(29), 3288–3292 (2015). https://doi.org/10.1016/j.vaccine.2015.05.023
- A. Batista-Duharte, D.T. Martinez, I.Z. Carlos, Efficacy and safety of immunological adjuvants. where is the cut-off? Biomed. Pharmacother 105, 616–624 (2018). https://doi.org/10.1016/j.biopha.2018.06.026
- K. Twumasi-Boateng, J.L. Pettigrew, Y.Y.E. Kwok, J.C. Bell, B.H. Nelson, Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer. 18(7), 419–432 (2018). https://doi.org/10.1038/s41568-018-0009-4
- D.V. Krysko, A.D. Garg, A. Kaczmarek, O. Krysko, P. Agostinis et al., Immunogenic cell death and damps in cancer therapy. Nat. Rev. Cancer 12(12), 860–875 (2012). https://doi.org/10.1038/nrc3380
- L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, G. Kroemer, Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17(2), 97–111 (2017). https://doi.org/10.1038/nri.2016.107
- B.L. Rapoport, R. Anderson, Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy. Int. J. Mol. Sci. 20(4), 959 (2019). https://doi.org/10.3390/ijms20040959
- L. Liu, Q. Chen, C. Ruan, X. Chen, X. He et al., Nano-engineered lymphocytes for alleviating suppressive tumor immune microenvironment. Appl. Mater. Today 16, 273–279 (2019). https://doi.org/10.1016/j.apmt.2019.06.009
- Y. Fan, R. Kuai, Y. Xup, L.J. Ochyl, D.J. Irvine et al., Immunogenic cell death amplified by co-localized adjuvant delivery for cancer immunotherapy. Nano Lett. 17(12), 7387–7393 (2017). https://doi.org/10.1021/acs.nanolett.7b03218
- S. Gebremeskel, L. Lobert, K. Tanner, B. Walker, T. Oliphant et al., Natural killer T-cell immunotherapy in combination with chemotherapy-induced immunogenic cell Death targets metastatic breast cancer. Cancer Immunol. Res. 5(12), 1086–1097 (2017). https://doi.org/10.1158/2326-6066.Cir-17-0229
- Q. Chen, J. Chen, Z. Yang, J. Xu, L. Xu et al., Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 31(10), e1802228 (2019). https://doi.org/10.1002/adma.201802228
- W. Li, J. Yang, L. Luo, M. Jiang, B. Qin et al., Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 10(1), 3349 (2019). https://doi.org/10.1038/s41467-019-11269-8
- Y. Li, X. Liu, W. Pan, N. Li, B. Tang, Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer. Chem. Commun. 56(9), 1389–1392 (2020). https://doi.org/10.1039/c9cc08447a
- Z. Wang, F. Zhang, D. Shao, Z. Chang, L. Wang et al., Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti-metastatic immunotherapy. Adv. Sci. 6(22), 1901690 (2019). https://doi.org/10.1002/advs.201901690
- A.A. Farooqi, K.-T. Li, S. Fayyaz, Y.-T. Chang, M. Ismail et al., Anticancer drugs for the Modulation of endoplasmic reticulum stress and oxidative stress. Tumor Biol. 36(8), 5743–5752 (2015). https://doi.org/10.1007/s13277-015-3797-0
- C. Chen, X. Ni, S. Jia, Y. Liang, X. Wu et al., Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 31(52), e1904914 (2019). https://doi.org/10.1002/adma.201904914
- Q. Chen, L. Liu, Y. Lu, X. Chen, Y. Zhang et al., Tumor microenvironment-triggered aggregated magnetic nanoparticles for reinforced image-guided immunogenic chemotherapy. Adv. Sci. 6(6), 1802134 (2019). https://doi.org/10.1002/advs.201802134
- A. Lin, Y. Gorbanev, J. De Backer, J. Van Loenhout, W. Van Boxem et al., Non-thermal plasma as a unique delivery system of short-lived reactive oxygen and nitrogen species for immunogenic cell death in melanoma cells. Adv. Sci. 6(6), 1802062 (2019). https://doi.org/10.1002/advs.201802062
- W. Yang, F. Zhang, H. Deng, L. Lin, S. Wang et al., Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy. ACS Nano 14(1), 620–631 (2020). https://doi.org/10.1021/acsnano.9b07212
- O. Kepp, L. Menger, E. Vacchelli, C. Locher, S. Adjemian et al., Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 24(4), 311–318 (2013). https://doi.org/10.1016/j.cytogfr.2013.05.001
- W. Fan, P. Huang, X. Chen, Overcoming the achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 45(23), 6488–6519 (2016). https://doi.org/10.1039/c6cs00616g
- A.P. Castano, P. Mroz, M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6(7), 535–545 (2006). https://doi.org/10.1038/nrc1894
- J. Dobson, G.F. de Queiroz, J.P. Golding, Photodynamic therapy and diagnosis: principles and comparative aspects. Vet. J. 233, 8–18 (2018). https://doi.org/10.1016/j.tvjl.2017.11.012
- C. Conte, S. Maiolino, D.S. Pellosi, A. Miro, F. Ungaro et al., In Polymeric Nanoparticles for Cancer Photodynamic Therapy. ed. by SORTINO S 2016), pp. 61–112
- K. Zhang, Y. Fang, Y. He, H. Yin, X. Guan et al., Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nat. Commun. 10(1), 5380 (2019). https://doi.org/10.1038/s41467-019-13115-3
- M. Lismont, L. Dreesen, S. Wuttke, Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives. Adv. Funct. Mater. 27(14), 1606314 (2017). https://doi.org/10.1002/adfm.201606314
- Y. Liu, W. Hou, L. Xia, C. Cui, S. Wan et al., Zr-MOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy. Chem. Sci. 9(38), 7505–7509 (2018). https://doi.org/10.1039/c8sc02210k
- X. Li, S. Lee, J. Yoon, Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem. Soc. Rev. 47(4), 1174–1188 (2018). https://doi.org/10.1039/c7cs00594f
- J. Park, D. Feng, S. Yuan, H.-C. Zhou, Photochromic metal-organic frameworks: Reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. 54(2), 430–435 (2015). https://doi.org/10.1002/anie.201408862
- Y. Shao, B. Liu, Z. Di, G. Zhang, L.-D. Sun et al., Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 142(8), 3939–3946 (2020). https://doi.org/10.1021/jacs.9b12788
- Y. Li, Z. Di, J. Gao, P. Cheng, C. Di et al., Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 139(39), 13804–13810 (2017). https://doi.org/10.1021/jacs.7b07302
- K. Ni, G. Lan, S.S. Veroneau, X. Duan, Y. Song et al., Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat. Commun. 9(1), 4321 (2018). https://doi.org/10.1038/s41467-018-06655-7
- K. Lu, C. He, N. Guo, C. Chan, K. Ni et al., Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2(8), 600–610 (2018). https://doi.org/10.1038/s41551-018-0203-4
- W. Sun, T. Shi, L. Luo, X. Chen, P. Lv et al., Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy. Adv. Mater. 31(16), e1808024 (2019). https://doi.org/10.1002/adma.201808024
- W. Yue, L. Chen, L. Yu, B. Zhou, H. Yin et al., Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combinationrReduces tumour growth and metastases in mice. Nat. Commun. 10(1), 2025 (2019). https://doi.org/10.1038/s41467-019-09760-3
- J. Chen, H. Luo, Y. Liu, W. Zhang, H. Li et al., Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic Treatment of Pancreatic Cancer. ACS Nano 11(12), 12849–12862 (2017). https://doi.org/10.1021/acsnano.7b08225
- Y.F. Yin, X.W. Jiang, L.P. Sun, H.Y. Li, C.X. Su et al., Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today 36, 101009 (2021). https://doi.org/10.1016/j.nantod.2020.101009
- X. Guan, H.H. Yin, X.H. Xu, G. Xu, Y. Zhang et al., Tumor metabolism-engineered composite nanoplatforms potentiate sonodynamic therapy via reshaping tumor microenvironment and facilitating electron-hole pairs’ separation. Adv. Funct. Mater. 30(27), 2000326 (2020). https://doi.org/10.1002/adfm.202000326
- D. Peng, I. Kryczek, N. Nagarsheth, L. Zhao, S. Wei et al., Hensley-Alford S, Munkarah A, Liu R, Zou W. Epigenetic silencing of T(h)1-type chemokines shapes tumour immunity and immunotherapy. Nature 527(7577), 249–253 (2015). https://doi.org/10.1038/nature15520
- N. Nagarsheth, D. Peng, I. Kryczek, K. Wu, W. Li et al., PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res. 76(2), 275–282 (2016). https://doi.org/10.1158/0008-5472.Can-15-1938
- L. Dang, D.W. White, S. Gross, B.D. Bennett, M.A. Bittinger et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274), 739-U752 (2009). https://doi.org/10.1038/nature08617
- M. Ayers, J. Lunceford, M. Nebozhyn, E. Murphy, A. Loboda et al., IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127(8), 2930–2940 (2017). https://doi.org/10.1172/jci91190
- R. Kalluri, M. Zeisberg, Fibroblasts in cancer. Nat. Rev. Cancer 6(5), 392–401 (2006). https://doi.org/10.1038/nrc1877
- L. Miao, J.M. Newby, C.M. Lin, L. Zhang, F. Xu et al., Milowsky MI, Wobker SE, Huang L. The binding site barrier elicited by tumor associated fibroblasts interferes disposition of nanoparticles in stroma-vessel type tumors. ACS Nano 10(10), 9243–9258 (2016). https://doi.org/10.1021/acsnano.6b02776
- H. Jiang, S. Hegde, D.G. DeNardo, Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunol. Immunother. 66(8), 1037–1048 (2017). https://doi.org/10.1007/s00262-017-2003-1
- M.H. Sherman, R.T. Yu, D.D. Engle, N. Ding, A.R. Atkins et al., Vitamin D Receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159(1), 80–93 (2014). https://doi.org/10.1016/j.cell.2014.08.007
- D. Liao, R.S. Johnson, Hypoxia: A key regulator of angiogenesis in cancer. Cancer Metastasis Rev. 26(2), 281–290 (2007). https://doi.org/10.1007/s10555-007-9066-y
- N. Erez, M. Truitt, P. Olson, D. Hanahan, Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-Kappa B-cdpendent manner. Cancer Cell 17(2), 135–147 (2010). https://doi.org/10.1016/j.ccr.2009.12.041
- R.T.P. Poon, S.T. Fan, J. Wong, Clinical implications of circulating angiogenic factors in cancer patients. J. Clin. Oncol. 19(4), 1207–1225 (2001). https://doi.org/10.1200/jco.2001.19.4.1207
- P.P. Provenzano, C. Cuevas, A.E. Chang, V.K. Goel, D.D. Von Hoff et al., Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3), 418–429 (2012). https://doi.org/10.1016/j.ccr.2012.01.007
- Y. Tsuzuki, D. Fukumura, B. Oosthuyse, C. Koike, P. Carmeliet et al., Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1 alpha -> hypoxia response element -> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 60(22), 6248–6252 (2000). (PMID: 11103778)
- G.T. Motz, S.P. Santoro, L.-P. Wang, T. Garrabrant, R.R. Lastra et al., Tumor endothelium Fasl establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20(6), 607–615 (2014). https://doi.org/10.1038/nm.3541
- M.B. Schaaf, A.D. Garg, P. Agostinis, Defining the Role of the Tumor Vasculature in Antitumor Immunity and Immunotherapy. Cell Death Dis. 9(2), 115 (2018). https://doi.org/10.1038/s41419-017-0061-0
- C. Bouzin, A. Brouet, J. De Vriese, J. DeWever, O. Feron, Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol. 178(3), 1505–1511 (2007). https://doi.org/10.4049/jimmunol.178.3.1505
- F. Mpekris, C. Voutouri, J.W. Baish, D.G. Duda, L.L. Munn, Stylianopoulos T, Jain RK. Combining microenvironment normalization strategies to improve cancer immunotherapy. Proc. Natl. Acad. Sci. USA 117(7), 3728–3737 (2020). https://doi.org/10.1073/pnas.1919764117
- J.D. Martin, G. Seano, R.K. Jain, in Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. ed. by NELSON M T, WALSH K 2019), pp. 505–534
- H.F. Dvorak, Tumor stroma, tumor blood vessels, and antiangiogenesis therapy. Cancer J. 21(4), 237–243 (2015). https://doi.org/10.1097/ppo.0000000000000124
- L. Caja, F. Dituri, S. Mancarella, D. Caballero-Diaz, A. Moustakas et al., TGF-beta and the tissue microenvironment: Relevance in fibrosis and cancer. Int. J. Mol. Sci. 19(5), 1294 (2018). https://doi.org/10.3390/ijms19051294
- A. Costa, Y. Kieffer, A. Scholer-Dahirel, F. Pelon, B. Bourachot et al., Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33(3), 463–479 (2018). https://doi.org/10.1016/j.ccell.2018.01.011
- A. Laitala, J.T. Erler, Hypoxic signalling in tumour stroma. Front. Oncol. 8, 189 (2018). https://doi.org/10.3389/fonc.2018.00189
- S.J. Scales, F.J. de Sauvage, Mechanisms of hedgehog pathway activation in cancer and implications for therapy. Trends. Pharmacol. Sci. 30(6), 303–312 (2009). https://doi.org/10.1016/j.tips.2009.03.007
- I.X. Chen, V.P. Chauhan, J. Posada, M.R. Ng, M.W. Wu et al., Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc. Natl. Acad. Sci. USA 116(10), 4558–4566 (2019). https://doi.org/10.1073/pnas.1815515116
- P. Papageorgis, C. Polydorou, F. Mpekris, C. Voutouri, E. Agathokleous et al., Tranilast-induced stress alleviation in solid tumors improves the efficacy of chemo- and nanotherapeutics in a size-independent manner. Sci. Rep. 7, 46140 (2017). https://doi.org/10.1038/srep46140
- T. Ji, S. Li, Y. Zhang, J. Lang, Y. Ding et al., An MMP-2 responsive liposome integrating antifibrosis and chemotherapeutic drugs for enhanced drug perfusion and efficacy in pancreatic cancer. ACS Appl. Mater. Interfaces 8(5), 3438–3445 (2016). https://doi.org/10.1021/acsami.5b11619
- A.D. Theocharis, S.S. Skandalis, C. Gialeli, N.K. Karamanos, Extracellular matrix structure. Adv. Drug Delivery Rev. 97, 4–27 (2016). https://doi.org/10.1016/j.addr.2015.11.001
- J. Prakash, M. Pinzani, Fibroblasts and extracellular matrix: Targeting and therapeutic tools in fibrosis and cancer preface. Adv. Drug Delivery Rev. 121, 1–2 (2017). https://doi.org/10.1016/j.addr.2017.11.008
- G.C. Weber, B.A. Buhren, H. Schrumpf, J. Wohlrab, P.A. Gerber, in Clinical Applications of Hyaluronidase. ed. by LABROU N 2019), pp. 255–277
- S.H. Lv, S.F. Rong, B.G. Cai, S.M. Guan, Q.Q. Li, Property and current clinical applications of mammal hyaluronidase. Eur. Rev. Med. Pharmacol. Sci. 19(20), 3968–3976 (2015)
- K.M. Wong, K.J. Horton, A.L. Coveler, S.R. Hingorani, W.P. Harris, Targeting the Tumor Stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEG-PH20). Curr. Oncol. Rep. 19(7), 47 (2017). https://doi.org/10.1007/s11912-017-0608-3
- X. Guan, L. Lin, J. Chen, Y. Hu, P. Sun et al., Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy. J. Controlled Release 293, 104–112 (2019). https://doi.org/10.1016/j.jconrel.2018.11.022
- X. Guan, J. Chen, Y. Hu, L. Lin, P. Sun et al., Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase. Biomaterials 171, 198–206 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.039
- H. Zhou, Z. Fan, J. Deng, P.K. Lemons, D.C. Arhontoulis et al., Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett. 16(5), 3268–3277 (2016). https://doi.org/10.1021/acs.nanolett.6b00820
- Y. Hong, G.-H. Nam, E. Koh, S. Jeon, G.B. Kim et al., Exosome as a vehicle for delivery of membrane protein therapeutics, PH20, for enhanced tumor penetration and antitumor efficacy. Adv. Funct. Mater. 28(5), 1703074 (2018). https://doi.org/10.1002/adfm.201703074
- A. Zinger, L. Koren, O. Adir, M. Poley, M. Alyan et al., Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano 13(10), 11008–11021 (2019). https://doi.org/10.1021/acsnano.9b02395
- C.H. Heldin, K. Rubin, K. Pietras, A. Ostman, High interstitial fluid pressure: an obstacle in cancer therapy. Nat. Rev. Cancer 4(10), 806–813 (2004). https://doi.org/10.1038/nrc1456
- A.I. Minchinton, I.F. Tannock, Drug penetration in solid tumours. Nat. Rev. Cancer 6(8), 583–592 (2006). https://doi.org/10.1038/nrc1893
- M.F. Flessner, J. Choi, K. Credit, R. Deverkadra, K. Henderson, Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clinl. Cancer Res. 11(8), 3117–3125 (2005). https://doi.org/10.1158/1078-0432.Ccr-04-2332
- E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015). https://doi.org/10.1038/nbt.3330
- O. Tredan, C.M. Galmarini, K. Patel, I.F. Tannock, Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 99(19), 1441–1454 (2007). https://doi.org/10.1093/jnci/djm135
- B. Pelaz, C. Alexiou, R.A. Alvarez-Puebla, F. Alves, A.M. Andrews et al., Diverse applications of nanomedicine. ACS Nano 11(3), 2313–2381 (2017). https://doi.org/10.1021/acsnano.6b06040
- M. Overchuk, G. Zheng, Overcoming obstacles in the tumor microenvironment: recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 156, 217–237 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.024
- B. Chen, W. Dai, B. He, H. Zhang, X. Wang et al., Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7(3), 538–558 (2017). https://doi.org/10.7150/thno.16684
- H. He, L. Sun, J. Ye, E. Liu, S. Chen et al., Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J. Controlled Release 240, 67–76 (2016). https://doi.org/10.1016/j.jconrel.2015.10.040
- H.-J. Li, J.-Z. Du, J. Liu, X.-J. Du, S. Shen et al., Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous sizesSwitching and improved tumor penetration. ACS Nano 10(7), 6753–6761 (2016). https://doi.org/10.1021/acsnano.6b02326
- G. Yang, S.Z.F. Phua, W.Q. Lim, R. Zhang, L. Feng et al., A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater. 31(25), e1901513 (2019). https://doi.org/10.1002/adma.201901513
- H. Jin, T. Zhu, X. Huang, M. Sun, H. Li et al., ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: light-triggered size-reducing and enhanced tumor penetration. Biomaterials 211, 68–80 (2019). https://doi.org/10.1016/j.biomaterials.2019.04.029
- T. Liu, L. Tong, N. Lv, X. Ge, Q. Fu et al., Two-stage size decrease and enhanced photoacoustic performance of stimuli-responsive polymer-gold nanorod assembly for increased tumor penetration. Adv. Funct. Mater. 29(16), 1806429 (2019). https://doi.org/10.1002/adfm.201806429
- F. Zhou, B. Feng, T. Wang, D. Wang, Q. Meng et al., Programmed multiresponsive vesicles for enhanced tumor penetration and combination therapy of triple-negative breast cancer. Adv. Funct. Mater. 27(20), 1606530 (2017). https://doi.org/10.1002/adfm.201606530
- J. Yoo, N.S. Rejinold, D. Lee, S. Jon, Y.-C. Kim, Protease-activatable cell-penetrating peptide possessing ROS-triggered phase transition for enhanced cancer therapy. J. Controlled Release 264, 89–101 (2017). https://doi.org/10.1016/j.jconrel.2017.08.026
- Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang et al., Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14(8), 799–809 (2019). https://doi.org/10.1038/s41565-019-0485-z
- M. Zhou, H. Huang, D. Wang, H. Lu, J. Chen et al., Light-triggered PEGylation/dePEGylation of the nanocarriers for enhanced tumor penetration. Nano Lett. 19(6), 3671–3675 (2019). https://doi.org/10.1021/acs.nanolett.9b00737
- X. Lin, S. Liu, X. Zhang, R. Zhu, S. Chen et al., An ultrasound activated vesicle of Janus Au-MNO nanoparticles for promoted tumor penetration and sono-chemodynamic therapy of orthotopic liver cancer. Angew. Chem. Int. Ed. 59(4), 1682–1688 (2020). https://doi.org/10.1002/anie.201912768
- J. Ji, F. Ma, H. Zhang, F. Liu, J. He et al., Light-activatable assembled nanoparticles to improve tumor penetration and eradicate metastasis in triple negative breast cancer. Adv. Funct. Mater. 28(33), 1801738 (2018). https://doi.org/10.1002/adfm.201801738
- Z. Yang, Q. Chen, J. Chen, Z. Dong, R. Zhang et al., Tumor-pH-responsive dissociable albumin-tamoxifen nanocomplexes enabling efficient tumor penetration and hypoxia relief for enhanced cancer photodynamic therapy. Small 14(49), e1803262 (2018). https://doi.org/10.1002/smll.201803262
- S.-Y. Sung, Y.-L. Su, W. Cheng, P.-F. Hu, C.-S. Chiang fet al., Graphene quantum dots-mediated theranostic penetrative delivery of drug and photolytics in deep tumors bytTargeted biomimetic nanosponges. Nano Lett. 19(1), 69–81 (2019). https://doi.org/10.1021/acs.nanolett.8b03249
- J.F. Liu, Z. Lan, C. Ferrari, J.M. Stein, E. Higbee-Dempsey et al., Use of oppositely polarized external magnets to improve the accumulation and penetration of magnetic nanocarriers into solid tumors. ACS Nano 14(1), 142–152 (2020). https://doi.org/10.1021/acsnano.9b05660
- S.H. Lee, O.K. Park, J. Kim, K. Shin, C.G. Pack et al., Deep tumor penetration of drug-loaded nanoparticles by click reaction-assisted immune cell targeting strategy. J. Am. Chem. Soc. 141(35), 13829–13840 (2019). https://doi.org/10.1021/jacs.9b04621
- D.M. Gilkes, G.L. Semenza, D. Wirtz, Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat. Rev. Cancer. 14(6), 430–439 (2014). https://doi.org/10.1038/nrc3726
- T.P. Szatrowski, C.F. Nathan, Production of large amounts of hydrogen-peroxide by human tumor-cells. Cancer Res. 51(3), 794–798 (1991)
- J. Kim, H.R. Cho, H. Jeon, D. Kim, C. Song et al., Continuous o-2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc. 139(32), 10992–10995 (2017). https://doi.org/10.1021/jacs.7b05559
- B. Halliwell, M.V. Clement, L.H. Long, Hydrogen peroxide in the human body. Febs. Lett. 486(1), 10–13 (2000). https://doi.org/10.1016/s0014-5793(00)02197-9
- G. Yang, L. Xu, J. Xu, R. Zhang, G. Song et al., Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 18(4), 2475–2484 (2018). https://doi.org/10.1021/acs.nanolett.8b00040
- M. Song, T. Liu, C. Shi, X. Zhang, X. Chen, Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10(1), 633–647 (2016). https://doi.org/10.1021/acsnano.5b06779
- C. Liu, D. Wang, S. Zhang, Y. Cheng, F. Yang et al., Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano 13(4), 4267–4277 (2019). https://doi.org/10.1021/acsnano.8b09387
- Q. Jia, J. Ge, W. Liu, X. Zheng, S. Chen et al., A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 30(13), e1706090 (2018). https://doi.org/10.1002/adma.201706090
- Y. Li, K.-H. Yun, H. Lee, S.-H. Goh, Y.-G. Suh et al., Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials 197, 12–19 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.004
- Y. Zhang, F. Wang, C. Liu, Z. Wang, L. Kang et al., Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1), 651–661 (2018). https://doi.org/10.1021/acsnano.7b07746
- Z.L. Yang, W. Tian, Q. Wang, Y. Zhao, Y.L. Zhang et al., Oxygen-evolving mesoporous organosilica coated prussian blue nanoplatform for highly efficient photodynamic therapy of tumors. Adv. Sci. 5(5), 1700847 (2018). https://doi.org/10.1002/advs.201700847
- W. Jiang, Z. Zhang, Q. Wang, J. Dou, Y. Zhao et al., Tumor reoxygenation and blood perfusion enhanced photodynamic therapy using ultrathin graphdiyne oxide nanosheets. Nano Lett. 19(6), 4060–4067 (2019). https://doi.org/10.1021/acs.nanolett.9b01458
- W. Wang, Y. Cheng, P. Yu, H. Wang, Y. Zhang et al., Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nat. Commun. 10(1), 1580 (2019). https://doi.org/10.1038/s41467-019-09389-2
- L. Zhang, D. Wang, K. Yang, D. Sheng, B. Tan et al., Mitochondria-targeted artificial “Nano-RBCs” for amplified synergistic cancer phototherapy by a single NIR irradiation. Adv. Sci. 5(8), 1800049 (2018). https://doi.org/10.1002/advs.201800049
- W. Jiang, Q. Li, L. Xiao, J. Dou, Y. Liu et al., Hierarchical multiplexing nanodroplets foriImaging-guided cancer radiotherapy via DNA damage enhancement and concomitant DNA repair prevention. ACS Nano 12(6), 5684–5698 (2018). https://doi.org/10.1021/acsnano.8b01508
- W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song et al., Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy. ACS Nano 12(3), 2610–2622 (2018). https://doi.org/10.1021/acsnano.7b08628
- L. Jiang, H. Bai, L. Liu, F. Lv, X. Ren et al., Luminescent, Oxygen-Supplying, Hemoglobin-linked conjugated polymer nanoparticles for photodynamic therapy. Angew. Chem. Int. Ed. 58(31), 10660–10665 (2019). https://doi.org/10.1002/anie.201905884
- H. Cao, L. Wang, Y. Yang, J. Li, Y. Qi et al., An assembled nanocomplex for improving both therapeutic efficiency and treatment depth in photodynamic therapy. Angew. Chem. Int. Ed. 57(26), 7759–7763 (2018). https://doi.org/10.1002/anie.201802497
- W.-L. Liu, T. Liu, M.-Z. Zou, W.-Y. Yu, C.-X. Li et al., Aggressive man-made eed blood cells for hypoxia-resistant photodynamic therapy. Adv. Mater. 30(35), e1802006 (2018). https://doi.org/10.1002/adma.201802006
- H. Tian, Z. Luo, L. Liu, M. Zheng, Z. Chen et al., Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv. Funct. Mater. 27(38), 1703197 (2017). https://doi.org/10.1002/adfm.201703197
- X. Song, J. Xu, C. Liang, Y. Chao, Q. Jin et al., Self-supplied tumor oxygenation through separated liposomal delivery of H2O2 and catalase for enhanced radio-immunotherapy of cancer. Nano Lett. 18(10), 6360–6368 (2018). https://doi.org/10.1021/acs.nanolett.8b02720
- Z. Chen, M. Niu, G. Chen, Q. Wu, L. Tan et al., Oxygen production of modified Core-Shell CuO@ZrO2 manocomposites by microwave radiation to Alleviate Cancer Hypoxia for enhanced chemo-microwave thermal therapy. ACS Nano 12(12), 12721–12732 (2018). https://doi.org/10.1021/acsnano.8b07749
- Z. Zhang, N. Niu, X. Gao, F. Han, Z. Chen et al., A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy. Colloids Surf. B: Biointerfaces 173, 335–345 (2019). https://doi.org/10.1016/j.colsurfb.2018.10.008
- C.C. Huang, W.T. Chia, M.F. Chung, K.J. Lin, C.W. Hsiao et al., An implantable depot That can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. J. Am. Chem. Soc. 138(16), 5222–5225 (2016). https://doi.org/10.1021/jacs.6b01784
- Y. Sheng, H. Nesbitt, B. Callan, M.A. Taylor, M. Love et al., Oxygen generating nanoparticles forpImproved photodynamic therapy of hypoxic tumours. J. Controlled Release 264, 333–340 (2017). https://doi.org/10.1016/j.jconrel.2017.09.004
- D.I. Gabrilovich, S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9(3), 162–174 (2009). https://doi.org/10.1038/nri2506
- A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, P. Allavena, Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14(7), 399–416 (2017). https://doi.org/10.1038/nrclinonc.2016.217
- J.A. Bluestone, Q. Tang, T-reg cells-the next frontier of cell therapy will regulatory T cells be a frontline therapy for autoimmunity and other diseases? Science 362(6411), 154–155 (2018). https://doi.org/10.1126/science.aau2688
- D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19(11), 1423–1437 (2013). https://doi.org/10.1038/nm.3394
- V.L. Silva, W.T. Al-Jamal, Exploiting the cancer niche: tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy. J. Controlled Release 253, 82–96 (2017). https://doi.org/10.1016/j.jconrel.2017.03.013
- L. Schito, G.L. Semenza, Hypoxia-inducible factors: Master regulators of cancer progression. Trends. Cancer 2(12), 758–770 (2016). https://doi.org/10.1016/j.trecan.2016.10.016
- J. Galon, D. Bruni, Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18(3), 197–218 (2019). https://doi.org/10.1038/s41573-018-0007-y
- V. Umansky, C. Blattner, C. Gebhardt, J. Utikal, The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines 4(4), 36 (2016). https://doi.org/10.3390/vaccines4040036
- S. Nagaraj, J.-I. Youn, H. Weber, C. Iclozan, L. Lu et al., Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin. Cancer Res. 16(6), 1812–1823 (2010). https://doi.org/10.1158/1078-0432.Ccr-09-3272
- P. Raber, A.C. Ochoa, P.C. Rodriguez, Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: Mechanisms of T cell suppression and therapeutic perspectives. Immunol. Invest. 41(6–7), 614–634 (2012). https://doi.org/10.3109/08820139.2012.680634
- C. Bogdan, Nitric oxide and the immune response. Nat. Immunol. 2(10), 907–916 (2001). https://doi.org/10.1038/ni1001-907
- V. Kumar, S. Patel, E. Tcyganov, D.I. Gabrilovich, The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends. Immunol. 37(3), 208–220 (2016). https://doi.org/10.1016/j.it.2016.01.004
- A.M. Bruger, A. Dorhoi, G. Esendagli, K. Barczyk-Kahlert, P. van der Bruggen et al., How to measure the immunosuppressive activity of MDSC: Assays, problems and potential solutions. Cancer Immunol. Immunother. 68(4), 631–644 (2019). https://doi.org/10.1007/s00262-018-2170-8
- M. Pickup, S. Novitskiy, H.L. Moses, The roles of TGF beta in the tumour microenvironment. Nat. Rev. Cancer 13(11), 788–799 (2013). https://doi.org/10.1038/nrc3603
- M.Z. Noman, G. Desantis, B. Janji, M. Hasmim, S. Karray et al., PD-L1 is a novel direct target of HIF-1 alpha., and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211(5), 781–790 (2014). https://doi.org/10.1084/jem.20131916
- J.E. Talmadge, D.I. Gabrilovich, History of myeloid-derived suppressorcCells. Nat. Rev. Cancer 13(10), 739–779 (2013). https://doi.org/10.1038/nrc3581
- E. Brogi, T.G. Wu, A. Namiki, J.M. Isner, Indirect angiogenic cytokines up-regulate VEGF and BFGF gene-expression in vascular smooth-muscle cells, whereas hypoxia up-regulates VEGF expression only. Circulation 90(2), 649–652 (1994). https://doi.org/10.1161/01.Cir.90.2.649
- A. Mantovani, T. Schioppa, C. Porta, P. Allavena, A. Sica, Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 25(3), 315–322 (2006). https://doi.org/10.1007/s10555-006-9001-7
- V. Bronte, P.J. Murray, Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer. Nat. Med. 21(2), 117–119 (2015). https://doi.org/10.1038/nm.3794
- D.J. Ceradini, A.R. Kulkarni, M.J. Callaghan, O.M. Tepper, N. Bastidas et al., Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10(8), 858–864 (2004). https://doi.org/10.1038/nm1075
- M.C. Schmid, C.J. Avraamides, H.C. Dippold, I. Franco, P. Foubert et al., Receptor tyrosine kinases and TLR/IL1 rs unexpectedly activate myeloid cell PI3K gamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19(6), 715–727 (2011). https://doi.org/10.1016/j.ccr.2011.04.016
- L.M. Coussens, L. Zitvogel, A.K. Palucka, Neutralizing tumor-promoting chronic inflammation: A magic bullet? Science 339(6117), 286–291 (2013). https://doi.org/10.1126/science.1232227
- J.A. Trujillo, R.F. Sweis, R. Bao, J.J. Luke, T cell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol. Res. 6(9), 990–1000 (2018). https://doi.org/10.1158/2326-6066.Cir-18-0277
- R. Noy, J.W. Pollard, Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1), 49–61 (2014). https://doi.org/10.1016/j.immuni.2014.06.010
- V. Prima, L.N. Kaliberova, S. Kaliberov, D.T. Curiel, S. Kusmartsev, COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc. Natl. Acad. Sci. USA 114(5), 1117–1122 (2017). https://doi.org/10.1073/pnas.1612920114
- M. Liguori, C. Buracchi, F. Pasqualini, F. Bergomas, S. Pesce et al., Functional trail receptors in monocytes and tumor-associated macrophages: a possible targeting pathway in the tumor microenvironment. Oncotarget 7(27), 41662–41676 (2016). https://doi.org/10.18632/oncotarget.9340
- S.A. Oh, M.O. Li, TGF-beta: Guardian of T cell function. J. Immunol. 191(8), 3973–3979 (2013). https://doi.org/10.4049/jimmunol.1301843
- T.H.S. Ng, G.J. Britton, E.V. Hill, J. Verhagen, B.R. Burton et al., Regulation of adaptive immunity; the role of interleukin-10. Front. Immunol. 4, 129 (2013). https://doi.org/10.3389/fimmu.2013.00129
- D.O. Adeegbe, H. Nishikawa, Natural and induced T regulatory cells in cancer. Front. Immunol. 4, 190 (2013). https://doi.org/10.3389/fimmu.2013.00190
- J. Liu, H. Wang, Tumor-associated macrophages recruit CCR6+regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS One 6(4), e19495 (2011). https://doi.org/10.1371/journal.pone.0019495
- R. Hildenbrand, I. Dilger, A. Horlin, H.J. Stutte, Urokinase and macrophages in tumor angiogenesis. Br. J. Cancer 72(4), 818–823 (1995). https://doi.org/10.1038/bjc.1995.419
- V. Klimetzek, C. Sorg, Lymphokine-induced secretion of plasminogen activator by murine macrophages. Eur. J. Immunol. 7(3), 185–187 (1977). https://doi.org/10.1002/eji.1830070314
- O.W.H. Yeung, C.-M. Lo, C.-C. Ling, X. Qi, W. Geng et al., Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J. Hepatol. 62(3), 607–616 (2015). https://doi.org/10.1016/j.jhep.2014.10.029
- A.G. Jarnicki, J. Lysaght, S. Todryk, K.H.G. Mills, Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: Influence of tumor environment on the induction of CD4(+) and CD8(+) regulatory T cells. J. Immunol. 177(2), 896–904 (2006). https://doi.org/10.4049/jimmunol.177.2.896
- F. Veglia, M. Perego, D. Gabrilovich, Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19(2), 108–119 (2018). https://doi.org/10.1038/s41590-017-0022-x
- C. Groth, X. Hu, R. Weber, V. Fleming, P. Altevogt et al., Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 120(1), 16–25 (2019). https://doi.org/10.1038/s41416-018-0333-1
- A. Sevko, T. Michels, M. Vrohlings, L. Umansky, P. Beckhove et al., Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J. Immunol. 190(5), 2464–2471 (2013). https://doi.org/10.4049/jimmunol.1202781
- B. Schilling, A. Sucker, K. Griewank, F. Zhao, B. Weide et al., Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int. J. Cancer 133(7), 1653–1663 (2013). https://doi.org/10.1002/ijc.28168
- E. Suzuki, V. Kapoor, A.S. Jassar, L.R. Kaiser, S.M. Albelda, Gemcitabine selectively eliminates splenic Gr-1(+)/CD11b(+) myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11(18), 6713–6721 (2005). https://doi.org/10.1158/1078-0432.Ccr-05-0883
- J. Vincent, G. Mignot, F. Chalmin, S. Ladoire, M. Bruchard et al., 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70(8), 3052–3061 (2010). https://doi.org/10.1158/0008-5472.Can-09-3690
- Y. Kodera, Y. Katanasaka, Y. Kitamura, H. Tsuda, K. Nishio et al., Sunitinib inhibits lymphatic endothelial cell functions and lymph node metastasis in a breast cancer model through inhibition of vascular endothelial growth factorrReceptor 3. Breast Cancer Res. 13(3), R66 (2011). https://doi.org/10.1186/bcr2903
- R. Weber, V. Fleming, X. Hu, V. Nagibin, C. Groth et al., Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front. Immunol 9, 1310 (2018). https://doi.org/10.3389/fimmu.2018.01310
- S.C. Robinson, K.A. Scott, J.L. Wilson, R.G. Thompson, A.E.I Proudfoot, Balkwill FR. A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res. 63(23), 8360–8365 (2003)
- Y. Zhu, B.L. Knolhoff, M.A. Meyer, T.M. Nywening, B.L. West et al., CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74(18), 5057–5069 (2014). https://doi.org/10.1158/0008-5472.Can-13-3723
- H. Katoh, D. Wang, T. Daikoku, H. Sun, S.K. Dey et al., CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 24(5), 631–644 (2013). https://doi.org/10.1016/j.ccr.2013.10.009
- L.A. Elliott, G.A. Doherty, K. Sheahan, E.J. Ryan, Human tumor-infiltrating myeloid cells: Phenotypic and functional diversity. Front. Immunol. 8, 86 (2017). https://doi.org/10.3389/fimmu.2017.00086
- M.J. Reilley, P. McCoon, C. Cook, P. Lyne, R. Kurzrock et al., STAT3 antisense oligonucleotide azd9150 in a subset of patients with heavily pretreated lymphoma: Results of a phase 1b trial. J. Immunother. Cancer 6(1), 119 (2018). https://doi.org/10.1186/s40425-018-0436-5
- B. Molon, S. Ugel, F. Del Pozzo, C. Soldani, S. Zilio et al., Chemoki
References
Y. Iwai, J. Hamanishi, K. Chamoto, T. Honjo, Cancer immunotherapies targeting the PD-1 signaling pathway. J. Biomed. Sci. 24(1), 26 (2017). https://doi.org/10.1186/s12929-017-0329-9
C. Zheng, L. Zheng, J.-K. Yoo, H. Guo, Y. Zhang et al., Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169(7), 1342–1356 (2017). https://doi.org/10.1016/j.cell.2017.05.035
S. Spranger, Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int. Immunol. 28(8), 383–391 (2016). https://doi.org/10.1093/intimm/dxw014
S. Pan, Y. Zhan, X. Chen, B. Wu, B. Liu, Bladder cancer exhibiting high immune infiltration shows the lowest response rate to immune checkpoint inhibitors. Front. Oncol. 9, 1101 (2019). https://doi.org/10.3389/fonc.2019.01101
G. Roviello, F. Andre, S. Venturini, B. Pistilli, G. Curigliano et al., Response rate as a potential surrogate for survival and efficacy in patients treated with novel immune checkpoint inhibitors: A meta-regression of randomised prospective studies. Eur. J. Cancer 86, 257–265 (2017). https://doi.org/10.1016/j.ejca.2017.09.018
R.W. Jenkins, D.A. Barbie, K.T. Flaherty, Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118(1), 9–16 (2018). https://doi.org/10.1038/bjc.2017.434
P. Andre, C. Denis, C. Soulas, C. Bourbon-Caillet, J. Lopez et al., Anti-NKG2A mab is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175(7), 1731–1743 (2018). https://doi.org/10.1016/j.cell.2018.10.014
D. Sun, J. Ma, J. Wang, F. Zhang, L. Wang et al., Clinical observation of immune checkpoint inhibitors in the treatment of advanced pancreatic cancer: a real-world study in Chinese cohort. Ther. Clin. Risk Manag. 14, 1691–1700 (2018). https://doi.org/10.2147/tcrm.S173041
M. Kowanetz, W. Zou, S.N. Gettinger, H. Koeppen, M. Kockx et al., Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with Atezolizumab (anti-PD-L1). Proc. Natl. Acad. Sci. USA. 115(43), E10119–E10126 (2018). https://doi.org/10.1073/pnas.1802166115
Y. Liu, J. Zugazagoitia, F.S. Ahmed, B.S. Henick, S.N. Gettinger et al., Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy. Clin. Cancer Res. 26(4), 970–977 (2020). https://doi.org/10.1158/1078-0432.CCR-19-1040z
L. Li, R. Sun, Y. Miao, T. Tran, L. Adams et al., PD-1/PD-L1 expression and interaction by automated quantitative immunofluorescent analysis show adverse prognosticiImpact in patients with diffuse large B-cell lymphoma having T-cell infiltration: a study from the international DLBCL consortium program. Mod. Pathol. 32(6), 741–754 (2019). https://doi.org/10.1038/s41379-018-0193-5
Y. Jiang, M. Chen, H. Nie, Y. Yuan, PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum. Vaccin. Immunother 15(5), 1111–1122 (2019). https://doi.org/10.1080/21645515.2019.1571892
R.H. Vonderheide, The immune revolution: a case for priming, not checkpoint. Cancer Cell 33(4), 563–569 (2018). https://doi.org/10.1016/j.ccell.2018.03.008
S. Spranger, R.M. Spaapen, Y. Zha, J. Williams, Y. Meng et al., Up-regulation of PD-L1, IDO, and T-regs in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci. Transl. Med. 5(200), 200ra116 (2013). https://doi.org/10.1126/scitranslmed.3006504
P. Sharma, J.P. Allison, The future of immune checkpoint therapy. Science 348(6230), 56–61 (2015). https://doi.org/10.1126/science.aaa8172
R.N. Ramos, E. Piaggio, E. Romano, Mechanisms of resistance to immune checkpoint antibodies. Handb. Exp. Pharmaco. 249, 109–128 (2018). https://doi.org/10.1007/164_2017_11
I. Melero, D.M. Berman, M. Angela, A.J. Korman, J.L. Perez et al., Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer 15(8), 457–472 (2015). https://doi.org/10.1038/nrc3973
M. Anraku, K.S. Cunningham, Z. Yun, M.-S. Tsao, L. Zhang et al., Impact of tumor-infiltrating T cells on survival in patients with malignant pleural mesothelioma. J. Thorac. Cardiovasc. Surg. 135(4), 823–829 (2008). https://doi.org/10.1016/j.jtcvs.2007.10.026
W.-T. Hwang, S.F. Adams, E. Tahirovic, I.S. Hagemann, G. Coukos, Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a Meta-Analysis. Gynecol. Oncol. 124(2), 192–198 (2012). https://doi.org/10.1016/j.ygyno.2011.09.039
W. Ding, X. Xu, Y. Qian, W. Xue, Y. Wang et al., Prognostic value of tumor-infiltrating lymphocytes in hepatocellular carcinoma a meta-analysis. Medicine 97(50), e13301 (2018). https://doi.org/10.1097/md.0000000000013301
M. Peled, A. Onn, R.S. Herbst, Tumor-infiltrating lymphocytes-location for prognostic evaluation. Clin. Cancer Res. 25(5), 1449–1451 (2019). https://doi.org/10.1158/1078-0432.Ccr-18-3803
W.-C. Cheng, P.-C. Ho, Firing up cold tumors. Trends. Cancer 5(9), 528–530 (2019). https://doi.org/10.1016/j.trecan.2019.06.005
K. Paul, D. Kretzschmar, A. Yilmaz, B. Baerthlein, S. Titze et al., Circulating dendritic cell precursors in chronic kidney disease: a cross-sectional study. BMC Nephrol. 14, 274 (2013). https://doi.org/10.1186/1471-2369-14-274
J. Liu, E.A. Rozeman, J.S. O’Donnell, S. Allen, L. Fanchi et al., Batf3+ DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy. Oncoimmunology 8(2), e1546068 (2019). https://doi.org/10.1080/2162402x.2018.1546068
J.J. Engelhardt, B. Boldajipour, P. Beemiller, P. Pandurangi, C. Sorensen et al., Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21(3), 402–417 (2012). https://doi.org/10.1016/j.ccr.2012.01.008
J.-M. Williford, J. Ishihara, A. Ishihara, A. Mansurov, P. Hosseinchi et al., Recruitment of CD103(+) dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci. Adv. 5(12), eaay1357 (2019). https://doi.org/10.1126/sciadv.aay1357
K. Hildner, B.T. Edelson, W.E. Purtha, M. Diamond, H. Matsushita et al., Batf3 deficiency reveals a critical role for CD8 Alpha(+) dendritic cells in cytotoxic T cell immunity. Science 322(5904), 1097–1100 (2008). https://doi.org/10.1126/science.1164206
Y. Mi, C.T. Hagan, B.G. Vincent, A.Z. Wang, Emerging nano-/microapproaches for cancer immunotherapy. Adv. Sci. 6(6), 1801847 (2019). https://doi.org/10.1002/advs.201801847
T. Gajewski, Y. Zha, K. Hernandez, Y. Li, R. Bao et al., Density of immunogenic antigens and presence or absence of the T cell-inflamed tumor microenvironment in metastatic melanoma. J. Clin. Oncol. 33(15), suppl.3002 (2015). https://doi.org/10.1200/jco.2015.33.15_suppl.3002
M.E. Mikucki, D.T. Fisher, J. Matsuzaki, J.J. Skitzki, N.B. Gaulin et al., Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat. Commun. 6, 7458 (2015). https://doi.org/10.1038/ncomms8458
Y. Zhang, W. Chen, C. Yang, Q. Fan, W. Wu et al., Enhancing tumor penetration and targeting using size-minimized and zwitterionic nanomedicines. J. Controlled Release 237, 115–124 (2016). https://doi.org/10.1016/j.jconrel.2016.07.011
K. Ley, C. Laudanna, M.I. Cybulsky, S. Nourshargh, Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7(9), 678–689 (2007). https://doi.org/10.1038/nri2156
B.Y. Kim, J.T. Rutka, W.C. Chan, Nanomedicine. N. Engl. J. Med. 363(25), 2434–2443 (2010). https://doi.org/10.1056/NEJMra0912273
F. Scaletti, J. Hardie, Y.-W. Lee, D.C. Luther, M. Ray et al., Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem. Soc. Rev. 47(10), 3421–3432 (2018). https://doi.org/10.1039/c8cs00008e
S.M. Dadfar, K. Roemhild, N.I. Drude, S. von Stillfried, R. Knuechel et al., Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv. Drug Delivery Rev. 138, 302–325 (2019). https://doi.org/10.1016/j.addr.2019.01.005
C. Saraiva, C. Praca, R. Ferreira, T. Santos, L. Ferreira et al., Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J. Controlled Release 235, 34–47 (2016). https://doi.org/10.1016/j.jconrel.2016.05.0444
N. Amreddy, A. Babu, R. Muralidharan, J. Panneerselvam, A. Srivastava et al., In Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. ed. by TEW K D, FISHER P B 2018), pp. 115–170
A. Gupta, S. Mumtaz, C.-H. Li, I. Hussain, V.M. Rotello, Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 48(2), 415–427 (2019). https://doi.org/10.1039/c7cs00748e
Y. Min, J.M. Caster, M.J. Eblan, A.Z. Wang, Clinical translation of nanomedicine. Chem. Rev. 115(19), 11147–11190 (2015). https://doi.org/10.1021/acs.chemrev.5b00116
Y. Shi, Clinical translation of nanomedicine and biomaterials for cancer immunotherapy: progress and perspectives. Adv. Ther. 3(9), 1900215 (2020). https://doi.org/10.1002/adtp.201900215
M.A. Postow, R. Sidlow, M.D. Hellmann, Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378(2), 158–168 (2018). https://doi.org/10.1056/NEJMra1703481
D. Schmid, C.G. Park, C.A. Hartl, N. Subedi, A.N. Cartwright et al., T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8(1), 1747 (2017). https://doi.org/10.1038/s41467-017-01830-8
C.F. Friedman, T.A. Proverbs-Singh, M.A. Postow, Treatment of the immune-related adverse effects of immune checkpoint inhibitors a review. JAMA Oncol. 2(10), 1346–1353 (2016). https://doi.org/10.1001/jamaoncol.2016.1051
A.C. Anselmo, S. Mitragotri, Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 4(3), e10143 (2019). https://doi.org/10.1002/btm2.10143
S. Vecchi, S. Bufali, T. Uno, T. Wu, L. Arcidiacono et al., Conjugation of a TLR7 agonist and antigen enhances protection in the S. pneumoniae murine infection model. Eur. J. Pharm. Biopharm. 87(2), 310–317 (2014). https://doi.org/10.1016/j.ejpb.2014.01.002
D.S. Wilson, S. Hirosue, M.M. Raczy, L. Bonilla-Ramirez, L. Jeanbart et al., Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater. 18(2), 175–185 (2019). https://doi.org/10.1038/s41563-018-0256-5
D. Passlick, K. Piradashvili, D. Bamberger, M. Li, S. Jiang et al., Delivering all in one: antigen-nanocapsule loaded with dual adjuvant yields superadditive effects by DC-directed T cell stimulation. J. Controlled Release 289, 23–34 (2018). https://doi.org/10.1016/j.jconrel.2018.09.008
S. Gujar, J.G. Pol, G. Kroemer, Heating it up: Oncolytic viruses make tumors “hot’’ and suitable for checkpoint blockade immunotherapies.” Oncoimmunology 7(8), e1442169 (2018). https://doi.org/10.1080/2162402x.2018.1442169
H. Phuengkham, C. Song, S.H. Um, Y.T. Lim, Implantable synthetic immune niche for spatiotemporal modulation of tumor-derived immunosuppression and systemic antitumor immunity: postoperative immunotherapy. Adv. Mater. 30(18), e1706719 (2018). https://doi.org/10.1002/adma.201706719
L.L. van der Woude, M.A.J. Gorris, A. Halilovic, C.G. Figdor, I.J.M. de Vries, Migrating into the tumor: a roadmap for T cells. Trends. Cancer 3(11), 797–808 (2017). https://doi.org/10.1016/j.trecan.2017.09.006
W. Song, L. Shen, Y. Wang, Q. Liu, T.J. Goodwin et al., Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 9(1), 2237 (2018). https://doi.org/10.1038/s41467-018-04605-x
F. Zhou, B. Feng, H. Yu, D. Wang, T. Wang, Y. Ma, S. Wang, Y. Li, Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv. Mater. 31(14), e1805888 (2019). https://doi.org/10.1002/adma.201805888
Q. Sun, X. Bai, A.M. Sofias, R. van der Meel, E. Ruiz-Hernandez, G. Storm et al., Cancer nanomedicine meets immunotherapy: Opportunities and challenges. Acta Pharmacol. Sin. 41(7), 954–958 (2020). https://doi.org/10.1038/s41401-020-0448-9
T.F. Gajewski, H. Schreiber, Y.X. Fu, Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14(10), 1014–1022 (2013). https://doi.org/10.1038/ni.2703
S. Spranger, R. Bao, T.F. Gajewski, Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559), 231-U261 (2015). https://doi.org/10.1038/nature14404
L. Ding, H.-J. Kim, Q. Wang, M. Kearns, T. Jiang et al., Parp Inhibition elicits STING-dependent antitumor immunity in brca1-deficient ovarian cancer. Cell Rep. 25(11), 2972–2980 (2018). https://doi.org/10.1016/j.celrep.2018.11.054
C. Menetrier-Caux, G. Montmain, M.C. Dieu, C. Bain, M.C. Favrot et al., Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92(12), 4778–4791 (1998). https://doi.org/10.1182/blood.V92.12.4778
G. Li, S. Abediankenari, Y.-J. Kim, T.B. Campbell, S. Ito et al., TGF-beta combined with M-CSF and IL-4 induces generation of immune inhibitory cord blood dendritic cells capable of enhancing cytokine-induced ex vivo expansion of myeloid progenitors. Blood 110(8), 2872–2879 (2007). https://doi.org/10.1182/blood-2006-10-050583
H. Kitamura, Y. Ohno, Y. Toyoshima, J. Ohtake, S. Homma et al., Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci. 108(10), 1947–1952 (2017). https://doi.org/10.1111/cas.13332
J. Qiao, Z. Liu, C. Dong, Y. Luan, A. Zhang et al., Targeting tumors with IL-10 prevents dendritic cell-mediated CD8(+) T cell apoptosis. Cancer Cell 35(6), 901–915 (2019). https://doi.org/10.1016/j.ccell.2019.05.005
S. Jaiswal, C.H.M. Jamieson, W.W. Pang, C.Y. Park, M.P. Chao et al., CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138(2), 271–285 (2009). https://doi.org/10.1016/j.cell.2009.05.046
E. Reeves, E. James, Antigen processing and immune regulation in the response to tumours. Immunology 150(1), 16–24 (2017). https://doi.org/10.1111/imm.12675
A. Rousseau, A. Bertolotti, Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol. 19(11), 697–712 (2018). https://doi.org/10.1038/s41580-018-0040-z
T. Blankenstein, P.G. Coulie, E. Gilboa, E.M. Jaffee, The determinants of tumour immunogenicity. Nat. Rev. Cancer 12(4), 307–313 (2012). https://doi.org/10.1038/nrc3246
M. Leclerc, L. Mezquita, G.G. De Nerville, I. Tihy, I. Malenica et al., Recent advances in lung cancer immunotherapy: Input of T-cell epitopes associated with impaired peptide processing. Front. Immunol. 10, 1505 (2019). https://doi.org/10.3389/fimmu.2019.01505
W. Ji, L. Niu, W. Peng, Y. Zhang, H. Cheng et al., Salt bridge-forming residues positioned over viral peptides presented by MHC Class I impacts T-cell recognition in a binding-dependent manner. Mol. Immunol. 112, 274–282 (2019). https://doi.org/10.1016/j.molimm.2019.06.005
T. Pradeu, E.D. Carosella, On the definition of a criterion of immunogenicity. Proc. Natl. Acad. Sci. USA 103(47), 17858–17861 (2006). https://doi.org/10.1073/pnas.0608683103
K. Rezvani, H. de Lavallade, Vaccination strategies in lymphomas and leukaemias recent progress. Drugs 71(13), 1659–1674 (2011). https://doi.org/10.2165/11593270-000000000-00000
D. Laheru, E.M. Jaffee, Immunotherapy for pancreatic cancer - science driving clinical progress. Nat. Rev. Cancer 5(6), 459–467 (2005). https://doi.org/10.1038/nrc1630
S. Spranger, T.F. Gajewski, Tumor-intrinsic oncogene pathways mediating immune avoidance. Oncoimmunology 5(3), e1086862 (2016). https://doi.org/10.1080/2162402x.2015.1086862
Y. Wang, Y.-X. Lin, J. Wang, S.-L. Qiao, Y.-Y. Liu et al., In situ manipulation of dendritic cells by an autophagy-regulative nanoactivator enables effective cancer immunotherapy. ACS Nano 13(7), 7568–7577 (2019). https://doi.org/10.1021/acsnano.9b00143
J. Sprooten, P. Agostinis, A.D. Garg, in Type I Interferons and Dendritic Cells in Cancer Immunotherapy. ed.by LHUILLIER C, GALLUZZI L 2019), pp. 217–262
Y. Liu, W.N. Crowe, L. Wang, Y. Lu, W.J. Petty et al., An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 10(1), 5108 (2019). https://doi.org/10.1038/s41467-019-13094-5
G. Tresset, W.C.D. Cheong, Y.L.S. Tan, J. Boulaire, Y.M. Lam, Phospholipid-based artificial viruses assembled by multivalent cations. Biophys. J. 93(2), 637–644 (2007). https://doi.org/10.1529/biophysj.107.104448
K.B. Knudsen, H. Northeved, P.E.K. Kumar, A. Permin, T. Gjetting et al., In vivo toxicity of cationic micelles and liposomes. Nanomedicine 11(2), 467–477 (2015). https://doi.org/10.1016/j.nano.2014.08.004
D. Shae, K.W. Becker, P. Christov, D.S. Yun, A.K.R. Lytton-Jean et al., Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14(3), 269–278 (2019). https://doi.org/10.1038/s41565-018-0342-5
R.D. Junkins, M.D. Gallovic, B.M. Johnson, M.A. Collier, R. Watkins-Schulz et al., A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J. Controlled Release 270, 1–13 (2018). https://doi.org/10.1016/j.jconrel.2017.11.030
D.G. Leach, N. Dharmaraj, S.L. Piotrowski, T.L. Lopez-Silva, Y.L. Lei et al., Stingel: controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials 163, 67–75 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.035
S.H. Van der Burg, R. Arens, F. Ossendorp, T. van Hall, C.J. Melief, Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 16(4), 219–233 (2016). https://doi.org/10.1038/nrc.2016.16
K. Takeda, S. Akira, Toll-like receptors. Curr. Protoc. Immunol. 109(1), 14.12.11–14.12.10 (2015). https://doi.org/10.1002/0471142735.im1412s109
G. Traini, A. Ruiz-de-Angulo, J.B. Blanco-Canosa, K. Zamacola Bascarán, A. Molinaro et al., Cancer immunotherapy of TLR4 agonist-antigen constructs enhanced with pathogen-mimicking magnetite nanoparticles and checkpoint blockade of PD-L1. Small 15(4), e1803993 (2019). https://doi.org/10.1002/smll.201803993
L. Nuhn, S. De Koker, S. Van Lint, Z. Zhong, J.P. Catani et al., Nanoparticle-conjugate TLR7/8 agonist localized immunotherapy provokes safe antitumoral responses. Adv. Mater. 30(45), e1803397 (2018). https://doi.org/10.1002/adma.201803397
B. Wang, S. Van Herck, Y. Chen, X. Bai, Z. Zhong et al., Potent and prolonged innate immune activation by enzyme-responsive imidazoquinoline TLR7/8 agonist prodrug vesicles. J. Am. Chem. Soc. 142(28), 12133–12139 (2020). https://doi.org/10.1021/jacs.0c01928
S. Cheng, C. Xu, Y. Jin, Y. Li, C. Zhong et al., Artificial mini dendritic cells boost T cell-based immunotherapy for ovarian cancer. Adv. Sci. 7(7), 1903301 (2020). https://doi.org/10.1002/advs.201903301
T. Wu, Y. Qi, D. Zhang, Q. Song, C. Yang et al., Bone marrow dendritic cells derived microvesicles for combinational immunochemotherapy against tumor. Adv. Funct. Mater. 27(42), 1703191 (2017). https://doi.org/10.1002/adfm.201703191
A. Jain, C. Pasare, Innate control of adaptive immunity: Beyond the three-signal paradigm. J. Immunol. 198(10), 3791–3800 (2017). https://doi.org/10.4049/jimmunol.1602000
S.G. Reed, M.T. Orr, C.B. Fox, Key roles of adjuvants in modern vaccines. Nat. Med. 19(12), 1597–1608 (2013). https://doi.org/10.1038/nm.3409
T. Storni, T.M. Kundig, G. Senti, P. Johansen, Immunity in response to particulate antigen-delivery systems. Adv. Drug Delivery Rev. 57(3), 333–355 (2005). https://doi.org/10.1016/j.addr.2004.09.008
X. Duan, C. Chan, W. Lin, Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem. Int. Ed. 58(3), 670–680 (2019). https://doi.org/10.1002/anie.201804882
K. Wang, S. Wen, L. He, A. Li, Y. Li et al., “Minimalist” nanovaccine constituted from near whole antigen for cancer immunotherapy. ACS Nano 12(7), 6398–6409 (2018). https://doi.org/10.1021/acsnano.8b00558
R. Verbeke, I. Lentacker, L. Wayteck, K. Breckpot, M. Van Bockstal et al., Co-delivery of nucleoside-modified mRNA and TLR agonists for cancer immunotherapy: restoring the immunogenicity of immunosilent mRNA. J. Controlled Release 266, 287–300 (2017). https://doi.org/10.1016/j.jconrel.2017.09.041
Y.-C. Lu, W.-C. Yeh, P.S. Ohashi, LPS/TLR4 signal transduction pathway. Cytokine 42(2), 145–151 (2008). https://doi.org/10.1016/j.cyto.2008.01.006
M.P. Schoen, M. Schoen, TLR7 and TLR8 as targets in cancer therapy. Oncogene 27(2), 190–199 (2008). https://doi.org/10.1038/sj.onc.1210913
Y. Yoshizaki, E. Yuba, N. Sakaguchi, K. Koiwai, A. Harada et al., pH-sensitive polymer-modified liposome-based immunity-inducing system: effects of inclusion of cationic lipid and CPG-DNA. Biomaterials 141, 272–283 (2017). https://doi.org/10.1016/j.biomaterials.2017.07.001
J.-O. Jin, H. Kim, Y.H. Huh, A. Herrmann, M. Kwak, Soft matter DNA nanoparticles hybridized with CPG motifs andpPeptide nucleic acids enable immunological treatment of cancer. J. Controlled Release 315, 76–84 (2019). https://doi.org/10.1016/j.jconrel.2019.09.013
G.M. Lynn, C. Sedlik, F. Baharom, Y. Zhu, R.A. Ramirez-Valdez et al., Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat. Biotechnol. 38(3), 320–332 (2020). https://doi.org/10.1038/s41587-019-0390-x
J.H. Wang, E.L. Reinherz, Structural basis of cell-cell interactions in the immune system. Curr. Opin. Struct. Biol. 10(6), 656–661 (2000). https://doi.org/10.1016/s0959-440x(00)00150-0
A.L. Blasius, Beutler B. Intracellular toll-like receptors. Immunity 32(3), 305–315 (2010). https://doi.org/10.1016/j.immuni.2010.03.012
J.B. Ulmer, Geall AJ. Recent innovations in mRNA vaccines. Curr. Opin. Immunol. 41, 18–22 (2016). https://doi.org/10.1016/j.coi.2016.05.008
U. Sahin, K. Kariko, O. Tuereci, mRNA-based therapeutics - developing a new class of drugs. Nat. Rev. Drug Discov. 13(10), 759–780 (2014). https://doi.org/10.1038/nrd4278
M.A. Kutzler, D.B. Weiner, DNA vaccines: ready for prime time? Nat. Rev. Genet. 9(10), 776–788 (2008). https://doi.org/10.1038/nrg2432
A. De Beuckelaer, C. Pollard, S. Van Lint, K. Roose, L. Van Hoecke et al., Type I interferons interfere with the capacity of mRNA lipoplex vaccines to elicit cytolytic T cell responses. Mol. Ther. 24(11), 2012–2020 (2016). https://doi.org/10.1038/mt.2016.161
T. Pepini, A.-M. Pulichino, T. Carsillo, A.L. Carlson, F. Sari-Sarraf et al., Induction of an IFN-mdiated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J. Immunol. 198(10), 4012–4024 (2017). https://doi.org/10.4049/jimmunol.1601877
R. Verbeke, I. Lentacker, K. Breckpot, J. Janssens, S. Van Calenbergh et al., Broadening the Message: A nanovaccine co-loaded with messenger RNA and alpha-galcer induces antitumor immunity through conventional and natural killer T cells. ACS Nano 13(2), 1655–1669 (2019). https://doi.org/10.1021/acsnano.8b07660
T.J. Moyer, A.C. Zmolek, D.J. Irvine, Beyond antigens and adjuvants: formulating future vaccines. J. Clin. Invest. 126(3), 799–808 (2016). https://doi.org/10.1172/jci81083
X. Ke, G.P. Howard, H. Tang, B. Cheng, M.T. Saung et al., Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv. Drug Delivery Rev. 151–152, 72–93 (2019). https://doi.org/10.1016/j.addr.2019.09.005
Y. Chen, S. De Koker, B.G. De, Geest Engineering strategies for lymph node targeted immune activation. Acc. Chem. Res. 53(10), 2055–2067 (2020). https://doi.org/10.1021/acs.accounts.0c00260
T. Nakamura, M. Kawai, Y. Sato, M. Maeki, M. Tokeshi et al., The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol. Pharm. 17(3), 944–953 (2020). https://doi.org/10.1021/acs.molpharmaceut.9b01182
J.M. Irache, H.H. Salman, C. Gamazo, S. Espuelas, Mannose-targeted systems for the delivery of therapeutics. Expert Opin. Drug Delivery 5(6), 703–724 (2008). https://doi.org/10.1517/17425247.5.6.703
W. Wang, Z. Liu, X. Zhou, Z. Guo, J. Zhang et al., Ferritin nanoparticle-based spytag/spycatcher-enabled click vaccine for tumor immunotherapy. Nanomedicine 16, 69–78 (2019). https://doi.org/10.1016/j.nano.2018.11.009
C. Zhang, G. Shi, J. Zhang, H. Song, J. Niu et al., Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer Immunotherapy. J. Controlled Release 256, 170–181 (2017). https://doi.org/10.1016/j.jconrel.2017.04.020
H. Liu, K.D. Moynihan, Y. Zheng, G.L. Szeto, A.V. Li et al., Structure-based programming of lymph-node targeting in nolecular vaccines. Nature 507(7493), 519–522 (2014). https://doi.org/10.1038/nature12978
L.F. Sestito, S.N. Thomas, Lymph-directed nitric oxide increases immune cell access to lymph-borne nanoscale solutes. Biomaterials 265, 120411 (2021). https://doi.org/10.1016/j.biomaterials.2020.120411
J. Park, R. Ramanathan, L. Pham, K.A. Woodrow, Chitosan enhances nanoparticle delivery from the reproductive tract to target draining lymphoid organs. Nanomedicine 13(6), 2015–2025 (2017). https://doi.org/10.1016/j.nano.2017.04.012
V. Bhurani, A. Mohankrishnan, A. Morrot, S.K. Dalai, Developing effective Vvccines: cues from natural infection. Int. Rev. Immunol. 37(5), 249–265 (2018). https://doi.org/10.1080/08830185.2018.1471479
R.S. Gejman, A.Y. Chang, H.F. Jones, K. DiKun, A.A. Hakimi et al., Rejection of immunogenic tumor clones is limited by clonal fraction. Elife 7, e41090 (2018). https://doi.org/10.7554/eLife.41090
E.R. Miller, P.L. Moro, M. Cano, T.T. Shimabukuro, Deaths following vaccination: what does the evidence show? Vaccine 33(29), 3288–3292 (2015). https://doi.org/10.1016/j.vaccine.2015.05.023
A. Batista-Duharte, D.T. Martinez, I.Z. Carlos, Efficacy and safety of immunological adjuvants. where is the cut-off? Biomed. Pharmacother 105, 616–624 (2018). https://doi.org/10.1016/j.biopha.2018.06.026
K. Twumasi-Boateng, J.L. Pettigrew, Y.Y.E. Kwok, J.C. Bell, B.H. Nelson, Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer. 18(7), 419–432 (2018). https://doi.org/10.1038/s41568-018-0009-4
D.V. Krysko, A.D. Garg, A. Kaczmarek, O. Krysko, P. Agostinis et al., Immunogenic cell death and damps in cancer therapy. Nat. Rev. Cancer 12(12), 860–875 (2012). https://doi.org/10.1038/nrc3380
L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, G. Kroemer, Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17(2), 97–111 (2017). https://doi.org/10.1038/nri.2016.107
B.L. Rapoport, R. Anderson, Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy. Int. J. Mol. Sci. 20(4), 959 (2019). https://doi.org/10.3390/ijms20040959
L. Liu, Q. Chen, C. Ruan, X. Chen, X. He et al., Nano-engineered lymphocytes for alleviating suppressive tumor immune microenvironment. Appl. Mater. Today 16, 273–279 (2019). https://doi.org/10.1016/j.apmt.2019.06.009
Y. Fan, R. Kuai, Y. Xup, L.J. Ochyl, D.J. Irvine et al., Immunogenic cell death amplified by co-localized adjuvant delivery for cancer immunotherapy. Nano Lett. 17(12), 7387–7393 (2017). https://doi.org/10.1021/acs.nanolett.7b03218
S. Gebremeskel, L. Lobert, K. Tanner, B. Walker, T. Oliphant et al., Natural killer T-cell immunotherapy in combination with chemotherapy-induced immunogenic cell Death targets metastatic breast cancer. Cancer Immunol. Res. 5(12), 1086–1097 (2017). https://doi.org/10.1158/2326-6066.Cir-17-0229
Q. Chen, J. Chen, Z. Yang, J. Xu, L. Xu et al., Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 31(10), e1802228 (2019). https://doi.org/10.1002/adma.201802228
W. Li, J. Yang, L. Luo, M. Jiang, B. Qin et al., Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 10(1), 3349 (2019). https://doi.org/10.1038/s41467-019-11269-8
Y. Li, X. Liu, W. Pan, N. Li, B. Tang, Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer. Chem. Commun. 56(9), 1389–1392 (2020). https://doi.org/10.1039/c9cc08447a
Z. Wang, F. Zhang, D. Shao, Z. Chang, L. Wang et al., Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti-metastatic immunotherapy. Adv. Sci. 6(22), 1901690 (2019). https://doi.org/10.1002/advs.201901690
A.A. Farooqi, K.-T. Li, S. Fayyaz, Y.-T. Chang, M. Ismail et al., Anticancer drugs for the Modulation of endoplasmic reticulum stress and oxidative stress. Tumor Biol. 36(8), 5743–5752 (2015). https://doi.org/10.1007/s13277-015-3797-0
C. Chen, X. Ni, S. Jia, Y. Liang, X. Wu et al., Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 31(52), e1904914 (2019). https://doi.org/10.1002/adma.201904914
Q. Chen, L. Liu, Y. Lu, X. Chen, Y. Zhang et al., Tumor microenvironment-triggered aggregated magnetic nanoparticles for reinforced image-guided immunogenic chemotherapy. Adv. Sci. 6(6), 1802134 (2019). https://doi.org/10.1002/advs.201802134
A. Lin, Y. Gorbanev, J. De Backer, J. Van Loenhout, W. Van Boxem et al., Non-thermal plasma as a unique delivery system of short-lived reactive oxygen and nitrogen species for immunogenic cell death in melanoma cells. Adv. Sci. 6(6), 1802062 (2019). https://doi.org/10.1002/advs.201802062
W. Yang, F. Zhang, H. Deng, L. Lin, S. Wang et al., Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy. ACS Nano 14(1), 620–631 (2020). https://doi.org/10.1021/acsnano.9b07212
O. Kepp, L. Menger, E. Vacchelli, C. Locher, S. Adjemian et al., Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 24(4), 311–318 (2013). https://doi.org/10.1016/j.cytogfr.2013.05.001
W. Fan, P. Huang, X. Chen, Overcoming the achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 45(23), 6488–6519 (2016). https://doi.org/10.1039/c6cs00616g
A.P. Castano, P. Mroz, M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6(7), 535–545 (2006). https://doi.org/10.1038/nrc1894
J. Dobson, G.F. de Queiroz, J.P. Golding, Photodynamic therapy and diagnosis: principles and comparative aspects. Vet. J. 233, 8–18 (2018). https://doi.org/10.1016/j.tvjl.2017.11.012
C. Conte, S. Maiolino, D.S. Pellosi, A. Miro, F. Ungaro et al., In Polymeric Nanoparticles for Cancer Photodynamic Therapy. ed. by SORTINO S 2016), pp. 61–112
K. Zhang, Y. Fang, Y. He, H. Yin, X. Guan et al., Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nat. Commun. 10(1), 5380 (2019). https://doi.org/10.1038/s41467-019-13115-3
M. Lismont, L. Dreesen, S. Wuttke, Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives. Adv. Funct. Mater. 27(14), 1606314 (2017). https://doi.org/10.1002/adfm.201606314
Y. Liu, W. Hou, L. Xia, C. Cui, S. Wan et al., Zr-MOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy. Chem. Sci. 9(38), 7505–7509 (2018). https://doi.org/10.1039/c8sc02210k
X. Li, S. Lee, J. Yoon, Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem. Soc. Rev. 47(4), 1174–1188 (2018). https://doi.org/10.1039/c7cs00594f
J. Park, D. Feng, S. Yuan, H.-C. Zhou, Photochromic metal-organic frameworks: Reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. 54(2), 430–435 (2015). https://doi.org/10.1002/anie.201408862
Y. Shao, B. Liu, Z. Di, G. Zhang, L.-D. Sun et al., Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 142(8), 3939–3946 (2020). https://doi.org/10.1021/jacs.9b12788
Y. Li, Z. Di, J. Gao, P. Cheng, C. Di et al., Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 139(39), 13804–13810 (2017). https://doi.org/10.1021/jacs.7b07302
K. Ni, G. Lan, S.S. Veroneau, X. Duan, Y. Song et al., Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat. Commun. 9(1), 4321 (2018). https://doi.org/10.1038/s41467-018-06655-7
K. Lu, C. He, N. Guo, C. Chan, K. Ni et al., Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2(8), 600–610 (2018). https://doi.org/10.1038/s41551-018-0203-4
W. Sun, T. Shi, L. Luo, X. Chen, P. Lv et al., Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy. Adv. Mater. 31(16), e1808024 (2019). https://doi.org/10.1002/adma.201808024
W. Yue, L. Chen, L. Yu, B. Zhou, H. Yin et al., Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combinationrReduces tumour growth and metastases in mice. Nat. Commun. 10(1), 2025 (2019). https://doi.org/10.1038/s41467-019-09760-3
J. Chen, H. Luo, Y. Liu, W. Zhang, H. Li et al., Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic Treatment of Pancreatic Cancer. ACS Nano 11(12), 12849–12862 (2017). https://doi.org/10.1021/acsnano.7b08225
Y.F. Yin, X.W. Jiang, L.P. Sun, H.Y. Li, C.X. Su et al., Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today 36, 101009 (2021). https://doi.org/10.1016/j.nantod.2020.101009
X. Guan, H.H. Yin, X.H. Xu, G. Xu, Y. Zhang et al., Tumor metabolism-engineered composite nanoplatforms potentiate sonodynamic therapy via reshaping tumor microenvironment and facilitating electron-hole pairs’ separation. Adv. Funct. Mater. 30(27), 2000326 (2020). https://doi.org/10.1002/adfm.202000326
D. Peng, I. Kryczek, N. Nagarsheth, L. Zhao, S. Wei et al., Hensley-Alford S, Munkarah A, Liu R, Zou W. Epigenetic silencing of T(h)1-type chemokines shapes tumour immunity and immunotherapy. Nature 527(7577), 249–253 (2015). https://doi.org/10.1038/nature15520
N. Nagarsheth, D. Peng, I. Kryczek, K. Wu, W. Li et al., PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res. 76(2), 275–282 (2016). https://doi.org/10.1158/0008-5472.Can-15-1938
L. Dang, D.W. White, S. Gross, B.D. Bennett, M.A. Bittinger et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274), 739-U752 (2009). https://doi.org/10.1038/nature08617
M. Ayers, J. Lunceford, M. Nebozhyn, E. Murphy, A. Loboda et al., IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127(8), 2930–2940 (2017). https://doi.org/10.1172/jci91190
R. Kalluri, M. Zeisberg, Fibroblasts in cancer. Nat. Rev. Cancer 6(5), 392–401 (2006). https://doi.org/10.1038/nrc1877
L. Miao, J.M. Newby, C.M. Lin, L. Zhang, F. Xu et al., Milowsky MI, Wobker SE, Huang L. The binding site barrier elicited by tumor associated fibroblasts interferes disposition of nanoparticles in stroma-vessel type tumors. ACS Nano 10(10), 9243–9258 (2016). https://doi.org/10.1021/acsnano.6b02776
H. Jiang, S. Hegde, D.G. DeNardo, Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunol. Immunother. 66(8), 1037–1048 (2017). https://doi.org/10.1007/s00262-017-2003-1
M.H. Sherman, R.T. Yu, D.D. Engle, N. Ding, A.R. Atkins et al., Vitamin D Receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159(1), 80–93 (2014). https://doi.org/10.1016/j.cell.2014.08.007
D. Liao, R.S. Johnson, Hypoxia: A key regulator of angiogenesis in cancer. Cancer Metastasis Rev. 26(2), 281–290 (2007). https://doi.org/10.1007/s10555-007-9066-y
N. Erez, M. Truitt, P. Olson, D. Hanahan, Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-Kappa B-cdpendent manner. Cancer Cell 17(2), 135–147 (2010). https://doi.org/10.1016/j.ccr.2009.12.041
R.T.P. Poon, S.T. Fan, J. Wong, Clinical implications of circulating angiogenic factors in cancer patients. J. Clin. Oncol. 19(4), 1207–1225 (2001). https://doi.org/10.1200/jco.2001.19.4.1207
P.P. Provenzano, C. Cuevas, A.E. Chang, V.K. Goel, D.D. Von Hoff et al., Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3), 418–429 (2012). https://doi.org/10.1016/j.ccr.2012.01.007
Y. Tsuzuki, D. Fukumura, B. Oosthuyse, C. Koike, P. Carmeliet et al., Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1 alpha -> hypoxia response element -> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 60(22), 6248–6252 (2000). (PMID: 11103778)
G.T. Motz, S.P. Santoro, L.-P. Wang, T. Garrabrant, R.R. Lastra et al., Tumor endothelium Fasl establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20(6), 607–615 (2014). https://doi.org/10.1038/nm.3541
M.B. Schaaf, A.D. Garg, P. Agostinis, Defining the Role of the Tumor Vasculature in Antitumor Immunity and Immunotherapy. Cell Death Dis. 9(2), 115 (2018). https://doi.org/10.1038/s41419-017-0061-0
C. Bouzin, A. Brouet, J. De Vriese, J. DeWever, O. Feron, Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol. 178(3), 1505–1511 (2007). https://doi.org/10.4049/jimmunol.178.3.1505
F. Mpekris, C. Voutouri, J.W. Baish, D.G. Duda, L.L. Munn, Stylianopoulos T, Jain RK. Combining microenvironment normalization strategies to improve cancer immunotherapy. Proc. Natl. Acad. Sci. USA 117(7), 3728–3737 (2020). https://doi.org/10.1073/pnas.1919764117
J.D. Martin, G. Seano, R.K. Jain, in Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. ed. by NELSON M T, WALSH K 2019), pp. 505–534
H.F. Dvorak, Tumor stroma, tumor blood vessels, and antiangiogenesis therapy. Cancer J. 21(4), 237–243 (2015). https://doi.org/10.1097/ppo.0000000000000124
L. Caja, F. Dituri, S. Mancarella, D. Caballero-Diaz, A. Moustakas et al., TGF-beta and the tissue microenvironment: Relevance in fibrosis and cancer. Int. J. Mol. Sci. 19(5), 1294 (2018). https://doi.org/10.3390/ijms19051294
A. Costa, Y. Kieffer, A. Scholer-Dahirel, F. Pelon, B. Bourachot et al., Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33(3), 463–479 (2018). https://doi.org/10.1016/j.ccell.2018.01.011
A. Laitala, J.T. Erler, Hypoxic signalling in tumour stroma. Front. Oncol. 8, 189 (2018). https://doi.org/10.3389/fonc.2018.00189
S.J. Scales, F.J. de Sauvage, Mechanisms of hedgehog pathway activation in cancer and implications for therapy. Trends. Pharmacol. Sci. 30(6), 303–312 (2009). https://doi.org/10.1016/j.tips.2009.03.007
I.X. Chen, V.P. Chauhan, J. Posada, M.R. Ng, M.W. Wu et al., Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc. Natl. Acad. Sci. USA 116(10), 4558–4566 (2019). https://doi.org/10.1073/pnas.1815515116
P. Papageorgis, C. Polydorou, F. Mpekris, C. Voutouri, E. Agathokleous et al., Tranilast-induced stress alleviation in solid tumors improves the efficacy of chemo- and nanotherapeutics in a size-independent manner. Sci. Rep. 7, 46140 (2017). https://doi.org/10.1038/srep46140
T. Ji, S. Li, Y. Zhang, J. Lang, Y. Ding et al., An MMP-2 responsive liposome integrating antifibrosis and chemotherapeutic drugs for enhanced drug perfusion and efficacy in pancreatic cancer. ACS Appl. Mater. Interfaces 8(5), 3438–3445 (2016). https://doi.org/10.1021/acsami.5b11619
A.D. Theocharis, S.S. Skandalis, C. Gialeli, N.K. Karamanos, Extracellular matrix structure. Adv. Drug Delivery Rev. 97, 4–27 (2016). https://doi.org/10.1016/j.addr.2015.11.001
J. Prakash, M. Pinzani, Fibroblasts and extracellular matrix: Targeting and therapeutic tools in fibrosis and cancer preface. Adv. Drug Delivery Rev. 121, 1–2 (2017). https://doi.org/10.1016/j.addr.2017.11.008
G.C. Weber, B.A. Buhren, H. Schrumpf, J. Wohlrab, P.A. Gerber, in Clinical Applications of Hyaluronidase. ed. by LABROU N 2019), pp. 255–277
S.H. Lv, S.F. Rong, B.G. Cai, S.M. Guan, Q.Q. Li, Property and current clinical applications of mammal hyaluronidase. Eur. Rev. Med. Pharmacol. Sci. 19(20), 3968–3976 (2015)
K.M. Wong, K.J. Horton, A.L. Coveler, S.R. Hingorani, W.P. Harris, Targeting the Tumor Stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEG-PH20). Curr. Oncol. Rep. 19(7), 47 (2017). https://doi.org/10.1007/s11912-017-0608-3
X. Guan, L. Lin, J. Chen, Y. Hu, P. Sun et al., Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy. J. Controlled Release 293, 104–112 (2019). https://doi.org/10.1016/j.jconrel.2018.11.022
X. Guan, J. Chen, Y. Hu, L. Lin, P. Sun et al., Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase. Biomaterials 171, 198–206 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.039
H. Zhou, Z. Fan, J. Deng, P.K. Lemons, D.C. Arhontoulis et al., Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett. 16(5), 3268–3277 (2016). https://doi.org/10.1021/acs.nanolett.6b00820
Y. Hong, G.-H. Nam, E. Koh, S. Jeon, G.B. Kim et al., Exosome as a vehicle for delivery of membrane protein therapeutics, PH20, for enhanced tumor penetration and antitumor efficacy. Adv. Funct. Mater. 28(5), 1703074 (2018). https://doi.org/10.1002/adfm.201703074
A. Zinger, L. Koren, O. Adir, M. Poley, M. Alyan et al., Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano 13(10), 11008–11021 (2019). https://doi.org/10.1021/acsnano.9b02395
C.H. Heldin, K. Rubin, K. Pietras, A. Ostman, High interstitial fluid pressure: an obstacle in cancer therapy. Nat. Rev. Cancer 4(10), 806–813 (2004). https://doi.org/10.1038/nrc1456
A.I. Minchinton, I.F. Tannock, Drug penetration in solid tumours. Nat. Rev. Cancer 6(8), 583–592 (2006). https://doi.org/10.1038/nrc1893
M.F. Flessner, J. Choi, K. Credit, R. Deverkadra, K. Henderson, Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clinl. Cancer Res. 11(8), 3117–3125 (2005). https://doi.org/10.1158/1078-0432.Ccr-04-2332
E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015). https://doi.org/10.1038/nbt.3330
O. Tredan, C.M. Galmarini, K. Patel, I.F. Tannock, Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 99(19), 1441–1454 (2007). https://doi.org/10.1093/jnci/djm135
B. Pelaz, C. Alexiou, R.A. Alvarez-Puebla, F. Alves, A.M. Andrews et al., Diverse applications of nanomedicine. ACS Nano 11(3), 2313–2381 (2017). https://doi.org/10.1021/acsnano.6b06040
M. Overchuk, G. Zheng, Overcoming obstacles in the tumor microenvironment: recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 156, 217–237 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.024
B. Chen, W. Dai, B. He, H. Zhang, X. Wang et al., Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7(3), 538–558 (2017). https://doi.org/10.7150/thno.16684
H. He, L. Sun, J. Ye, E. Liu, S. Chen et al., Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J. Controlled Release 240, 67–76 (2016). https://doi.org/10.1016/j.jconrel.2015.10.040
H.-J. Li, J.-Z. Du, J. Liu, X.-J. Du, S. Shen et al., Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous sizesSwitching and improved tumor penetration. ACS Nano 10(7), 6753–6761 (2016). https://doi.org/10.1021/acsnano.6b02326
G. Yang, S.Z.F. Phua, W.Q. Lim, R. Zhang, L. Feng et al., A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater. 31(25), e1901513 (2019). https://doi.org/10.1002/adma.201901513
H. Jin, T. Zhu, X. Huang, M. Sun, H. Li et al., ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: light-triggered size-reducing and enhanced tumor penetration. Biomaterials 211, 68–80 (2019). https://doi.org/10.1016/j.biomaterials.2019.04.029
T. Liu, L. Tong, N. Lv, X. Ge, Q. Fu et al., Two-stage size decrease and enhanced photoacoustic performance of stimuli-responsive polymer-gold nanorod assembly for increased tumor penetration. Adv. Funct. Mater. 29(16), 1806429 (2019). https://doi.org/10.1002/adfm.201806429
F. Zhou, B. Feng, T. Wang, D. Wang, Q. Meng et al., Programmed multiresponsive vesicles for enhanced tumor penetration and combination therapy of triple-negative breast cancer. Adv. Funct. Mater. 27(20), 1606530 (2017). https://doi.org/10.1002/adfm.201606530
J. Yoo, N.S. Rejinold, D. Lee, S. Jon, Y.-C. Kim, Protease-activatable cell-penetrating peptide possessing ROS-triggered phase transition for enhanced cancer therapy. J. Controlled Release 264, 89–101 (2017). https://doi.org/10.1016/j.jconrel.2017.08.026
Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang et al., Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14(8), 799–809 (2019). https://doi.org/10.1038/s41565-019-0485-z
M. Zhou, H. Huang, D. Wang, H. Lu, J. Chen et al., Light-triggered PEGylation/dePEGylation of the nanocarriers for enhanced tumor penetration. Nano Lett. 19(6), 3671–3675 (2019). https://doi.org/10.1021/acs.nanolett.9b00737
X. Lin, S. Liu, X. Zhang, R. Zhu, S. Chen et al., An ultrasound activated vesicle of Janus Au-MNO nanoparticles for promoted tumor penetration and sono-chemodynamic therapy of orthotopic liver cancer. Angew. Chem. Int. Ed. 59(4), 1682–1688 (2020). https://doi.org/10.1002/anie.201912768
J. Ji, F. Ma, H. Zhang, F. Liu, J. He et al., Light-activatable assembled nanoparticles to improve tumor penetration and eradicate metastasis in triple negative breast cancer. Adv. Funct. Mater. 28(33), 1801738 (2018). https://doi.org/10.1002/adfm.201801738
Z. Yang, Q. Chen, J. Chen, Z. Dong, R. Zhang et al., Tumor-pH-responsive dissociable albumin-tamoxifen nanocomplexes enabling efficient tumor penetration and hypoxia relief for enhanced cancer photodynamic therapy. Small 14(49), e1803262 (2018). https://doi.org/10.1002/smll.201803262
S.-Y. Sung, Y.-L. Su, W. Cheng, P.-F. Hu, C.-S. Chiang fet al., Graphene quantum dots-mediated theranostic penetrative delivery of drug and photolytics in deep tumors bytTargeted biomimetic nanosponges. Nano Lett. 19(1), 69–81 (2019). https://doi.org/10.1021/acs.nanolett.8b03249
J.F. Liu, Z. Lan, C. Ferrari, J.M. Stein, E. Higbee-Dempsey et al., Use of oppositely polarized external magnets to improve the accumulation and penetration of magnetic nanocarriers into solid tumors. ACS Nano 14(1), 142–152 (2020). https://doi.org/10.1021/acsnano.9b05660
S.H. Lee, O.K. Park, J. Kim, K. Shin, C.G. Pack et al., Deep tumor penetration of drug-loaded nanoparticles by click reaction-assisted immune cell targeting strategy. J. Am. Chem. Soc. 141(35), 13829–13840 (2019). https://doi.org/10.1021/jacs.9b04621
D.M. Gilkes, G.L. Semenza, D. Wirtz, Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat. Rev. Cancer. 14(6), 430–439 (2014). https://doi.org/10.1038/nrc3726
T.P. Szatrowski, C.F. Nathan, Production of large amounts of hydrogen-peroxide by human tumor-cells. Cancer Res. 51(3), 794–798 (1991)
J. Kim, H.R. Cho, H. Jeon, D. Kim, C. Song et al., Continuous o-2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc. 139(32), 10992–10995 (2017). https://doi.org/10.1021/jacs.7b05559
B. Halliwell, M.V. Clement, L.H. Long, Hydrogen peroxide in the human body. Febs. Lett. 486(1), 10–13 (2000). https://doi.org/10.1016/s0014-5793(00)02197-9
G. Yang, L. Xu, J. Xu, R. Zhang, G. Song et al., Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 18(4), 2475–2484 (2018). https://doi.org/10.1021/acs.nanolett.8b00040
M. Song, T. Liu, C. Shi, X. Zhang, X. Chen, Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10(1), 633–647 (2016). https://doi.org/10.1021/acsnano.5b06779
C. Liu, D. Wang, S. Zhang, Y. Cheng, F. Yang et al., Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano 13(4), 4267–4277 (2019). https://doi.org/10.1021/acsnano.8b09387
Q. Jia, J. Ge, W. Liu, X. Zheng, S. Chen et al., A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 30(13), e1706090 (2018). https://doi.org/10.1002/adma.201706090
Y. Li, K.-H. Yun, H. Lee, S.-H. Goh, Y.-G. Suh et al., Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials 197, 12–19 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.004
Y. Zhang, F. Wang, C. Liu, Z. Wang, L. Kang et al., Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1), 651–661 (2018). https://doi.org/10.1021/acsnano.7b07746
Z.L. Yang, W. Tian, Q. Wang, Y. Zhao, Y.L. Zhang et al., Oxygen-evolving mesoporous organosilica coated prussian blue nanoplatform for highly efficient photodynamic therapy of tumors. Adv. Sci. 5(5), 1700847 (2018). https://doi.org/10.1002/advs.201700847
W. Jiang, Z. Zhang, Q. Wang, J. Dou, Y. Zhao et al., Tumor reoxygenation and blood perfusion enhanced photodynamic therapy using ultrathin graphdiyne oxide nanosheets. Nano Lett. 19(6), 4060–4067 (2019). https://doi.org/10.1021/acs.nanolett.9b01458
W. Wang, Y. Cheng, P. Yu, H. Wang, Y. Zhang et al., Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nat. Commun. 10(1), 1580 (2019). https://doi.org/10.1038/s41467-019-09389-2
L. Zhang, D. Wang, K. Yang, D. Sheng, B. Tan et al., Mitochondria-targeted artificial “Nano-RBCs” for amplified synergistic cancer phototherapy by a single NIR irradiation. Adv. Sci. 5(8), 1800049 (2018). https://doi.org/10.1002/advs.201800049
W. Jiang, Q. Li, L. Xiao, J. Dou, Y. Liu et al., Hierarchical multiplexing nanodroplets foriImaging-guided cancer radiotherapy via DNA damage enhancement and concomitant DNA repair prevention. ACS Nano 12(6), 5684–5698 (2018). https://doi.org/10.1021/acsnano.8b01508
W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song et al., Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy. ACS Nano 12(3), 2610–2622 (2018). https://doi.org/10.1021/acsnano.7b08628
L. Jiang, H. Bai, L. Liu, F. Lv, X. Ren et al., Luminescent, Oxygen-Supplying, Hemoglobin-linked conjugated polymer nanoparticles for photodynamic therapy. Angew. Chem. Int. Ed. 58(31), 10660–10665 (2019). https://doi.org/10.1002/anie.201905884
H. Cao, L. Wang, Y. Yang, J. Li, Y. Qi et al., An assembled nanocomplex for improving both therapeutic efficiency and treatment depth in photodynamic therapy. Angew. Chem. Int. Ed. 57(26), 7759–7763 (2018). https://doi.org/10.1002/anie.201802497
W.-L. Liu, T. Liu, M.-Z. Zou, W.-Y. Yu, C.-X. Li et al., Aggressive man-made eed blood cells for hypoxia-resistant photodynamic therapy. Adv. Mater. 30(35), e1802006 (2018). https://doi.org/10.1002/adma.201802006
H. Tian, Z. Luo, L. Liu, M. Zheng, Z. Chen et al., Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv. Funct. Mater. 27(38), 1703197 (2017). https://doi.org/10.1002/adfm.201703197
X. Song, J. Xu, C. Liang, Y. Chao, Q. Jin et al., Self-supplied tumor oxygenation through separated liposomal delivery of H2O2 and catalase for enhanced radio-immunotherapy of cancer. Nano Lett. 18(10), 6360–6368 (2018). https://doi.org/10.1021/acs.nanolett.8b02720
Z. Chen, M. Niu, G. Chen, Q. Wu, L. Tan et al., Oxygen production of modified Core-Shell CuO@ZrO2 manocomposites by microwave radiation to Alleviate Cancer Hypoxia for enhanced chemo-microwave thermal therapy. ACS Nano 12(12), 12721–12732 (2018). https://doi.org/10.1021/acsnano.8b07749
Z. Zhang, N. Niu, X. Gao, F. Han, Z. Chen et al., A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy. Colloids Surf. B: Biointerfaces 173, 335–345 (2019). https://doi.org/10.1016/j.colsurfb.2018.10.008
C.C. Huang, W.T. Chia, M.F. Chung, K.J. Lin, C.W. Hsiao et al., An implantable depot That can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. J. Am. Chem. Soc. 138(16), 5222–5225 (2016). https://doi.org/10.1021/jacs.6b01784
Y. Sheng, H. Nesbitt, B. Callan, M.A. Taylor, M. Love et al., Oxygen generating nanoparticles forpImproved photodynamic therapy of hypoxic tumours. J. Controlled Release 264, 333–340 (2017). https://doi.org/10.1016/j.jconrel.2017.09.004
D.I. Gabrilovich, S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9(3), 162–174 (2009). https://doi.org/10.1038/nri2506
A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, P. Allavena, Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14(7), 399–416 (2017). https://doi.org/10.1038/nrclinonc.2016.217
J.A. Bluestone, Q. Tang, T-reg cells-the next frontier of cell therapy will regulatory T cells be a frontline therapy for autoimmunity and other diseases? Science 362(6411), 154–155 (2018). https://doi.org/10.1126/science.aau2688
D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19(11), 1423–1437 (2013). https://doi.org/10.1038/nm.3394
V.L. Silva, W.T. Al-Jamal, Exploiting the cancer niche: tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy. J. Controlled Release 253, 82–96 (2017). https://doi.org/10.1016/j.jconrel.2017.03.013
L. Schito, G.L. Semenza, Hypoxia-inducible factors: Master regulators of cancer progression. Trends. Cancer 2(12), 758–770 (2016). https://doi.org/10.1016/j.trecan.2016.10.016
J. Galon, D. Bruni, Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18(3), 197–218 (2019). https://doi.org/10.1038/s41573-018-0007-y
V. Umansky, C. Blattner, C. Gebhardt, J. Utikal, The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines 4(4), 36 (2016). https://doi.org/10.3390/vaccines4040036
S. Nagaraj, J.-I. Youn, H. Weber, C. Iclozan, L. Lu et al., Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin. Cancer Res. 16(6), 1812–1823 (2010). https://doi.org/10.1158/1078-0432.Ccr-09-3272
P. Raber, A.C. Ochoa, P.C. Rodriguez, Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: Mechanisms of T cell suppression and therapeutic perspectives. Immunol. Invest. 41(6–7), 614–634 (2012). https://doi.org/10.3109/08820139.2012.680634
C. Bogdan, Nitric oxide and the immune response. Nat. Immunol. 2(10), 907–916 (2001). https://doi.org/10.1038/ni1001-907
V. Kumar, S. Patel, E. Tcyganov, D.I. Gabrilovich, The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends. Immunol. 37(3), 208–220 (2016). https://doi.org/10.1016/j.it.2016.01.004
A.M. Bruger, A. Dorhoi, G. Esendagli, K. Barczyk-Kahlert, P. van der Bruggen et al., How to measure the immunosuppressive activity of MDSC: Assays, problems and potential solutions. Cancer Immunol. Immunother. 68(4), 631–644 (2019). https://doi.org/10.1007/s00262-018-2170-8
M. Pickup, S. Novitskiy, H.L. Moses, The roles of TGF beta in the tumour microenvironment. Nat. Rev. Cancer 13(11), 788–799 (2013). https://doi.org/10.1038/nrc3603
M.Z. Noman, G. Desantis, B. Janji, M. Hasmim, S. Karray et al., PD-L1 is a novel direct target of HIF-1 alpha., and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211(5), 781–790 (2014). https://doi.org/10.1084/jem.20131916
J.E. Talmadge, D.I. Gabrilovich, History of myeloid-derived suppressorcCells. Nat. Rev. Cancer 13(10), 739–779 (2013). https://doi.org/10.1038/nrc3581
E. Brogi, T.G. Wu, A. Namiki, J.M. Isner, Indirect angiogenic cytokines up-regulate VEGF and BFGF gene-expression in vascular smooth-muscle cells, whereas hypoxia up-regulates VEGF expression only. Circulation 90(2), 649–652 (1994). https://doi.org/10.1161/01.Cir.90.2.649
A. Mantovani, T. Schioppa, C. Porta, P. Allavena, A. Sica, Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 25(3), 315–322 (2006). https://doi.org/10.1007/s10555-006-9001-7
V. Bronte, P.J. Murray, Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer. Nat. Med. 21(2), 117–119 (2015). https://doi.org/10.1038/nm.3794
D.J. Ceradini, A.R. Kulkarni, M.J. Callaghan, O.M. Tepper, N. Bastidas et al., Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10(8), 858–864 (2004). https://doi.org/10.1038/nm1075
M.C. Schmid, C.J. Avraamides, H.C. Dippold, I. Franco, P. Foubert et al., Receptor tyrosine kinases and TLR/IL1 rs unexpectedly activate myeloid cell PI3K gamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19(6), 715–727 (2011). https://doi.org/10.1016/j.ccr.2011.04.016
L.M. Coussens, L. Zitvogel, A.K. Palucka, Neutralizing tumor-promoting chronic inflammation: A magic bullet? Science 339(6117), 286–291 (2013). https://doi.org/10.1126/science.1232227
J.A. Trujillo, R.F. Sweis, R. Bao, J.J. Luke, T cell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol. Res. 6(9), 990–1000 (2018). https://doi.org/10.1158/2326-6066.Cir-18-0277
R. Noy, J.W. Pollard, Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1), 49–61 (2014). https://doi.org/10.1016/j.immuni.2014.06.010
V. Prima, L.N. Kaliberova, S. Kaliberov, D.T. Curiel, S. Kusmartsev, COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc. Natl. Acad. Sci. USA 114(5), 1117–1122 (2017). https://doi.org/10.1073/pnas.1612920114
M. Liguori, C. Buracchi, F. Pasqualini, F. Bergomas, S. Pesce et al., Functional trail receptors in monocytes and tumor-associated macrophages: a possible targeting pathway in the tumor microenvironment. Oncotarget 7(27), 41662–41676 (2016). https://doi.org/10.18632/oncotarget.9340
S.A. Oh, M.O. Li, TGF-beta: Guardian of T cell function. J. Immunol. 191(8), 3973–3979 (2013). https://doi.org/10.4049/jimmunol.1301843
T.H.S. Ng, G.J. Britton, E.V. Hill, J. Verhagen, B.R. Burton et al., Regulation of adaptive immunity; the role of interleukin-10. Front. Immunol. 4, 129 (2013). https://doi.org/10.3389/fimmu.2013.00129
D.O. Adeegbe, H. Nishikawa, Natural and induced T regulatory cells in cancer. Front. Immunol. 4, 190 (2013). https://doi.org/10.3389/fimmu.2013.00190
J. Liu, H. Wang, Tumor-associated macrophages recruit CCR6+regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS One 6(4), e19495 (2011). https://doi.org/10.1371/journal.pone.0019495
R. Hildenbrand, I. Dilger, A. Horlin, H.J. Stutte, Urokinase and macrophages in tumor angiogenesis. Br. J. Cancer 72(4), 818–823 (1995). https://doi.org/10.1038/bjc.1995.419
V. Klimetzek, C. Sorg, Lymphokine-induced secretion of plasminogen activator by murine macrophages. Eur. J. Immunol. 7(3), 185–187 (1977). https://doi.org/10.1002/eji.1830070314
O.W.H. Yeung, C.-M. Lo, C.-C. Ling, X. Qi, W. Geng et al., Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J. Hepatol. 62(3), 607–616 (2015). https://doi.org/10.1016/j.jhep.2014.10.029
A.G. Jarnicki, J. Lysaght, S. Todryk, K.H.G. Mills, Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: Influence of tumor environment on the induction of CD4(+) and CD8(+) regulatory T cells. J. Immunol. 177(2), 896–904 (2006). https://doi.org/10.4049/jimmunol.177.2.896
F. Veglia, M. Perego, D. Gabrilovich, Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19(2), 108–119 (2018). https://doi.org/10.1038/s41590-017-0022-x
C. Groth, X. Hu, R. Weber, V. Fleming, P. Altevogt et al., Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 120(1), 16–25 (2019). https://doi.org/10.1038/s41416-018-0333-1
A. Sevko, T. Michels, M. Vrohlings, L. Umansky, P. Beckhove et al., Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J. Immunol. 190(5), 2464–2471 (2013). https://doi.org/10.4049/jimmunol.1202781
B. Schilling, A. Sucker, K. Griewank, F. Zhao, B. Weide et al., Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int. J. Cancer 133(7), 1653–1663 (2013). https://doi.org/10.1002/ijc.28168
E. Suzuki, V. Kapoor, A.S. Jassar, L.R. Kaiser, S.M. Albelda, Gemcitabine selectively eliminates splenic Gr-1(+)/CD11b(+) myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11(18), 6713–6721 (2005). https://doi.org/10.1158/1078-0432.Ccr-05-0883
J. Vincent, G. Mignot, F. Chalmin, S. Ladoire, M. Bruchard et al., 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70(8), 3052–3061 (2010). https://doi.org/10.1158/0008-5472.Can-09-3690
Y. Kodera, Y. Katanasaka, Y. Kitamura, H. Tsuda, K. Nishio et al., Sunitinib inhibits lymphatic endothelial cell functions and lymph node metastasis in a breast cancer model through inhibition of vascular endothelial growth factorrReceptor 3. Breast Cancer Res. 13(3), R66 (2011). https://doi.org/10.1186/bcr2903
R. Weber, V. Fleming, X. Hu, V. Nagibin, C. Groth et al., Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front. Immunol 9, 1310 (2018). https://doi.org/10.3389/fimmu.2018.01310
S.C. Robinson, K.A. Scott, J.L. Wilson, R.G. Thompson, A.E.I Proudfoot, Balkwill FR. A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res. 63(23), 8360–8365 (2003)
Y. Zhu, B.L. Knolhoff, M.A. Meyer, T.M. Nywening, B.L. West et al., CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74(18), 5057–5069 (2014). https://doi.org/10.1158/0008-5472.Can-13-3723
H. Katoh, D. Wang, T. Daikoku, H. Sun, S.K. Dey et al., CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 24(5), 631–644 (2013). https://doi.org/10.1016/j.ccr.2013.10.009
L.A. Elliott, G.A. Doherty, K. Sheahan, E.J. Ryan, Human tumor-infiltrating myeloid cells: Phenotypic and functional diversity. Front. Immunol. 8, 86 (2017). https://doi.org/10.3389/fimmu.2017.00086
M.J. Reilley, P. McCoon, C. Cook, P. Lyne, R. Kurzrock et al., STAT3 antisense oligonucleotide azd9150 in a subset of patients with heavily pretreated lymphoma: Results of a phase 1b trial. J. Immunother. Cancer 6(1), 119 (2018). https://doi.org/10.1186/s40425-018-0436-5
B. Molon, S. Ugel, F. Del Pozzo, C. Soldani, S. Zilio et al., Chemoki