Epitaxial Lift-Off of Flexible GaN-Based HEMT Arrays with Performances Optimization by the Piezotronic Effect
Corresponding Author: Zhong Lin Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 67
Abstract
High-electron-mobility transistors (HEMTs) are a promising device in the field of radio frequency and wireless communication. However, to unlock the full potential of HEMTs, the fabrication of large-size flexible HEMTs is required. Herein, a large-sized (> 2 cm2) of AlGaN/AlN/GaN heterostructure-based HEMTs were successfully stripped from sapphire substrate to a flexible polyethylene terephthalate substrate by an electrochemical lift-off technique. The piezotronic effect was then induced to optimize the electron transport performance by modulating/tuning the physical properties of two-dimensional electron gas (2DEG) and phonons. The saturation current of the flexible HEMT is enhanced by 3.15% under the 0.547% tensile condition, and the thermal degradation of the HEMT was also obviously suppressed under compressive straining. The corresponding electrical performance changes and energy diagrams systematically illustrate the intrinsic mechanism. This work not only provides in-depth understanding of the piezotronic effect in tuning 2DEG and phonon properties in GaN HEMTs, but also demonstrates a low-cost method to optimize its electronic and thermal properties.
Highlights:
1 A large size (> 2 cm2) nitride membrane with High-electron-mobility transistor (HEMTs) arrays was successfully separated from sapphire substrate onto flexible substrate by an electrochemical lift-off technique.
2 Without adding extra cost, the piezotronic effect is utilized to optimize the electric transport and thermal conductivity properties of the HEMTs by modulating the physical properties of the 2DEG and phonons.
3 This study aims to open up a new way to fabricate high-performance GaN-based HEMTs and expand practical applications in flexible electronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Liu, D. Li, H. Hu, X. Huang, Z. Zhao et al., Piezo-phototronic effect in InGaN/GaN semi-floating micro-disk LED arrays. Nano Energy 67, 104218 (2019). https://doi.org/10.1016/j.nanoen.2019.104218
- X. Wang, W. Peng, R. Yu, H. Zou, Y. Dai et al., Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based ultraviolet light-emitting diode by the piezo-phototronic effect. Nano Lett. 17, 3718–3724 (2017). https://doi.org/10.1021/acs.nanolett.7b01004
- J. Dong, Z. Wang, X. Wang, Z.L. Wang, Temperature dependence of the pyro-phototronic effect in self-powered p-Si/n-ZnO nanowires heterojuncted ultraviolet sensors. Nano Today 29, 100798 (2019). https://doi.org/10.1016/j.nantod.2019.100798
- X. Wang, Y. Dai, R. Liu, X. He, S. Li et al., Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing. ACS Nano 11, 8339–8345 (2017). https://doi.org/10.1021/acsnano.7b03560
- B. Wang, Y. Zhu, J. Dong, J. Jiang, Q. Wang et al., Self-powered, superior high gain silicon-based near-infrared photosensing for low-power light communication. Nano Energy 70, 104544 (2020). https://doi.org/10.1016/j.nanoen.2020.104544
- X. Wang, R. Yu, C. Jiang, W. Hu, W. Wu et al., Piezotronic effect modulated heterojunction electron gas in AlGaN/AlN/GaN heterostructure microwire. Adv. Mater. 28, 7234–7242 (2016). https://doi.org/10.1002/adma.201601721
- J. Zhu, X. Zhou, L. Jing, Q. Hua, W. Hu et al., Piezotronic effect modulated flexible AlGaN/GaN high-electron-mobility transistors. ACS Nano 13, 13161–13168 (2019). https://doi.org/10.1021/acsnano.9b05999
- N.R. Glavin, K.D. Chabak, E.R. Heller, E.A. Moore, T.A. Prusnick et al., Flexible gallium nitride for high-performance, strainable radio-frequency devices. Adv. Mater. 29, 1701838 (2017). https://doi.org/10.1002/adma.201701838
- S. Zhang, B. Ma, X. Zhou, Q. Hua, J. Gong et al., Strain-controlled power devices as inspired by human reflex. Nat. Commun. 11, 326 (2020). https://doi.org/10.1038/s41467-019-14234-7
- J.H. Kang, D.K. Jeong, S.W. Ryu, Transparent, flexible piezoelectric nanogenerator based on GaN membrane using electrochemical lift-off. ACS Appl. Mater. Interfaces. 9, 10637–10642 (2017). https://doi.org/10.1021/acsami.6b15587
- A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17, 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
- W. Yoonjin, C. Jungwan, D. Agonafer, M. Asheghi, K.E. Goodson, Fundamental cooling limits for high power density gallium nitride electronics. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 737–744 (2015). https://doi.org/10.1109/TCPMT.2015.2433132
- Y. Peng, M. Que, H.E. Lee, R. Bao, X. Wang et al., Achieving high-resolution pressure mapping via flexible GaN/ ZnO nanowire LEDs array by piezo-phototronic effect. Nano Energy 58, 633–640 (2019). https://doi.org/10.1016/j.nanoen.2019.01.076
- C.-F. Chu, F.-I. Lai, J.-T. Chu, C.-C. Yu, C.-F. Lin et al., Study of GaN light-emitting diodes fabricated by laser lift-off technique. J. Appl. Phys. 95, 3916–3922 (2004). https://doi.org/10.1063/1.1651338
- M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu et al., Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 10, 1572–1579 (2016). https://doi.org/10.1021/acsnano.5b07217
- S.K. Oh, M.U. Cho, J. Dallas, T. Jang, D.G. Lee et al., High-power flexible AlGaN/GaN heterostructure field-effect transistors with suppression of negative differential conductance. Appl. Phys. Lett. 111, 133502 (2017). https://doi.org/10.1063/1.5004799
- M. Lesecq, V. Hoel, A. Lecavelier des Etangs-Levallois, E. Pichonat, Y. Douvry, et al., High Performance of AlGaN/GaN HEMTs Reported on Adhesive Flexible Tape. IEEE Electron Device Lett. 32, 143–145 (2011). https://doi.org/10.1109/LED.2010.2091251
- Y. Kobayashi, K. Kumakura, T. Akasaka, T. Makimoto, Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223–227 (2012). https://doi.org/10.1038/nature10970
- D.J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, et al., Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN. Appl. Phys. Lett. 91, 071120 (2007). https://doi.org/10.1063/1.2770655
- T.H. Chang, K. Xiong, S.H. Park, G. Yuan, Z. Ma et al., Strain Balanced AlGaN/GaN/AlGaN nanomembrane HEMTs. Sci. Rep. 7, 6360 (2017). https://doi.org/10.1038/s41598-017-06957-8
- S.H. Park, G. Yuan, D. Chen, K. Xiong, J. Song et al., Wide bandgap III-nitride nanomembranes for optoelectronic applications. Nano Lett. 14, 4293–4298 (2014). https://doi.org/10.1021/nl5009629
- G. Hu, W. Guo, R. Yu, X. Yang, R. Zhou et al., Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect. Nano Energy 23, 27–33 (2016). https://doi.org/10.1016/j.nanoen.2016.02.057
- W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014). https://doi.org/10.1038/nature13792
- L. Chen, K. Zhang, J. Dong, B. Wang, L. He et al., The piezotronic effect in InGaN/GaN quantum-well based microwire for ultrasensitive strain sensor. Nano Energy 72, 104660 (2020). https://doi.org/10.1016/j.nanoen.2020.104660
- J. Jiang, Q. Wang, B. Wang, J. Dong, Z. Li et al., Direct lift-off and the piezo-phototronic study of InGaN/GaN heterostructure membrane. Nano Energy 59, 545–552 (2019). https://doi.org/10.1016/j.nanoen.2019.02.066
- K. Xiong, S.H. Park, J. Song, G. Yuan, D. Chen et al., Single crystal gallium nitride nanomembrane photoconductor and field effect transistor. Adv. Funct. Mater. 24, 6503–6508 (2014). https://doi.org/10.1002/adfm.201401438
- P. Gay, P.B. Hirsch, A. Kelly, The estimation of dislocation densities in metals from X-ray data. Acta Metall. 1, 315–319 (1953). https://doi.org/10.1016/0001-6160(53)90106-0
- R.T. ElAfandy, M.A. Majid, T.K. Ng, L. Zhao, D. Cha et al., Exfoliation of threading dislocation-free, single-crystalline, ultrathin gallium nitride nanomembranes. Adv. Funct. Mater. 24, 2305–2311 (2014). https://doi.org/10.1002/adfm.201303001
- C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager et al., Strain-Related Phenomena in GaN Thin Films. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 17745 (1996). https://doi.org/10.1103/PhysRevB.54.17745
- T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide et al., Thermal stress in GaN epitaxial layers grown on sapphire substrates. J. Appl. Phys. 77, 4389–4392 (1995). https://doi.org/10.1063/1.359465
- T. Liu, C. Jiang, X. Huang, C. Du, Z. Zhao et al., Electrical transportation and piezotronic-effect modulation in AlGaN/GaN MOS HEMTs and unpassivated HEMTs. Nano Energy 39, 53–59 (2017). https://doi.org/10.1016/j.nanoen.2017.06.041
- W. Song, R. Wang, X. Wang, D. Guo, H. Chen et al., a-Axis GaN/AlN/AlGaN core–shell heterojunction microwires as normally off high electron mobility transistors. ACS Appl. Mater. Interfaces 9, 41435–41442 (2017). https://doi.org/10.1021/acsami.7b12986
- M. Hiroki, K. Kumakura, Y. Kobayashi, T. Akasaka, T. Makimoto et al., Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN. Appl. Phys. Lett. 105, 193509 (2014). https://doi.org/10.1063/1.4901938
- D.-S. Tang, G.-Z. Qin, M. Hu, B.-Y. Cao, Thermal transport properties of GaN with biaxial strain and electron-phonon coupling. J. Appl. Phys. 127, 035102 (2020). https://doi.org/10.1063/1.5133105
- G. Hu, L. Li, Y. Zhang, Two-dimensional electron gas in piezotronic devices. Nano Energy 59, 667–673 (2019). https://doi.org/10.1016/j.nanoen.2019.03.001
- C. Jiang, T. Liu, C. Du, X. Huang, M. Liu et al., Piezotronic effect tuned AlGaN/GaN high electron mobility transistor. Nanotechnology 28, 455203 (2017). https://doi.org/10.1088/1361-6528/aa8a5a
References
T. Liu, D. Li, H. Hu, X. Huang, Z. Zhao et al., Piezo-phototronic effect in InGaN/GaN semi-floating micro-disk LED arrays. Nano Energy 67, 104218 (2019). https://doi.org/10.1016/j.nanoen.2019.104218
X. Wang, W. Peng, R. Yu, H. Zou, Y. Dai et al., Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based ultraviolet light-emitting diode by the piezo-phototronic effect. Nano Lett. 17, 3718–3724 (2017). https://doi.org/10.1021/acs.nanolett.7b01004
J. Dong, Z. Wang, X. Wang, Z.L. Wang, Temperature dependence of the pyro-phototronic effect in self-powered p-Si/n-ZnO nanowires heterojuncted ultraviolet sensors. Nano Today 29, 100798 (2019). https://doi.org/10.1016/j.nantod.2019.100798
X. Wang, Y. Dai, R. Liu, X. He, S. Li et al., Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing. ACS Nano 11, 8339–8345 (2017). https://doi.org/10.1021/acsnano.7b03560
B. Wang, Y. Zhu, J. Dong, J. Jiang, Q. Wang et al., Self-powered, superior high gain silicon-based near-infrared photosensing for low-power light communication. Nano Energy 70, 104544 (2020). https://doi.org/10.1016/j.nanoen.2020.104544
X. Wang, R. Yu, C. Jiang, W. Hu, W. Wu et al., Piezotronic effect modulated heterojunction electron gas in AlGaN/AlN/GaN heterostructure microwire. Adv. Mater. 28, 7234–7242 (2016). https://doi.org/10.1002/adma.201601721
J. Zhu, X. Zhou, L. Jing, Q. Hua, W. Hu et al., Piezotronic effect modulated flexible AlGaN/GaN high-electron-mobility transistors. ACS Nano 13, 13161–13168 (2019). https://doi.org/10.1021/acsnano.9b05999
N.R. Glavin, K.D. Chabak, E.R. Heller, E.A. Moore, T.A. Prusnick et al., Flexible gallium nitride for high-performance, strainable radio-frequency devices. Adv. Mater. 29, 1701838 (2017). https://doi.org/10.1002/adma.201701838
S. Zhang, B. Ma, X. Zhou, Q. Hua, J. Gong et al., Strain-controlled power devices as inspired by human reflex. Nat. Commun. 11, 326 (2020). https://doi.org/10.1038/s41467-019-14234-7
J.H. Kang, D.K. Jeong, S.W. Ryu, Transparent, flexible piezoelectric nanogenerator based on GaN membrane using electrochemical lift-off. ACS Appl. Mater. Interfaces. 9, 10637–10642 (2017). https://doi.org/10.1021/acsami.6b15587
A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17, 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
W. Yoonjin, C. Jungwan, D. Agonafer, M. Asheghi, K.E. Goodson, Fundamental cooling limits for high power density gallium nitride electronics. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 737–744 (2015). https://doi.org/10.1109/TCPMT.2015.2433132
Y. Peng, M. Que, H.E. Lee, R. Bao, X. Wang et al., Achieving high-resolution pressure mapping via flexible GaN/ ZnO nanowire LEDs array by piezo-phototronic effect. Nano Energy 58, 633–640 (2019). https://doi.org/10.1016/j.nanoen.2019.01.076
C.-F. Chu, F.-I. Lai, J.-T. Chu, C.-C. Yu, C.-F. Lin et al., Study of GaN light-emitting diodes fabricated by laser lift-off technique. J. Appl. Phys. 95, 3916–3922 (2004). https://doi.org/10.1063/1.1651338
M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu et al., Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 10, 1572–1579 (2016). https://doi.org/10.1021/acsnano.5b07217
S.K. Oh, M.U. Cho, J. Dallas, T. Jang, D.G. Lee et al., High-power flexible AlGaN/GaN heterostructure field-effect transistors with suppression of negative differential conductance. Appl. Phys. Lett. 111, 133502 (2017). https://doi.org/10.1063/1.5004799
M. Lesecq, V. Hoel, A. Lecavelier des Etangs-Levallois, E. Pichonat, Y. Douvry, et al., High Performance of AlGaN/GaN HEMTs Reported on Adhesive Flexible Tape. IEEE Electron Device Lett. 32, 143–145 (2011). https://doi.org/10.1109/LED.2010.2091251
Y. Kobayashi, K. Kumakura, T. Akasaka, T. Makimoto, Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223–227 (2012). https://doi.org/10.1038/nature10970
D.J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, et al., Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN. Appl. Phys. Lett. 91, 071120 (2007). https://doi.org/10.1063/1.2770655
T.H. Chang, K. Xiong, S.H. Park, G. Yuan, Z. Ma et al., Strain Balanced AlGaN/GaN/AlGaN nanomembrane HEMTs. Sci. Rep. 7, 6360 (2017). https://doi.org/10.1038/s41598-017-06957-8
S.H. Park, G. Yuan, D. Chen, K. Xiong, J. Song et al., Wide bandgap III-nitride nanomembranes for optoelectronic applications. Nano Lett. 14, 4293–4298 (2014). https://doi.org/10.1021/nl5009629
G. Hu, W. Guo, R. Yu, X. Yang, R. Zhou et al., Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect. Nano Energy 23, 27–33 (2016). https://doi.org/10.1016/j.nanoen.2016.02.057
W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014). https://doi.org/10.1038/nature13792
L. Chen, K. Zhang, J. Dong, B. Wang, L. He et al., The piezotronic effect in InGaN/GaN quantum-well based microwire for ultrasensitive strain sensor. Nano Energy 72, 104660 (2020). https://doi.org/10.1016/j.nanoen.2020.104660
J. Jiang, Q. Wang, B. Wang, J. Dong, Z. Li et al., Direct lift-off and the piezo-phototronic study of InGaN/GaN heterostructure membrane. Nano Energy 59, 545–552 (2019). https://doi.org/10.1016/j.nanoen.2019.02.066
K. Xiong, S.H. Park, J. Song, G. Yuan, D. Chen et al., Single crystal gallium nitride nanomembrane photoconductor and field effect transistor. Adv. Funct. Mater. 24, 6503–6508 (2014). https://doi.org/10.1002/adfm.201401438
P. Gay, P.B. Hirsch, A. Kelly, The estimation of dislocation densities in metals from X-ray data. Acta Metall. 1, 315–319 (1953). https://doi.org/10.1016/0001-6160(53)90106-0
R.T. ElAfandy, M.A. Majid, T.K. Ng, L. Zhao, D. Cha et al., Exfoliation of threading dislocation-free, single-crystalline, ultrathin gallium nitride nanomembranes. Adv. Funct. Mater. 24, 2305–2311 (2014). https://doi.org/10.1002/adfm.201303001
C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager et al., Strain-Related Phenomena in GaN Thin Films. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 17745 (1996). https://doi.org/10.1103/PhysRevB.54.17745
T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide et al., Thermal stress in GaN epitaxial layers grown on sapphire substrates. J. Appl. Phys. 77, 4389–4392 (1995). https://doi.org/10.1063/1.359465
T. Liu, C. Jiang, X. Huang, C. Du, Z. Zhao et al., Electrical transportation and piezotronic-effect modulation in AlGaN/GaN MOS HEMTs and unpassivated HEMTs. Nano Energy 39, 53–59 (2017). https://doi.org/10.1016/j.nanoen.2017.06.041
W. Song, R. Wang, X. Wang, D. Guo, H. Chen et al., a-Axis GaN/AlN/AlGaN core–shell heterojunction microwires as normally off high electron mobility transistors. ACS Appl. Mater. Interfaces 9, 41435–41442 (2017). https://doi.org/10.1021/acsami.7b12986
M. Hiroki, K. Kumakura, Y. Kobayashi, T. Akasaka, T. Makimoto et al., Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN. Appl. Phys. Lett. 105, 193509 (2014). https://doi.org/10.1063/1.4901938
D.-S. Tang, G.-Z. Qin, M. Hu, B.-Y. Cao, Thermal transport properties of GaN with biaxial strain and electron-phonon coupling. J. Appl. Phys. 127, 035102 (2020). https://doi.org/10.1063/1.5133105
G. Hu, L. Li, Y. Zhang, Two-dimensional electron gas in piezotronic devices. Nano Energy 59, 667–673 (2019). https://doi.org/10.1016/j.nanoen.2019.03.001
C. Jiang, T. Liu, C. Du, X. Huang, M. Liu et al., Piezotronic effect tuned AlGaN/GaN high electron mobility transistor. Nanotechnology 28, 455203 (2017). https://doi.org/10.1088/1361-6528/aa8a5a