Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication
Corresponding Author: Hao Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 70
Abstract
The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/CsPbBr3/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × 1012 Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs.
Highlights:
1 Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.
2 Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × 1012 Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.
3 Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4(1), 2885 (2013). https://doi.org/10.1038/ncomms3885
- C. Wang, C. Xiao, Y. Yu, D. Zhao, R.A. Awni et al., Understanding and eliminating hysteresis for highly efficient planar perovskite solar cells. Adv. Energy Mater. 7(17), 1700411–1700414 (2017). https://doi.org/10.1002/aenm.201700414
- G. Yang, C. Chen, F. Yao, Z. Chen, Q. Zhang et al., Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells. Adv. Mater. 30(14), 1706021–1706023 (2018). https://doi.org/10.1002/adma.201706023
- K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
- M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger et al., Solar cell efficiency tables (version 51). Prog. Photovolt. 26(1), 3–12 (2018). https://doi.org/10.1002/pip.3040
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
- N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee et al., A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3(8), 682–689 (2018). https://doi.org/10.1038/s41560-018-0200-6
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
- S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter et al., Detection of x-ray photons by solution-processed lead halide perovskites. Nat. Photon. 9(7), 444–449 (2015). https://doi.org/10.1038/nphoton.2015.82
- M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
- J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
- A. Ummadisingu, L. Steier, J.-Y. Seo, T. Matsui, A. Abate et al., The effect of illumination on the formation of metal halide perovskite films. Nature 545(7653), 208–212 (2017). https://doi.org/10.1038/nature22072
- C.-K. Lin, Q. Zhao, Y. Zhang, S. Cestellos-Blanco, Q. Kong et al., Two-step patterning of scalable all-inorganic halide perovskite arrays. ACS Nano 14(3), 3500–3508 (2020). https://doi.org/10.1021/acsnano.9b09685
- Z. Li, F. Zhou, Q. Wang, L. Ding, Z. Jin, Approaches for thermodynamically stabilized CsPbI3 solar cells. Nano Energy 71, 104634 (2020). https://doi.org/10.1016/j.nanoen.2020.104634
- Z. Guo, S. Teo, Z. Xu, C. Zhang, Y. Kamata et al., Achievable high VOC of carbon based all-inorganic CsPbIBr2 perovskite solar cells through interface engineering. J. Mater. Chem. A 7(3), 1227–1232 (2019). https://doi.org/10.1039/C8TA09838G
- B. Li, R. Long, Y. Xia, Q. Mi, All-inorganic perovskite CsSnBr3 as a thermally stable, free-carrier semiconductor. Angew. Chem. Int. Ed. 57(40), 13154–13158 (2018). https://doi.org/10.1002/anie.201807674
- V. Pecunia, Y. Yuan, J. Zhao, K. Xia, F. Li, Perovskite-inspired lead-free Ag2BiI5 for self-powered nir-blind visible light photodetection. Nano-Micro Lett. 12, 27 (2020). https://doi.org/10.1007/s40820-020-0371-0
- F. Yao, J. Peng, R. Li, W. Li, G. Fang, Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals. Nat. Commun. 11(1), 1194 (2020). https://doi.org/10.1038/s41467-020-15037-x
- T. Cai, W. Shi, S. Hwang, K. Kobbekaduwa, Y. Nagaoka et al., Lead-free Cs4CuSb2Cl2 layered double perovskite nanocrystals. J. Am. Chem. Soc. 142(27), 11927–11936 (2020). https://doi.org/10.1021/jacs.0c04919
- H. Zhou, Z. Song, C.R. Grice, C. Chen, J. Zhang, Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy 53, 880–886 (2018). https://doi.org/10.1016/j.nanoen.2018.09.040
- C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan et al., High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 30(38), 1803422 (2018). https://doi.org/10.1002/adma.201803422
- R. Liu, J. Zhang, H. Zhou, Z. Song, Z. Song et al., Solution-processed high-quality cesium lead bromine perovskite photodetectors with high detectivity for application in visible light communication. Adv. Opt. Mater. 8(8), 1901735 (2020). https://doi.org/10.1002/adom.201901735
- P. Gui, H. Zhou, F. Yao, Z. Song, B. Li et al., Space-confined growth of individual wide bandgap single crystal CsPbCl3 microplatelet for near-ultraviolet photodetection. Small 15(39), 1902618 (2019). https://doi.org/10.1002/smll.201902618
- Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365(6453), 591–595 (2019). https://doi.org/10.1126/science.aav8680
- H. Zhou, Z. Song, C.R. Grice, C. Chen, Y. Yan, Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite micro-crystal photodetectors. J. Phys. Chem. Lett. 9(16), 8b01960 (2018). https://doi.org/10.1021/acs.jpclett.8b0196
- Y. Liu, Y. Zhang, K. Zhao, Z. Yang, J. Feng et al., A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 30(29), 1707314 (2018). https://doi.org/10.1002/adma.201707314
- X. Zhang, S. Yang, H. Zhou, J. Liang, H. Liu et al., Perovskite–erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv. Mater. 29(21), 1604431 (2017). https://doi.org/10.1002/adma.201604431
- W.-G. Li, X.-D. Wang, J.-F. Liao, Y. Jiang, D.-B. Kuang, Enhanced on–off ratio photodetectors based on lead-free Cs3Bi2I9 single crystal thin films. Adv. Funct. Mater. 30(12), 1909701 (2020). https://doi.org/10.1002/adfm.201909701
- D.H. Chun, Y.J. Choi, Y. In, J.K. Nam, Y.J. Choi et al., Halide perovskite nanopillar photodetector. ACS Nano 12(8), 8564–8571 (2018). https://doi.org/10.1021/acsnano.8b04170
- Q. Yao, Q. Xue, Z. Li, K. Zhang, Y. Cao, Graded 2D/3D perovskite heterostructure for efficient and operationally stable MA-free perovskite solar cells. Adv. Mater. (2020). https://doi.org/10.1002/adma.202000571
- R. Liu, H. Zhou, Z. Song, X. Yang, D. Wu et al., Low-reflection, (110)-orientation-preferred CsPbBr3 nanonet films for application in high-performance perovskite photodetectors. Nanoscale 11(19), 9302–9309 (2019). https://doi.org/10.1039/C9NR03213D
- M. Cao, J. Tian, Z. Cai, L. Peng, L. Yang et al., Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector. Appl. Phys. Lett. 109(23), 233303 (2016). https://doi.org/10.1063/1.4971772
- X. Li, G. Wu, M. Wang, B. Yu, J. Zhou et al., Water-assisted crystal growth in quasi-2D perovskites with enhanced charge transport and photovoltaic performance. Adv. Energy Mater. 10(37), 2001832 (2020). https://doi.org/10.1002/aenm.202001832
- T. Wang, G. Lian, L. Huang, F. Zhu, D. Cui et al., A crystal-growth boundary-fusion strategy to prepare high-quality MAPbI3 films for excellent vis-NIR photodetectors. Nano Energy 64, 103914 (2019). https://doi.org/10.1016/j.nanoen.2019.103914
- K. Shen, X. Li, H. Xu, M. Wang, X. Dai et al., Enhanced performance of ZnO nanoparticle decorated all-inorganic CsPbBr3 quantum dot photodetectors. J. Mater. Chem. A 7(11), 6134–6142 (2019). https://doi.org/10.1039/C9TA00230H
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
- J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6(6), 1739–1743 (2013). https://doi.org/10.1039/C3EE40810H
- J. Henry Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013). https://doi.org/10.1021/jz4020162
- C.H. Chiang, Z.L. Tseng, C.G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J. Mater. Chem. A 2(38), 15897–15903 (2014). https://doi.org/10.1039/C4TA03674C
- Z. Liang, Q. Zhang, L. Jiang, G. Cao, Zno cathode buffer layers for inverted polymer solar cells. Energy Environ. Sci. 8(12), 3442–3476 (2015). https://doi.org/10.1039/C5EE02510A
- L. Li, H. Chen, Z. Fang, X. Meng, C. Zuo, An electrically modulated single-color/dual-color imaging photodetector. Adv. Mater. 32(24), 1907257 (2020). https://doi.org/10.1002/adma.201907257
- Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367(6482), 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
- W. Tian, L. Min, F. Cao, L. Li, Nested inverse opal perovskite toward superior flexible and self-powered photodetection performance. Adv. Mater. 32(16), 1906974 (2020). https://doi.org/10.1002/adma.201906974
- K. Deng, Z. Liu, M. Wang, L. Li, Nanoimprinted grating-embedded perovskite solar cells with improved light management. Adv. Funct. Mater. 29(19), 1900830 (2019). https://doi.org/10.1002/adfm.201900830
- J. Zeng, X. Li, Y. Wu, D. Yang, Z. Sun et al., Space-confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit. Adv. Funct. Mater. 28(43), 1804394 (2018). https://doi.org/10.1002/adfm.201804394
- H. Ren, S. Yu, L. Chao, Y. Xia, Y. Sun et al., Efficient and stable ruddlesden–popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photon. 14(3), 154–163 (2020). https://doi.org/10.1038/s41566-019-0572-6
- X. Pan, H. Zhou, R. Liu, D. Wu, Z. Song et al., Achieving a high-performance, self-powered, broadband perovskite photodetector employing MAPbI3 microcrystal films. J. Mater. Chem. C 8(6), 2028–2035 (2020). https://doi.org/10.1039/C9TC05668H
- D. Wu, H. Zhou, Z. Song, M. Zheng, R. Liu et al., Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano 14(3), 2777–2787 (2020). https://doi.org/10.1021/acsnano.9b09315
- X. Yang, Y. Zhu, H. Zhou, Z. Song, R. Liu et al., MgO/ZnO microsphere bilayer structure towards enhancing the stability of the self-powered MAPbI3 perovskite photodetectors with high detectivity. Appl. Surf. Sci. 504, 144468 (2020). https://doi.org/10.1016/j.apsusc.2019.144468
- Y. Zhang, S. Li, W. Yang, M.K. Joshi, X. Fang, Millimeter-sized single-crystal CsPbrB3/CuI heterojunction for high-performance self-powered photodetector. J. Phys. Chem. Lett. 10(10), 2400–2407 (2019). https://doi.org/10.1021/acs.jpclett.9b0096
- M. Wang, W. Tian, F. Cao, M. Wang, L. Li, Flexible and self-powered lateral photodetector based on inorganic perovskite CsPbI3–CsPbBr3 heterojunction nanowire array. Adv. Funct. Mater. 30(16), 1909771 (2020). https://doi.org/10.1002/adfm.201909771
- L. Qian, Y. Sun, M. Sun, Z. Fang, L. Li, 2D perovskite microsheets for high-performance photodetectors. J. Mater. Chem. C 7(18), 5353–5358 (2019). https://doi.org/10.1039/C9TC00138G
- C. Li, Y. Ma, Y. Xiao, L. Shen, L. Ding, Advances in perovskite photodetectors. InfoMat 2(6), 1247–1256 (2020). https://doi.org/10.1002/inf2.12141
References
T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4(1), 2885 (2013). https://doi.org/10.1038/ncomms3885
C. Wang, C. Xiao, Y. Yu, D. Zhao, R.A. Awni et al., Understanding and eliminating hysteresis for highly efficient planar perovskite solar cells. Adv. Energy Mater. 7(17), 1700411–1700414 (2017). https://doi.org/10.1002/aenm.201700414
G. Yang, C. Chen, F. Yao, Z. Chen, Q. Zhang et al., Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells. Adv. Mater. 30(14), 1706021–1706023 (2018). https://doi.org/10.1002/adma.201706023
K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger et al., Solar cell efficiency tables (version 51). Prog. Photovolt. 26(1), 3–12 (2018). https://doi.org/10.1002/pip.3040
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee et al., A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3(8), 682–689 (2018). https://doi.org/10.1038/s41560-018-0200-6
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter et al., Detection of x-ray photons by solution-processed lead halide perovskites. Nat. Photon. 9(7), 444–449 (2015). https://doi.org/10.1038/nphoton.2015.82
M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
A. Ummadisingu, L. Steier, J.-Y. Seo, T. Matsui, A. Abate et al., The effect of illumination on the formation of metal halide perovskite films. Nature 545(7653), 208–212 (2017). https://doi.org/10.1038/nature22072
C.-K. Lin, Q. Zhao, Y. Zhang, S. Cestellos-Blanco, Q. Kong et al., Two-step patterning of scalable all-inorganic halide perovskite arrays. ACS Nano 14(3), 3500–3508 (2020). https://doi.org/10.1021/acsnano.9b09685
Z. Li, F. Zhou, Q. Wang, L. Ding, Z. Jin, Approaches for thermodynamically stabilized CsPbI3 solar cells. Nano Energy 71, 104634 (2020). https://doi.org/10.1016/j.nanoen.2020.104634
Z. Guo, S. Teo, Z. Xu, C. Zhang, Y. Kamata et al., Achievable high VOC of carbon based all-inorganic CsPbIBr2 perovskite solar cells through interface engineering. J. Mater. Chem. A 7(3), 1227–1232 (2019). https://doi.org/10.1039/C8TA09838G
B. Li, R. Long, Y. Xia, Q. Mi, All-inorganic perovskite CsSnBr3 as a thermally stable, free-carrier semiconductor. Angew. Chem. Int. Ed. 57(40), 13154–13158 (2018). https://doi.org/10.1002/anie.201807674
V. Pecunia, Y. Yuan, J. Zhao, K. Xia, F. Li, Perovskite-inspired lead-free Ag2BiI5 for self-powered nir-blind visible light photodetection. Nano-Micro Lett. 12, 27 (2020). https://doi.org/10.1007/s40820-020-0371-0
F. Yao, J. Peng, R. Li, W. Li, G. Fang, Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals. Nat. Commun. 11(1), 1194 (2020). https://doi.org/10.1038/s41467-020-15037-x
T. Cai, W. Shi, S. Hwang, K. Kobbekaduwa, Y. Nagaoka et al., Lead-free Cs4CuSb2Cl2 layered double perovskite nanocrystals. J. Am. Chem. Soc. 142(27), 11927–11936 (2020). https://doi.org/10.1021/jacs.0c04919
H. Zhou, Z. Song, C.R. Grice, C. Chen, J. Zhang, Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy 53, 880–886 (2018). https://doi.org/10.1016/j.nanoen.2018.09.040
C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan et al., High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 30(38), 1803422 (2018). https://doi.org/10.1002/adma.201803422
R. Liu, J. Zhang, H. Zhou, Z. Song, Z. Song et al., Solution-processed high-quality cesium lead bromine perovskite photodetectors with high detectivity for application in visible light communication. Adv. Opt. Mater. 8(8), 1901735 (2020). https://doi.org/10.1002/adom.201901735
P. Gui, H. Zhou, F. Yao, Z. Song, B. Li et al., Space-confined growth of individual wide bandgap single crystal CsPbCl3 microplatelet for near-ultraviolet photodetection. Small 15(39), 1902618 (2019). https://doi.org/10.1002/smll.201902618
Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365(6453), 591–595 (2019). https://doi.org/10.1126/science.aav8680
H. Zhou, Z. Song, C.R. Grice, C. Chen, Y. Yan, Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite micro-crystal photodetectors. J. Phys. Chem. Lett. 9(16), 8b01960 (2018). https://doi.org/10.1021/acs.jpclett.8b0196
Y. Liu, Y. Zhang, K. Zhao, Z. Yang, J. Feng et al., A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 30(29), 1707314 (2018). https://doi.org/10.1002/adma.201707314
X. Zhang, S. Yang, H. Zhou, J. Liang, H. Liu et al., Perovskite–erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv. Mater. 29(21), 1604431 (2017). https://doi.org/10.1002/adma.201604431
W.-G. Li, X.-D. Wang, J.-F. Liao, Y. Jiang, D.-B. Kuang, Enhanced on–off ratio photodetectors based on lead-free Cs3Bi2I9 single crystal thin films. Adv. Funct. Mater. 30(12), 1909701 (2020). https://doi.org/10.1002/adfm.201909701
D.H. Chun, Y.J. Choi, Y. In, J.K. Nam, Y.J. Choi et al., Halide perovskite nanopillar photodetector. ACS Nano 12(8), 8564–8571 (2018). https://doi.org/10.1021/acsnano.8b04170
Q. Yao, Q. Xue, Z. Li, K. Zhang, Y. Cao, Graded 2D/3D perovskite heterostructure for efficient and operationally stable MA-free perovskite solar cells. Adv. Mater. (2020). https://doi.org/10.1002/adma.202000571
R. Liu, H. Zhou, Z. Song, X. Yang, D. Wu et al., Low-reflection, (110)-orientation-preferred CsPbBr3 nanonet films for application in high-performance perovskite photodetectors. Nanoscale 11(19), 9302–9309 (2019). https://doi.org/10.1039/C9NR03213D
M. Cao, J. Tian, Z. Cai, L. Peng, L. Yang et al., Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector. Appl. Phys. Lett. 109(23), 233303 (2016). https://doi.org/10.1063/1.4971772
X. Li, G. Wu, M. Wang, B. Yu, J. Zhou et al., Water-assisted crystal growth in quasi-2D perovskites with enhanced charge transport and photovoltaic performance. Adv. Energy Mater. 10(37), 2001832 (2020). https://doi.org/10.1002/aenm.202001832
T. Wang, G. Lian, L. Huang, F. Zhu, D. Cui et al., A crystal-growth boundary-fusion strategy to prepare high-quality MAPbI3 films for excellent vis-NIR photodetectors. Nano Energy 64, 103914 (2019). https://doi.org/10.1016/j.nanoen.2019.103914
K. Shen, X. Li, H. Xu, M. Wang, X. Dai et al., Enhanced performance of ZnO nanoparticle decorated all-inorganic CsPbBr3 quantum dot photodetectors. J. Mater. Chem. A 7(11), 6134–6142 (2019). https://doi.org/10.1039/C9TA00230H
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6(6), 1739–1743 (2013). https://doi.org/10.1039/C3EE40810H
J. Henry Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013). https://doi.org/10.1021/jz4020162
C.H. Chiang, Z.L. Tseng, C.G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J. Mater. Chem. A 2(38), 15897–15903 (2014). https://doi.org/10.1039/C4TA03674C
Z. Liang, Q. Zhang, L. Jiang, G. Cao, Zno cathode buffer layers for inverted polymer solar cells. Energy Environ. Sci. 8(12), 3442–3476 (2015). https://doi.org/10.1039/C5EE02510A
L. Li, H. Chen, Z. Fang, X. Meng, C. Zuo, An electrically modulated single-color/dual-color imaging photodetector. Adv. Mater. 32(24), 1907257 (2020). https://doi.org/10.1002/adma.201907257
Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367(6482), 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
W. Tian, L. Min, F. Cao, L. Li, Nested inverse opal perovskite toward superior flexible and self-powered photodetection performance. Adv. Mater. 32(16), 1906974 (2020). https://doi.org/10.1002/adma.201906974
K. Deng, Z. Liu, M. Wang, L. Li, Nanoimprinted grating-embedded perovskite solar cells with improved light management. Adv. Funct. Mater. 29(19), 1900830 (2019). https://doi.org/10.1002/adfm.201900830
J. Zeng, X. Li, Y. Wu, D. Yang, Z. Sun et al., Space-confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit. Adv. Funct. Mater. 28(43), 1804394 (2018). https://doi.org/10.1002/adfm.201804394
H. Ren, S. Yu, L. Chao, Y. Xia, Y. Sun et al., Efficient and stable ruddlesden–popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photon. 14(3), 154–163 (2020). https://doi.org/10.1038/s41566-019-0572-6
X. Pan, H. Zhou, R. Liu, D. Wu, Z. Song et al., Achieving a high-performance, self-powered, broadband perovskite photodetector employing MAPbI3 microcrystal films. J. Mater. Chem. C 8(6), 2028–2035 (2020). https://doi.org/10.1039/C9TC05668H
D. Wu, H. Zhou, Z. Song, M. Zheng, R. Liu et al., Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano 14(3), 2777–2787 (2020). https://doi.org/10.1021/acsnano.9b09315
X. Yang, Y. Zhu, H. Zhou, Z. Song, R. Liu et al., MgO/ZnO microsphere bilayer structure towards enhancing the stability of the self-powered MAPbI3 perovskite photodetectors with high detectivity. Appl. Surf. Sci. 504, 144468 (2020). https://doi.org/10.1016/j.apsusc.2019.144468
Y. Zhang, S. Li, W. Yang, M.K. Joshi, X. Fang, Millimeter-sized single-crystal CsPbrB3/CuI heterojunction for high-performance self-powered photodetector. J. Phys. Chem. Lett. 10(10), 2400–2407 (2019). https://doi.org/10.1021/acs.jpclett.9b0096
M. Wang, W. Tian, F. Cao, M. Wang, L. Li, Flexible and self-powered lateral photodetector based on inorganic perovskite CsPbI3–CsPbBr3 heterojunction nanowire array. Adv. Funct. Mater. 30(16), 1909771 (2020). https://doi.org/10.1002/adfm.201909771
L. Qian, Y. Sun, M. Sun, Z. Fang, L. Li, 2D perovskite microsheets for high-performance photodetectors. J. Mater. Chem. C 7(18), 5353–5358 (2019). https://doi.org/10.1039/C9TC00138G
C. Li, Y. Ma, Y. Xiao, L. Shen, L. Ding, Advances in perovskite photodetectors. InfoMat 2(6), 1247–1256 (2020). https://doi.org/10.1002/inf2.12141