Defect and Doping Co-Engineered Non-Metal Nanocarbon ORR Electrocatalyst
Corresponding Author: Hui Ying Yang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 65
Abstract
Exploring low-cost and earth-abundant oxygen reduction reaction (ORR) electrocatalyst is essential for fuel cells and metal–air batteries. Among them, non-metal nanocarbon with multiple advantages of low cost, abundance, high conductivity, good durability, and competitive activity has attracted intense interest in recent years. The enhanced ORR activities of the nanocarbons are normally thought to originate from heteroatom (e.g., N, B, P, or S) doping or various induced defects. However, in practice, carbon-based materials usually contain both dopants and defects. In this regard, in terms of the co-engineering of heteroatom doping and defect inducing, we present an overview of recent advances in developing non-metal carbon-based electrocatalysts for the ORR. The characteristics, ORR performance, and the related mechanism of these functionalized nanocarbons by heteroatom doping, defect inducing, and in particular their synergistic promotion effect are emphatically analyzed and discussed. Finally, the current issues and perspectives in developing carbon-based electrocatalysts from both of heteroatom doping and defect engineering are proposed. This review will be beneficial for the rational design and manufacturing of highly efficient carbon-based materials for electrocatalysis.
Highlights:
1 Recent advances of non-metal nanocarbon materials for electrocatalytic oxygen reduction reaction (ORR) are comprehensively summarized in terms of co-engineering of heteroatom doping and defect inducing.
2 The characteristics, ORR performance, and the related mechanism of non-metal nanocarbon are emphatically analyzed and discussed.
3 The current issues and perspectives in developing carbon-based electrocatalysts from both of heteroatom doping and defect engineering are pointed out and proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). https://doi.org/10.1021/cr5003563
- X. Yan, Y. Jia, X. Yao, Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 47(20), 7628–7658 (2018). https://doi.org/10.1039/c7cs00690j
- K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). https://doi.org/10.1126/science.1168049
- X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1(11), 16064 (2016). https://doi.org/10.1038/natrevmats.2016.64
- C. Xie, D. Yan, W. Chen, Y. Zou, R. Chen et al., Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater. Today 31, 47–68 (2019). https://doi.org/10.1016/j.mattod.2019.05.021
- D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832
- J. Zhang, D.P. He, H. Su, X. Chen, M. Pan et al., Porous polyaniline-derived FeNxC/C catalysts with high activity and stability towards oxygen reduction reaction using ferric chloride both as an oxidant and iron source. J. Mater. Chem. A 2(5), 1242–1246 (2014). https://doi.org/10.1039/C3ta14065b
- H.F. Wang, C. Tang, Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−Air batteries. Adv. Funct. Mater. 28(46), 1803329 (2018). https://doi.org/10.1002/adfm.201803329
- Y. Zhang, L. Guo, L. Tao, Y. Lu, S. Wang, Defect-based single-atom electrocatalysts. Small Methods 3(9), 1800406 (2018). https://doi.org/10.1002/smtd.201800406
- W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang et al., Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 32(19), e1907879 (2020). https://doi.org/10.1002/adma.201907879
- A. Kulkarni, S. Siahrostami, A. Patel, J.K. Norskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118(5), 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
- C. Hu, L. Dai, Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 31(7), e1804672 (2019). https://doi.org/10.1002/adma.201804672
- L. Chen, X. Xu, W. Yang, J. Jia, Recent advances in carbon-based electrocatalysts for oxygen reduction reaction. Chin. Chem. Lett. 31(3), 626–634 (2020). https://doi.org/10.1016/j.cclet.2019.08.008
- B. Wang, X. Cui, J. Huang, R. Cao, Q. Zhang, Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis. Chin. Chem. Lett. 29(12), 1757–1767 (2018). https://doi.org/10.1016/j.cclet.2018.11.021
- L. Yang, J. Shui, L. Du, Y. Shao, J. Liu et al., Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv. Mater. 31(13), e1804799 (2019). https://doi.org/10.1002/adma.201804799
- J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6(10), 2839–2855 (2013). https://doi.org/10.1039/C3ee41444b
- J.C. Li, P.X. Hou, C. Liu, Heteroatom-doped carbon nanotube and graphene-based electrocatalysts for oxygen reduction reaction. Small 13(45), 1702002 (2017). https://doi.org/10.1002/smll.201702002
- N. Daems, X. Sheng, I.F.J. Vankelecom, P.P. Pescarmona, Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2(12), 4085–4110 (2014). https://doi.org/10.1039/C3ta14043a
- S. Zhao, D.W. Wang, R. Amal, L. Dai, Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 31(9), e1801526 (2019). https://doi.org/10.1002/adma.201801526
- S.K. Singh, K. Takeyasu, J. Nakamura, Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 31(13), e1804297 (2019). https://doi.org/10.1002/adma.201804297
- R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang et al., A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. NPJ Comput. Mater. 5(1), 78 (2019). https://doi.org/10.1038/s41524-019-0210-3
- W.J. Lee, J. Lim, S.O. Kim, Nitrogen dopants in carbon nanomaterials: defects or a new opportunity? Small Methods 1(1–2), 1600014 (2017). https://doi.org/10.1002/smtd.201600014
- C. Hu, L. Dai, Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem. Int. Ed. 55(39), 11736–11758 (2016). https://doi.org/10.1002/anie.201509982
- W. Zhang, J. Chu, S. Li, Y. Li, L. Li, CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn–air batteries. J. Energy Chem. 51, 323–332 (2020). https://doi.org/10.1016/j.jechem.2020.04.067
- C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv. Mater. 29(13), 1604103 (2017). https://doi.org/10.1002/adma.201604103
- Y. Jia, K. Jiang, H. Wang, X. Yao, The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 5(6), 1371–1397 (2019). https://doi.org/10.1016/j.chempr.2019.02.008
- L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang et al., Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 9(1), 3819 (2018). https://doi.org/10.1038/s41467-018-06279-x
- K. Waki, R.A. Wong, H.S. Oktaviano, T. Fujio, T. Nagai et al., Non-nitrogen doped and non-metal oxygen reduction electrocatalysts based on carbon nanotubes: mechanism and origin of ORR activity. Energy Environ. Sci. 7(6), 1950–1958 (2014). https://doi.org/10.1039/c3ee43743d
- L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo et al., Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52(13), 2764–2767 (2016). https://doi.org/10.1039/c5cc09173j
- C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou et al., Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28(32), 6845–6851 (2016). https://doi.org/10.1002/adma.201601406
- S. Oh, J. Kim, M. Kim, D. Nam, J. Park et al., Synergetic effects of edge formation and sulfur doping on the catalytic activity of a graphene-based catalyst for the oxygen reduction reaction. J. Mater. Chem. A 4(37), 14400–14407 (2016). https://doi.org/10.1039/c6ta05020d
- D. Li, Y. Jia, G. Chang, J. Chen, H. Liu et al., A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 4(10), 2345–2356 (2018). https://doi.org/10.1016/j.chempr.2018.07.005
- H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR OER and HER. Energy Environ. Sci. 12(1), 322–333 (2019). https://doi.org/10.1039/c8ee03276a
- T. Gong, R. Qi, X. Liu, H. Li, Y. Zhang, N, F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett. 11(1), 9 (2019). https://doi.org/10.1007/s40820-019-0240-x
- Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12(1), 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
- S. Wang, H. Jiang, L. Song, Recent progress in defective carbon-based oxygen electrode materials for rechargeable zinc–air batteries. Batter. Supercaps 2(6), 509–523 (2019). https://doi.org/10.1002/batt.201900001
- I.Y. Jeon, S. Zhang, L. Zhang, H.J. Choi, J.M. Seo et al., Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. Adv. Mater. 25(42), 6138–6145 (2013). https://doi.org/10.1002/adma.201302753
- E.J. Biddinger, U.S. Ozkan, Role of graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction. J. Phys. Chem. C 114(36), 15306–15314 (2010). https://doi.org/10.1021/jp104074t
- L. Zhang, Q. Xu, J. Niu, Z. Xia, Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Phys. Chem. Chem. Phys. 17(26), 16733–16743 (2015). https://doi.org/10.1039/c5cp02014j
- Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen et al., Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28(43), 9532–9538 (2016). https://doi.org/10.1002/adma.201602912
- Y. Bian, H. Wang, J. Hu, B. Liu, D. Liu et al., Nitrogen-rich holey graphene for efficient oxygen reduction reaction. Carbon 162, 66–73 (2020). https://doi.org/10.1016/j.carbon.2020.01.110
- H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen et al., Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv. Sci. 4(1), 1600243 (2017). https://doi.org/10.1002/advs.201600243
- L. Fan, Z. Xia, M. Xu, Y. Lu, Z. Li, 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products. Adv. Funct. Mater. 28(17), 1706289 (2018). https://doi.org/10.1002/adfm.201706289
- F. Cheng, L. Wang, H. Wang, C. Lei, B. Yang et al., Boosting alkaline hydrogen evolution and Zn–H2O cell induced by interfacial electron transfer. Nano Energy 71, 104621 (2020). https://doi.org/10.1016/j.nanoen.2020.104621
- Y. Jia, L. Zhang, L. Zhuang, H. Liu, X. Yan et al., Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2(8), 688–695 (2019). https://doi.org/10.1038/s41929-019-0297-4
- X. Zhao, X. Zou, X. Yan, C.L. Brown, Z. Chen et al., Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping. Inorg. Chem. Front. 3(3), 417–421 (2016). https://doi.org/10.1039/c5qi00236b
- J. He, Y. Zou, S. Wang, Defect engineering on electrocatalysts for gas-evolving reactions. Dalton Trans. 48(1), 15–20 (2018). https://doi.org/10.1039/c8dt04026e
- M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
- B. Bayatsarmadi, Y. Zheng, A. Vasileff, S.Z. Qiao, Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 13(21), 1700191 (2017). https://doi.org/10.1002/smll.201700191
- Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang et al., S pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn–air batteries. ACS Energy Lett. 3(5), 1183–1191 (2018). https://doi.org/10.1021/acsenergylett.8b00303
- J. Zhu, S. Mu, Defect engineering in carbon-based electrocatalysts: Insight into intrinsic carbon defects. Adv. Funct. Mater. 30(25), 2001097 (2020). https://doi.org/10.1002/adfm.202001097
- Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), e1905923 (2020). https://doi.org/10.1002/adma.201905923
- D. Yan, Y. Li, J. Huo, R. Chen, L. Dai et al., Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29(48), 1606459 (2017). https://doi.org/10.1002/adma.201606459
- T. Sun, G. Zhang, D. Xu, X. Lian, H. Li et al., Defect chemistry in 2D materials for electrocatalysis. Mater. Today Energy 12, 215–238 (2019). https://doi.org/10.1016/j.mtener.2019.01.004
- Y. Jia, J. Chen, X. Yao, Defect electrocatalytic mechanism: concept, topological structure and perspective. Mater. Chem. Front. 2(7), 1250–1268 (2018). https://doi.org/10.1039/c8qm00070k
- X. Yan, Y. Jia, T. Odedairo, X. Zhao, Z. Jin et al., Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions. Chem. Commun. 52(52), 8156–8159 (2016). https://doi.org/10.1039/c6cc03687b
- Y. Li, Y. Tong, F. Peng, Metal-free carbocatalysis for electrochemical oxygen reduction reaction: activity origin and mechanism. J. Energy Chem. 48, 308–321 (2020). https://doi.org/10.1016/j.jechem.2020.02.027
- Z. Zhao, M. Li, L. Zhang, L. Dai, Z. Xia, Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries. Adv. Mater. 27(43), 6834–6840 (2015). https://doi.org/10.1002/adma.201503211
- C. Cui, Y. Gao, J. Li, C. Yang, M. Liu et al., Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem. Int. Ed. 59(20), 7928–7933 (2020). https://doi.org/10.1002/anie.202000319
- M. Li, L. Zhang, Q. Xu, J. Niu, Z. Xia, N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: theoretical considerations. J. Catal. 314, 66–72 (2014). https://doi.org/10.1016/j.jcat.2014.03.011
- H. Fan, Y. Wang, F. Gao, L. Yang, M. Liu et al., Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn–air battery. J. Energy Chem. 34, 64–71 (2019). https://doi.org/10.1016/j.jechem.2018.09.003
- T. Sharifi, E. Gracia-Espino, A. Chen, G. Hu, T. Wågberg, Oxygen reduction reactions on single- or few-atom discrete active sites for heterogeneous catalysis. Adv. Energy Mater. 10(11), 1902084 (2019). https://doi.org/10.1002/aenm.201902084
- S.N. Stamatin, I. Hussainova, R. Ivanov, P.E. Colavita, Quantifying graphitic edge exposure in graphene-based materials and its role in oxygen reduction reactions. ACS Catal. 6(8), 5215–5221 (2016). https://doi.org/10.1021/acscatal.6b00945
- Z. Liu, Z. Zhao, Y. Wang, S. Dou, D. Yan et al., In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 29(18), 1606207 (2017). https://doi.org/10.1002/adma.201606207
- H. Wang, X.B. Li, L. Gao, H.L. Wu, J. Yang et al., Three-dimensional graphene networks with abundant sharp edge sites for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57(1), 192–197 (2018). https://doi.org/10.1002/anie.201709901
- J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/anie.201206720
- I.Y. Jeon, H.J. Choi, S.M. Jung, J.M. Seo, M.J. Kim et al., Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 135(4), 1386–1393 (2013). https://doi.org/10.1021/ja3091643
- I.Y. Jeon, H.J. Choi, M. Choi, J.M. Seo, S.M. Jung et al., Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 3, 1810 (2013). https://doi.org/10.1038/srep01810
- J. Zhang, Y. Sun, J. Zhu, Z. Gao, S. Li et al., Ultranarrow graphene nanoribbons toward oxygen reduction and evolution reactions. Adv. Sci. 5(12), 1801375 (2018). https://doi.org/10.1002/advs.201801375
- T. Fan, G. Zhang, L. Jian, I. Murtaza, H. Meng et al., Facile synthesis of defect-rich nitrogen and sulfur Co-doped graphene quantum dots as metal-free electrocatalyst for the oxygen reduction reaction. J. Alloys Compd. 792, 844–850 (2019). https://doi.org/10.1016/j.jallcom.2019.04.097
- L. Zhou, H. Cao, S. Zhu, L. Hou, C. Yuan, Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: a competitive cost-effective material for high-performance electrochemical capacitors. Green Chem. 17(4), 2373–2382 (2015). https://doi.org/10.1039/c4gc02032d
- H.W. Liang, X. Zhuang, S. Bruller, X. Feng, K. Mullen, Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5, 4973 (2014). https://doi.org/10.1038/ncomms5973
- H. Jiang, Y. Wang, J. Hao, Y. Liu, W. Li et al., N and P co-functionalized three-dimensional porous carbon networks as efficient metal-free electrocatalysts for oxygen reduction reaction. Carbon 122, 64–73 (2017). https://doi.org/10.1016/j.carbon.2017.06.043
- H.P. Cong, P. Wang, M. Gong, S.H. Yu, Facile synthesis of mesoporous nitrogen-doped graphene: An efficient methanol–tolerant cathodic catalyst for oxygen reduction reaction. Nano Energy 3, 55–63 (2014). https://doi.org/10.1016/j.nanoen.2013.10.010
- X. Bo, L. Guo, Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution. Phys. Chem. Chem. Phys. 15(7), 2459–2465 (2013). https://doi.org/10.1039/c2cp43541a
- J. Zhang, Z. Xia, L. Dai, Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 1(7), e1500564 (2015). https://doi.org/10.1126/sciadv.1500564
- J. Zhang, Y.M. Sun, J.W. Zhu, Z.K. Kou, P. Hu et al., Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 52, 307–314 (2018). https://doi.org/10.1016/j.nanoen.2018.08.003
- Y. Yin, X. Sun, M. Zhou, X. Zhao, J. Qin et al., Laser-induced pyridinic-nitrogen-rich defective carbon nanotubes for efficient oxygen electrocatalysis. ChemCatChem 11(24), 6131–6138 (2019). https://doi.org/10.1002/cctc.201901875
- J.H. Wee, C.H. Kim, H.S. Lee, G.B. Choi, D.W. Kim et al., Enriched pyridinic nitrogen atoms at nanoholes of carbon nanohorns for efficient oxygen reduction. Sci. Rep. 9(1), 20170 (2019). https://doi.org/10.1038/s41598-019-56770-8
- Q. Lv, N. Wang, W. Si, Z. Hou, X. Li et al., Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn–air batteries. Appl. Catal. B Environ. 261, 118234 (2020). https://doi.org/10.1016/j.apcatb.2019.118234
- Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136(11), 4394–4403 (2014). https://doi.org/10.1021/ja500432h
- K. Chu, F. Wang, Y. Tian, Z. Wei, Phosphorus doped and defects engineered graphene for improved electrochemical sensing: synergistic effect of dopants and defects. Electrochim. Acta 231, 557–564 (2017). https://doi.org/10.1016/j.electacta.2017.02.099
- W. Lei, Y.P. Deng, G. Li, Z.P. Cano, X. Wang et al., Two-dimensional phosphorus-doped carbon nanosheets with tunable porosity for oxygen reactions in zinc–air batteries. ACS Catal. 8(3), 2464–2472 (2018). https://doi.org/10.1021/acscatal.7b02739
- Y. Zhu, Z. Zhang, W. Li, Z. Lei, N. Cheng et al., Highly exposed active sites of defect-enriched derived MOFs for enhanced oxygen reduction reaction. ACS Sustain. Chem. Eng. 7(21), 17855–17862 (2019). https://doi.org/10.1021/acssuschemeng.9b04380
- H. Shi, Y. Shen, F. He, Y. Li, A. Liu et al., Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction. J. Mater. Chem. A 2(38), 15704–15716 (2014). https://doi.org/10.1039/c4ta02790f
- J. Gao, Y. Wang, H. Wu, X. Liu, L. Wang et al., Construction of a sp3 /sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58(42), 15089–15097 (2019). https://doi.org/10.1002/anie.201907915
- A. Shen, Y. Zou, Q. Wang, R.A. Dryfe, X. Huang et al., Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew. Chem. Int. Ed. 53(40), 10804–10808 (2014). https://doi.org/10.1002/anie.201406695
- W. Wang, L. Shang, G. Chang, C. Yan, R. Shi et al., Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 31(19), e1808276 (2019). https://doi.org/10.1002/adma.201808276
- C.T. Toh, H. Zhang, J. Lin, A.S. Mayorov, Y.P. Wang et al., Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577(7789), 199–203 (2020). https://doi.org/10.1038/s41586-019-1871-2
- X. Wang, Y. Jia, X. Mao, L. Zhang, D. Liu et al., A directional synthesis for topological defect in carbon. Chem 6(8), 2009–2023 (2020). https://doi.org/10.1016/j.chempr.2020.05.010
- H. Zhao, C. Sun, Z. Jin, D.W. Wang, X. Yan et al., Carbon for the oxygen reduction reaction: a defect mechanism. J. Mater. Chem. A 3(22), 11736–11739 (2015). https://doi.org/10.1039/c5ta02229k
- J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang et al., Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem. Int. Ed. 58(12), 3859–3864 (2019). https://doi.org/10.1002/anie.201813805
- Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu et al., Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 5(11), 6707–6712 (2015). https://doi.org/10.1021/acscatal.5b01835
- Y. Hao, X. Zhang, Q. Yang, K. Chen, J. Guo et al., Highly porous defective carbons derived from seaweed biomass as efficient electrocatalysts for oxygen reduction in both alkaline and acidic media. Carbon 137, 93–103 (2018). https://doi.org/10.1016/j.carbon.2018.05.007
- L. Tao, M. Qiao, R. Jin, Y. Li, Z. Xiao et al., Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem. Int. Ed. 58(4), 1019–1024 (2019). https://doi.org/10.1002/anie.201810207
- J. Tang, Y. Liu, G. Lv, C. Yang, G. Yang, Localized micro-deflagration induced defect-rich N-doped nanocarbon shells for highly efficient oxygen reduction reaction. Carbon 145, 411–418 (2019). https://doi.org/10.1016/j.carbon.2018.12.052
- Q. Wang, Y. Lei, Y. Zhu, H. Wang, J. Feng et al., Edge defect engineering of nitrogen-doped carbon for oxygen electrocatalysts in Zn–air batteries. ACS Appl. Mater. Interfaces 10(35), 29448–29456 (2018). https://doi.org/10.1021/acsami.8b07863
- S. Siahrostami, K. Jiang, M. Karamad, K. Chan, H. Wang et al., Theoretical investigations into defected graphene for electrochemical reduction of CO2. ACS Sustain. Chem. Eng. 5(11), 11080–11085 (2017). https://doi.org/10.1021/acssuschemeng.7b03031
- H.F. Wang, C. Tang, B. Wang, B.Q. Li, X. Cui et al., Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc–air batteries. Energy Storage Mater. 15, 124–130 (2018). https://doi.org/10.1016/j.ensm.2018.03.022
- X. Li, Y. Zhao, Y. Yang, S. Gao, A universal strategy for carbon-based ORR-active electrocatalyst: one porogen, two pore-creating mechanisms, three pore types. Nano Energy 62, 628–637 (2019). https://doi.org/10.1016/j.nanoen.2019.05.066
- C. Xuan, Z. Wu, W. Lei, J. Wang, J. Guo et al., Nitrogen-doped hierarchical porous carbons derived from sodium alginate as efficient oxygen reduction reaction electrocatalysts. ChemCatChem 9(5), 809–815 (2017). https://doi.org/10.1002/cctc.201601284
- J. Zhang, H. Zhou, X.B. Liu, J. Zhang, T. Peng et al., Keratin-derived S/N co-doped graphene-like nanobubble and nanosheet hybrids for highly efficient oxygen reduction. J. Mater. Chem. A 4(41), 15870–15879 (2016). https://doi.org/10.1039/c6ta06212a
- Y. Zhao, X. Li, X. Jia, S. Gao, Why and how to tailor the vertical coordinate of pore size distribution to construct ORR-active carbon materials? Nano Energy 58, 384–391 (2019). https://doi.org/10.1016/j.nanoen.2019.01.057
- R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu et al., Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10(1), 3 (2018). https://doi.org/10.1007/s40820-017-0157-1
- Z. Tang, Y. Zhao, Q. Lai, J. Zhong, Y. Liang, Stepwise fabrication of Co-embedded porous multichannel carbon nanofibers for high-efficiency oxygen reduction. Nano-Micro Lett. 11, 33 (2019). https://doi.org/10.1007/s40820-019-0264-2
- W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng et al., Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53(6), 1570–1574 (2014). https://doi.org/10.1002/anie.201307319
- S. Lee, M. Choun, Y. Ye, J. Lee, Y. Mun et al., Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: effects of pore size and doping-site position. Angew. Chem. Int. Ed. 54(32), 9230–9234 (2015). https://doi.org/10.1002/anie.201501590
- J. Luo, K. Wang, X. Hua, W. Wang, J. Li et al., Pyridinic-N protected synthesis of 3D nitrogen-doped porous carbon with increased mesoporous defects for oxygen reduction. Small 15(11), e1805325 (2019). https://doi.org/10.1002/smll.201805325
- D. Cheng, Z. Wang, C. Chen, K. Zhou, Defect-enriched, nitrogen-doped graphitic carbon microspheres within 3D interconnected super-macropores as efficient oxygen electrocatalysts for breathing Zn–air battery. Carbon 145, 38–46 (2019). https://doi.org/10.1016/j.carbon.2019.01.010
- J. Zhang, C.Y. Zhang, Y.F. Zhao, I.S. Amiinu, H. Zhou et al., Three dimensional few-layer porous carbon nanosheets towards oxygen reduction. Appl. Catal. B Environ. 211, 148–156 (2017). https://doi.org/10.1016/j.apcatb.2017.04.038
- D. Liu, L. Tao, D. Yan, Y. Zou, S. Wang, Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. ChemElectroChem 5(14), 1775–1785 (2018). https://doi.org/10.1002/celc.201800086
- J. Zhu, W. Li, S. Li, J. Zhang, H. Zhou et al., Defective N/S-codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn–Air batteries. Small 14(21), e1800563 (2018). https://doi.org/10.1002/smll.201800563
- J. Zhang, X.L. Li, S. Fan, S. Huang, D. Yan et al., 3D-printed functional electrodes towards Zn–air batteries. Mater. Today Energy 16, 100407 (2020). https://doi.org/10.1016/j.mtener.2020.100407
- X. Xiao, X. Li, Z. Wang, G. Yan, H. Guo et al., Robust template-activator cooperated pyrolysis enabling hierarchically porous honeycombed defective carbon as highly-efficient metal-free bifunctional electrocatalyst for Zn–air batteries. Appl. Catal. B Environ. 265, 118603 (2020). https://doi.org/10.1016/j.apcatb.2020.118603
- C. Xuan, B. Hou, W. Xia, Z. Peng, T. Shen et al., From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: an efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 6(23), 10731–10739 (2018). https://doi.org/10.1039/c8ta02385a
- T.L. Zhai, C. Xuan, J. Xu, L. Ban, Z. Cheng et al., Hyperporous-carbon-supported nonprecious metal electrocatalysts for the oxygen reduction reaction. Chemistry 13(18), 2671–2676 (2018). https://doi.org/10.1002/asia.201800747
- Y. Liu, K. Sun, X. Cui, B. Li, J. Jiang, Defect-rich, graphenelike carbon sheets derived from biomass as efficient electrocatalysts for rechargeable zinc–air batteries. ACS Sustain. Chem. Engin. 8(7), 2981–2989 (2020). https://doi.org/10.1021/acssuschemeng.9b07621
- G.L. Chai, Z. Hou, D.J. Shu, T. Ikeda, K. Terakura, Active sites and mechanisms for oxygen reduction reaction on nitrogen-doped carbon alloy catalysts: stone–wales defect and curvature effect. J. Am. Chem. Soc. 136(39), 13629–13640 (2014). https://doi.org/10.1021/ja502646c
- M. Fan, Y. Huang, F. Yuan, Q. Hao, J. Yang et al., Effects of multiple heteroatom species and topographic defects on electrocatalytic and capacitive performances of graphene. J. Power Sources 366, 143–150 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.016
- Y. Dong, S. Zhang, X. Du, S. Hong, S. Zhao et al., Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling. Adv. Funct. Mater. 29(24), 1901127 (2019). https://doi.org/10.1002/adfm.201901127
- J. Chen, Y. Han, X. Kong, X. Deng, H.J. Park et al., The origin of improved electrical double-layer capacitance by inclusion of topological defects and dopants in graphene for supercapacitors. Angew. Chem. Int. Ed. 55(44), 13822–13827 (2016). https://doi.org/10.1002/anie.201605926
- X. Yan, H. Liu, Y. Jia, L. Zhang, W. Xu et al., Clarifying the origin of oxygen reduction activity in heteroatom-modified defective carbon. Cell Rep. Phys. Sci. 1(7), 100083 (2020). https://doi.org/10.1016/j.xcrp.2020.100083
- C. Van Pham, M. Klingele, B. Britton, K.R. Vuyyuru, T. Unmuessig et al., Tridoped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction demonstrated in acidic and alkaline polymer electrolyte fuel cells. Adv. Sustain. Syst. 1(5), 1600038 (2017). https://doi.org/10.1002/adsu.201600038
- Z. Wu, R. Liu, J. Wang, J. Zhu, W. Xiao et al., Nitrogen and sulfur co-doping of 3D hollow-structured carbon spheres as an efficient and stable metal free catalyst for the oxygen reduction reaction. Nanoscale 8(45), 19086–19092 (2016). https://doi.org/10.1039/c6nr06817k
- J. Wang, Z.X. Wu, L.L. Han, Y.Y. Liu, J.P. Guo et al., Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction. Chin. Chem. Lett. 27(4), 597–601 (2016). https://doi.org/10.1016/j.cclet.2016.03.011
- J. Nong, M. Zhu, K. He, A. Zhu, P. Xie et al., N/S co-doped 3D carbon framework prepared by a facile morphology-controlled solid-state pyrolysis method for oxygen reduction reaction in both acidic and alkaline media. J. Energy Chem. 34, 220–226 (2019). https://doi.org/10.1016/j.jechem.2018.10.006
- L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115(22), 11170–11176 (2011). https://doi.org/10.1021/jp201991j
- J. Zhang, H. Zhou, J. Zhu, P. Hu, C. Hang et al., Facile synthesis of defect-rich and S/N co-doped graphene-like carbon nanosheets as an efficient electrocatalyst for primary and all-solid-state Zn–air batteries. ACS Appl. Mater. Interfaces 9(29), 24545–24554 (2017). https://doi.org/10.1021/acsami.7b04665
- Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
- M. Borghei, J. Lehtonen, L. Liu, O.J. Rojas, Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 30(24), e1703691 (2018). https://doi.org/10.1002/adma.201703691
- C. Xuan, Z. Peng, J. Wang, W. Lei, K. Xia et al., Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors. Chin. Chem. Lett. 28(12), 2227–2230 (2017). https://doi.org/10.1016/j.cclet.2017.09.009
- X. Lin, X. Wang, L. Li, M. Yan, Y. Tian, Rupturing cotton microfibers into mesoporous nitrogen-doped carbon nanosheets as metal-free catalysts for efficient oxygen electroreduction. ACS Sustain. Chem. Eng. 5(11), 9709–9717 (2017). https://doi.org/10.1021/acssuschemeng.7b01398
- S.T. Senthilkumar, S.O. Park, J. Kim, S.M. Hwang, S.K. Kwak et al., Seawater battery performance enhancement enabled by a defect/edge-rich, oxygen self-doped porous carbon electrocatalyst. J. Mater. Chem. A 5(27), 14174–14181 (2017). https://doi.org/10.1039/c7ta03298f
- J. Zhang, S. Wu, X. Chen, M. Pan, S. Mu, Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for oxygen reduction. J. Power Sources 271, 522–529 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.038
- H. Zhou, J. Zhang, J. Zhu, Z. Liu, C. Zhang et al., A self-template and KOH activation co-coupling strategy to synthesize ultrahigh surface area nitrogen-doped porous graphene for oxygen reduction. RSC Adv. 6(77), 73292–73300 (2016). https://doi.org/10.1039/c6ra16703a
- H. Zhou, J. Zhang, I.S. Amiinu, C. Zhang, X. Liu et al., Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction. Phys. Chem. Chem. Phys. 18(15), 10392–10399 (2016). https://doi.org/10.1039/c6cp00174b
- G. Han, Y. Liu, J. Gao, L. Han, H. Cao et al., Local plant-derived carbon sheets as sustainable catalysts for efficient oxygen reduction reaction. ACS Sustain. Chem. Eng. 7(2), 2107–2115 (2018). https://doi.org/10.1021/acssuschemeng.8b04705
- I.S. Amiinu, J. Zhang, Z. Kou, X. Liu, O.K. Asare et al., Self-organized 3D porous graphene dual-doped with biomass-sponsored nitrogen and sulfur for oxygen reduction and evolution. ACS Appl. Mater. Interfaces 8(43), 29408–29418 (2016). https://doi.org/10.1021/acsami.6b08719
- K.N. Chaudhari, M.Y. Song, J.S. Yu, Transforming hair into heteroatom-doped carbon with high surface area. Small 10(13), 2625–2636 (2014). https://doi.org/10.1002/smll.201303831
- P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang et al., Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15, 9–23 (2015). https://doi.org/10.1016/j.nanoen.2015.02.035
- H.W. Liang, Z.Y. Wu, L.F. Chen, C. Li, S.H. Yu, Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc–air battery. Nano Energy 11, 366–376 (2015). https://doi.org/10.1016/j.nanoen.2014.11.008
- X. Wu, K. Chen, Z. Lin, Y. Zhang, H. Meng, Nitrogen doped graphitic carbon from biomass as non noble metal catalyst for oxygen reduction reaction. Mater. Today Energy 13, 100–108 (2019). https://doi.org/10.1016/j.mtener.2019.05.004
- Z. Lu, J. Wang, S. Huang, Y. Hou, Y. Li et al., N, B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy 42, 334–340 (2017). https://doi.org/10.1016/j.nanoen.2017.11.004
- T. Sun, J. Wang, C. Qiu, X. Ling, B. Tian et al., B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions. Adv. Sci. 5(7), 1800036 (2018). https://doi.org/10.1002/advs.201800036
- X. Zou, L. Wang, B.I. Yakobson, Mechanisms of the oxygen reduction reaction on B- and/or N-doped carbon nanomaterials with curvature and edge effects. Nanoscale 10(3), 1129–1134 (2018). https://doi.org/10.1039/c7nr08061a
- D. Sen, R. Thapa, K.K. Chattopadhyay, Rules of boron-nitrogen doping in defect graphene sheets: a first-principles investigation of band-gap tuning and oxygen reduction reaction catalysis capabilities. ChemPhysChem 15(12), 2542–2549 (2014). https://doi.org/10.1002/cphc.201402147
- B. Huang, Y. Liu, X. Huang, Z. Xie, Multiple heteroatom-doped few-layer carbons for the electrochemical oxygen reduction reaction. J. Mater. Chem. A 6(44), 22277–22286 (2018). https://doi.org/10.1039/c8ta06743k
- C.V. Pham, B. Britton, T. Böhm, S. Holdcroft, S. Thiele, Doped, defect-enriched carbon nanotubes as an efficient oxygen reduction catalyst for anion exchange membrane fuel cells. Adv. Mater. Interfaces 5(12), 1800184 (2018). https://doi.org/10.1002/admi.201800184
- C. Hu, L. Dai, Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29(9), 1604942 (2017). https://doi.org/10.1002/adma.201604942
- J. Wu, X. Zheng, C. Jin, J. Tian, R. Yang, Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction. Carbon 92, 327–338 (2015). https://doi.org/10.1016/j.carbon.2015.05.013
- M. Wu, J. Wang, Z. Wu, H.L. Xin, D. Wang, Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanosphere insertion for the electrocatalytic oxygen reduction reaction. J. Mater. Chem. A 3(15), 7727–7731 (2015). https://doi.org/10.1039/c4ta06323f
- X. Peng, T.J. Omasta, E. Magliocca, L. Wang, J.R. Varcoe et al., Nitrogen‐doped carbon–CoOx nanohybrids: a precious metal free cathode that exceeds 1.0 W cm−2 peak power and 100 h life in anion‐exchange membrane fuel cells. Angew. Chem. Int. Ed. 131(4), 1058–1063 (2018). https://doi.org/10.1002/ange.201811099
- Y. Wang, L. Tao, Z. Xiao, R. Chen, Z. Jiang et al., 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 28(11), 1705356 (2018). https://doi.org/10.1002/adfm.201705356
- Y.H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2(4), e1501122 (2016). https://doi.org/10.1126/sciadv.1501122
- Q. Xiang, S. Li, X. Zou, Y. Qiang, B. Hu et al., Self-assembly porous metal-free electrocatalysts templated from sulfur for efficient oxygen reduction reaction. Appl. Surf. Sci. 462, 65–72 (2018). https://doi.org/10.1016/j.apsusc.2018.08.022
- C. Hang, J. Zhang, J. Zhu, W. Li, Z. Kou et al., In situ exfoliating and generating active sites on graphene nanosheets strongly coupled with carbon fiber toward self-standing bifunctional cathode for rechargeable Zn–air batteries. Adv. Energy Mater. 8(16), 1703539 (2018). https://doi.org/10.1002/aenm.201703539
- M. Wang, W. Wang, T. Qian, S. Liu, Y. Li et al., Oxidizing vacancies in nitrogen-doped carbon enhance air-cathode activity. Adv. Mater. 31(5), e1803339 (2019). https://doi.org/10.1002/adma.201803339
References
L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). https://doi.org/10.1021/cr5003563
X. Yan, Y. Jia, X. Yao, Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 47(20), 7628–7658 (2018). https://doi.org/10.1039/c7cs00690j
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). https://doi.org/10.1126/science.1168049
X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1(11), 16064 (2016). https://doi.org/10.1038/natrevmats.2016.64
C. Xie, D. Yan, W. Chen, Y. Zou, R. Chen et al., Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater. Today 31, 47–68 (2019). https://doi.org/10.1016/j.mattod.2019.05.021
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832
J. Zhang, D.P. He, H. Su, X. Chen, M. Pan et al., Porous polyaniline-derived FeNxC/C catalysts with high activity and stability towards oxygen reduction reaction using ferric chloride both as an oxidant and iron source. J. Mater. Chem. A 2(5), 1242–1246 (2014). https://doi.org/10.1039/C3ta14065b
H.F. Wang, C. Tang, Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−Air batteries. Adv. Funct. Mater. 28(46), 1803329 (2018). https://doi.org/10.1002/adfm.201803329
Y. Zhang, L. Guo, L. Tao, Y. Lu, S. Wang, Defect-based single-atom electrocatalysts. Small Methods 3(9), 1800406 (2018). https://doi.org/10.1002/smtd.201800406
W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang et al., Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 32(19), e1907879 (2020). https://doi.org/10.1002/adma.201907879
A. Kulkarni, S. Siahrostami, A. Patel, J.K. Norskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118(5), 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
C. Hu, L. Dai, Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 31(7), e1804672 (2019). https://doi.org/10.1002/adma.201804672
L. Chen, X. Xu, W. Yang, J. Jia, Recent advances in carbon-based electrocatalysts for oxygen reduction reaction. Chin. Chem. Lett. 31(3), 626–634 (2020). https://doi.org/10.1016/j.cclet.2019.08.008
B. Wang, X. Cui, J. Huang, R. Cao, Q. Zhang, Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis. Chin. Chem. Lett. 29(12), 1757–1767 (2018). https://doi.org/10.1016/j.cclet.2018.11.021
L. Yang, J. Shui, L. Du, Y. Shao, J. Liu et al., Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv. Mater. 31(13), e1804799 (2019). https://doi.org/10.1002/adma.201804799
J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6(10), 2839–2855 (2013). https://doi.org/10.1039/C3ee41444b
J.C. Li, P.X. Hou, C. Liu, Heteroatom-doped carbon nanotube and graphene-based electrocatalysts for oxygen reduction reaction. Small 13(45), 1702002 (2017). https://doi.org/10.1002/smll.201702002
N. Daems, X. Sheng, I.F.J. Vankelecom, P.P. Pescarmona, Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2(12), 4085–4110 (2014). https://doi.org/10.1039/C3ta14043a
S. Zhao, D.W. Wang, R. Amal, L. Dai, Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 31(9), e1801526 (2019). https://doi.org/10.1002/adma.201801526
S.K. Singh, K. Takeyasu, J. Nakamura, Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 31(13), e1804297 (2019). https://doi.org/10.1002/adma.201804297
R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang et al., A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. NPJ Comput. Mater. 5(1), 78 (2019). https://doi.org/10.1038/s41524-019-0210-3
W.J. Lee, J. Lim, S.O. Kim, Nitrogen dopants in carbon nanomaterials: defects or a new opportunity? Small Methods 1(1–2), 1600014 (2017). https://doi.org/10.1002/smtd.201600014
C. Hu, L. Dai, Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem. Int. Ed. 55(39), 11736–11758 (2016). https://doi.org/10.1002/anie.201509982
W. Zhang, J. Chu, S. Li, Y. Li, L. Li, CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn–air batteries. J. Energy Chem. 51, 323–332 (2020). https://doi.org/10.1016/j.jechem.2020.04.067
C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv. Mater. 29(13), 1604103 (2017). https://doi.org/10.1002/adma.201604103
Y. Jia, K. Jiang, H. Wang, X. Yao, The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 5(6), 1371–1397 (2019). https://doi.org/10.1016/j.chempr.2019.02.008
L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang et al., Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 9(1), 3819 (2018). https://doi.org/10.1038/s41467-018-06279-x
K. Waki, R.A. Wong, H.S. Oktaviano, T. Fujio, T. Nagai et al., Non-nitrogen doped and non-metal oxygen reduction electrocatalysts based on carbon nanotubes: mechanism and origin of ORR activity. Energy Environ. Sci. 7(6), 1950–1958 (2014). https://doi.org/10.1039/c3ee43743d
L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo et al., Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52(13), 2764–2767 (2016). https://doi.org/10.1039/c5cc09173j
C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou et al., Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28(32), 6845–6851 (2016). https://doi.org/10.1002/adma.201601406
S. Oh, J. Kim, M. Kim, D. Nam, J. Park et al., Synergetic effects of edge formation and sulfur doping on the catalytic activity of a graphene-based catalyst for the oxygen reduction reaction. J. Mater. Chem. A 4(37), 14400–14407 (2016). https://doi.org/10.1039/c6ta05020d
D. Li, Y. Jia, G. Chang, J. Chen, H. Liu et al., A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 4(10), 2345–2356 (2018). https://doi.org/10.1016/j.chempr.2018.07.005
H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR OER and HER. Energy Environ. Sci. 12(1), 322–333 (2019). https://doi.org/10.1039/c8ee03276a
T. Gong, R. Qi, X. Liu, H. Li, Y. Zhang, N, F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett. 11(1), 9 (2019). https://doi.org/10.1007/s40820-019-0240-x
Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12(1), 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
S. Wang, H. Jiang, L. Song, Recent progress in defective carbon-based oxygen electrode materials for rechargeable zinc–air batteries. Batter. Supercaps 2(6), 509–523 (2019). https://doi.org/10.1002/batt.201900001
I.Y. Jeon, S. Zhang, L. Zhang, H.J. Choi, J.M. Seo et al., Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. Adv. Mater. 25(42), 6138–6145 (2013). https://doi.org/10.1002/adma.201302753
E.J. Biddinger, U.S. Ozkan, Role of graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction. J. Phys. Chem. C 114(36), 15306–15314 (2010). https://doi.org/10.1021/jp104074t
L. Zhang, Q. Xu, J. Niu, Z. Xia, Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Phys. Chem. Chem. Phys. 17(26), 16733–16743 (2015). https://doi.org/10.1039/c5cp02014j
Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen et al., Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28(43), 9532–9538 (2016). https://doi.org/10.1002/adma.201602912
Y. Bian, H. Wang, J. Hu, B. Liu, D. Liu et al., Nitrogen-rich holey graphene for efficient oxygen reduction reaction. Carbon 162, 66–73 (2020). https://doi.org/10.1016/j.carbon.2020.01.110
H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen et al., Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv. Sci. 4(1), 1600243 (2017). https://doi.org/10.1002/advs.201600243
L. Fan, Z. Xia, M. Xu, Y. Lu, Z. Li, 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products. Adv. Funct. Mater. 28(17), 1706289 (2018). https://doi.org/10.1002/adfm.201706289
F. Cheng, L. Wang, H. Wang, C. Lei, B. Yang et al., Boosting alkaline hydrogen evolution and Zn–H2O cell induced by interfacial electron transfer. Nano Energy 71, 104621 (2020). https://doi.org/10.1016/j.nanoen.2020.104621
Y. Jia, L. Zhang, L. Zhuang, H. Liu, X. Yan et al., Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2(8), 688–695 (2019). https://doi.org/10.1038/s41929-019-0297-4
X. Zhao, X. Zou, X. Yan, C.L. Brown, Z. Chen et al., Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping. Inorg. Chem. Front. 3(3), 417–421 (2016). https://doi.org/10.1039/c5qi00236b
J. He, Y. Zou, S. Wang, Defect engineering on electrocatalysts for gas-evolving reactions. Dalton Trans. 48(1), 15–20 (2018). https://doi.org/10.1039/c8dt04026e
M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
B. Bayatsarmadi, Y. Zheng, A. Vasileff, S.Z. Qiao, Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 13(21), 1700191 (2017). https://doi.org/10.1002/smll.201700191
Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang et al., S pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn–air batteries. ACS Energy Lett. 3(5), 1183–1191 (2018). https://doi.org/10.1021/acsenergylett.8b00303
J. Zhu, S. Mu, Defect engineering in carbon-based electrocatalysts: Insight into intrinsic carbon defects. Adv. Funct. Mater. 30(25), 2001097 (2020). https://doi.org/10.1002/adfm.202001097
Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), e1905923 (2020). https://doi.org/10.1002/adma.201905923
D. Yan, Y. Li, J. Huo, R. Chen, L. Dai et al., Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29(48), 1606459 (2017). https://doi.org/10.1002/adma.201606459
T. Sun, G. Zhang, D. Xu, X. Lian, H. Li et al., Defect chemistry in 2D materials for electrocatalysis. Mater. Today Energy 12, 215–238 (2019). https://doi.org/10.1016/j.mtener.2019.01.004
Y. Jia, J. Chen, X. Yao, Defect electrocatalytic mechanism: concept, topological structure and perspective. Mater. Chem. Front. 2(7), 1250–1268 (2018). https://doi.org/10.1039/c8qm00070k
X. Yan, Y. Jia, T. Odedairo, X. Zhao, Z. Jin et al., Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions. Chem. Commun. 52(52), 8156–8159 (2016). https://doi.org/10.1039/c6cc03687b
Y. Li, Y. Tong, F. Peng, Metal-free carbocatalysis for electrochemical oxygen reduction reaction: activity origin and mechanism. J. Energy Chem. 48, 308–321 (2020). https://doi.org/10.1016/j.jechem.2020.02.027
Z. Zhao, M. Li, L. Zhang, L. Dai, Z. Xia, Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries. Adv. Mater. 27(43), 6834–6840 (2015). https://doi.org/10.1002/adma.201503211
C. Cui, Y. Gao, J. Li, C. Yang, M. Liu et al., Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem. Int. Ed. 59(20), 7928–7933 (2020). https://doi.org/10.1002/anie.202000319
M. Li, L. Zhang, Q. Xu, J. Niu, Z. Xia, N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: theoretical considerations. J. Catal. 314, 66–72 (2014). https://doi.org/10.1016/j.jcat.2014.03.011
H. Fan, Y. Wang, F. Gao, L. Yang, M. Liu et al., Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn–air battery. J. Energy Chem. 34, 64–71 (2019). https://doi.org/10.1016/j.jechem.2018.09.003
T. Sharifi, E. Gracia-Espino, A. Chen, G. Hu, T. Wågberg, Oxygen reduction reactions on single- or few-atom discrete active sites for heterogeneous catalysis. Adv. Energy Mater. 10(11), 1902084 (2019). https://doi.org/10.1002/aenm.201902084
S.N. Stamatin, I. Hussainova, R. Ivanov, P.E. Colavita, Quantifying graphitic edge exposure in graphene-based materials and its role in oxygen reduction reactions. ACS Catal. 6(8), 5215–5221 (2016). https://doi.org/10.1021/acscatal.6b00945
Z. Liu, Z. Zhao, Y. Wang, S. Dou, D. Yan et al., In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 29(18), 1606207 (2017). https://doi.org/10.1002/adma.201606207
H. Wang, X.B. Li, L. Gao, H.L. Wu, J. Yang et al., Three-dimensional graphene networks with abundant sharp edge sites for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57(1), 192–197 (2018). https://doi.org/10.1002/anie.201709901
J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/anie.201206720
I.Y. Jeon, H.J. Choi, S.M. Jung, J.M. Seo, M.J. Kim et al., Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 135(4), 1386–1393 (2013). https://doi.org/10.1021/ja3091643
I.Y. Jeon, H.J. Choi, M. Choi, J.M. Seo, S.M. Jung et al., Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 3, 1810 (2013). https://doi.org/10.1038/srep01810
J. Zhang, Y. Sun, J. Zhu, Z. Gao, S. Li et al., Ultranarrow graphene nanoribbons toward oxygen reduction and evolution reactions. Adv. Sci. 5(12), 1801375 (2018). https://doi.org/10.1002/advs.201801375
T. Fan, G. Zhang, L. Jian, I. Murtaza, H. Meng et al., Facile synthesis of defect-rich nitrogen and sulfur Co-doped graphene quantum dots as metal-free electrocatalyst for the oxygen reduction reaction. J. Alloys Compd. 792, 844–850 (2019). https://doi.org/10.1016/j.jallcom.2019.04.097
L. Zhou, H. Cao, S. Zhu, L. Hou, C. Yuan, Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: a competitive cost-effective material for high-performance electrochemical capacitors. Green Chem. 17(4), 2373–2382 (2015). https://doi.org/10.1039/c4gc02032d
H.W. Liang, X. Zhuang, S. Bruller, X. Feng, K. Mullen, Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5, 4973 (2014). https://doi.org/10.1038/ncomms5973
H. Jiang, Y. Wang, J. Hao, Y. Liu, W. Li et al., N and P co-functionalized three-dimensional porous carbon networks as efficient metal-free electrocatalysts for oxygen reduction reaction. Carbon 122, 64–73 (2017). https://doi.org/10.1016/j.carbon.2017.06.043
H.P. Cong, P. Wang, M. Gong, S.H. Yu, Facile synthesis of mesoporous nitrogen-doped graphene: An efficient methanol–tolerant cathodic catalyst for oxygen reduction reaction. Nano Energy 3, 55–63 (2014). https://doi.org/10.1016/j.nanoen.2013.10.010
X. Bo, L. Guo, Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution. Phys. Chem. Chem. Phys. 15(7), 2459–2465 (2013). https://doi.org/10.1039/c2cp43541a
J. Zhang, Z. Xia, L. Dai, Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 1(7), e1500564 (2015). https://doi.org/10.1126/sciadv.1500564
J. Zhang, Y.M. Sun, J.W. Zhu, Z.K. Kou, P. Hu et al., Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 52, 307–314 (2018). https://doi.org/10.1016/j.nanoen.2018.08.003
Y. Yin, X. Sun, M. Zhou, X. Zhao, J. Qin et al., Laser-induced pyridinic-nitrogen-rich defective carbon nanotubes for efficient oxygen electrocatalysis. ChemCatChem 11(24), 6131–6138 (2019). https://doi.org/10.1002/cctc.201901875
J.H. Wee, C.H. Kim, H.S. Lee, G.B. Choi, D.W. Kim et al., Enriched pyridinic nitrogen atoms at nanoholes of carbon nanohorns for efficient oxygen reduction. Sci. Rep. 9(1), 20170 (2019). https://doi.org/10.1038/s41598-019-56770-8
Q. Lv, N. Wang, W. Si, Z. Hou, X. Li et al., Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn–air batteries. Appl. Catal. B Environ. 261, 118234 (2020). https://doi.org/10.1016/j.apcatb.2019.118234
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136(11), 4394–4403 (2014). https://doi.org/10.1021/ja500432h
K. Chu, F. Wang, Y. Tian, Z. Wei, Phosphorus doped and defects engineered graphene for improved electrochemical sensing: synergistic effect of dopants and defects. Electrochim. Acta 231, 557–564 (2017). https://doi.org/10.1016/j.electacta.2017.02.099
W. Lei, Y.P. Deng, G. Li, Z.P. Cano, X. Wang et al., Two-dimensional phosphorus-doped carbon nanosheets with tunable porosity for oxygen reactions in zinc–air batteries. ACS Catal. 8(3), 2464–2472 (2018). https://doi.org/10.1021/acscatal.7b02739
Y. Zhu, Z. Zhang, W. Li, Z. Lei, N. Cheng et al., Highly exposed active sites of defect-enriched derived MOFs for enhanced oxygen reduction reaction. ACS Sustain. Chem. Eng. 7(21), 17855–17862 (2019). https://doi.org/10.1021/acssuschemeng.9b04380
H. Shi, Y. Shen, F. He, Y. Li, A. Liu et al., Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction. J. Mater. Chem. A 2(38), 15704–15716 (2014). https://doi.org/10.1039/c4ta02790f
J. Gao, Y. Wang, H. Wu, X. Liu, L. Wang et al., Construction of a sp3 /sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58(42), 15089–15097 (2019). https://doi.org/10.1002/anie.201907915
A. Shen, Y. Zou, Q. Wang, R.A. Dryfe, X. Huang et al., Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew. Chem. Int. Ed. 53(40), 10804–10808 (2014). https://doi.org/10.1002/anie.201406695
W. Wang, L. Shang, G. Chang, C. Yan, R. Shi et al., Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 31(19), e1808276 (2019). https://doi.org/10.1002/adma.201808276
C.T. Toh, H. Zhang, J. Lin, A.S. Mayorov, Y.P. Wang et al., Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577(7789), 199–203 (2020). https://doi.org/10.1038/s41586-019-1871-2
X. Wang, Y. Jia, X. Mao, L. Zhang, D. Liu et al., A directional synthesis for topological defect in carbon. Chem 6(8), 2009–2023 (2020). https://doi.org/10.1016/j.chempr.2020.05.010
H. Zhao, C. Sun, Z. Jin, D.W. Wang, X. Yan et al., Carbon for the oxygen reduction reaction: a defect mechanism. J. Mater. Chem. A 3(22), 11736–11739 (2015). https://doi.org/10.1039/c5ta02229k
J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang et al., Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem. Int. Ed. 58(12), 3859–3864 (2019). https://doi.org/10.1002/anie.201813805
Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu et al., Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 5(11), 6707–6712 (2015). https://doi.org/10.1021/acscatal.5b01835
Y. Hao, X. Zhang, Q. Yang, K. Chen, J. Guo et al., Highly porous defective carbons derived from seaweed biomass as efficient electrocatalysts for oxygen reduction in both alkaline and acidic media. Carbon 137, 93–103 (2018). https://doi.org/10.1016/j.carbon.2018.05.007
L. Tao, M. Qiao, R. Jin, Y. Li, Z. Xiao et al., Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem. Int. Ed. 58(4), 1019–1024 (2019). https://doi.org/10.1002/anie.201810207
J. Tang, Y. Liu, G. Lv, C. Yang, G. Yang, Localized micro-deflagration induced defect-rich N-doped nanocarbon shells for highly efficient oxygen reduction reaction. Carbon 145, 411–418 (2019). https://doi.org/10.1016/j.carbon.2018.12.052
Q. Wang, Y. Lei, Y. Zhu, H. Wang, J. Feng et al., Edge defect engineering of nitrogen-doped carbon for oxygen electrocatalysts in Zn–air batteries. ACS Appl. Mater. Interfaces 10(35), 29448–29456 (2018). https://doi.org/10.1021/acsami.8b07863
S. Siahrostami, K. Jiang, M. Karamad, K. Chan, H. Wang et al., Theoretical investigations into defected graphene for electrochemical reduction of CO2. ACS Sustain. Chem. Eng. 5(11), 11080–11085 (2017). https://doi.org/10.1021/acssuschemeng.7b03031
H.F. Wang, C. Tang, B. Wang, B.Q. Li, X. Cui et al., Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc–air batteries. Energy Storage Mater. 15, 124–130 (2018). https://doi.org/10.1016/j.ensm.2018.03.022
X. Li, Y. Zhao, Y. Yang, S. Gao, A universal strategy for carbon-based ORR-active electrocatalyst: one porogen, two pore-creating mechanisms, three pore types. Nano Energy 62, 628–637 (2019). https://doi.org/10.1016/j.nanoen.2019.05.066
C. Xuan, Z. Wu, W. Lei, J. Wang, J. Guo et al., Nitrogen-doped hierarchical porous carbons derived from sodium alginate as efficient oxygen reduction reaction electrocatalysts. ChemCatChem 9(5), 809–815 (2017). https://doi.org/10.1002/cctc.201601284
J. Zhang, H. Zhou, X.B. Liu, J. Zhang, T. Peng et al., Keratin-derived S/N co-doped graphene-like nanobubble and nanosheet hybrids for highly efficient oxygen reduction. J. Mater. Chem. A 4(41), 15870–15879 (2016). https://doi.org/10.1039/c6ta06212a
Y. Zhao, X. Li, X. Jia, S. Gao, Why and how to tailor the vertical coordinate of pore size distribution to construct ORR-active carbon materials? Nano Energy 58, 384–391 (2019). https://doi.org/10.1016/j.nanoen.2019.01.057
R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu et al., Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10(1), 3 (2018). https://doi.org/10.1007/s40820-017-0157-1
Z. Tang, Y. Zhao, Q. Lai, J. Zhong, Y. Liang, Stepwise fabrication of Co-embedded porous multichannel carbon nanofibers for high-efficiency oxygen reduction. Nano-Micro Lett. 11, 33 (2019). https://doi.org/10.1007/s40820-019-0264-2
W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng et al., Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53(6), 1570–1574 (2014). https://doi.org/10.1002/anie.201307319
S. Lee, M. Choun, Y. Ye, J. Lee, Y. Mun et al., Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: effects of pore size and doping-site position. Angew. Chem. Int. Ed. 54(32), 9230–9234 (2015). https://doi.org/10.1002/anie.201501590
J. Luo, K. Wang, X. Hua, W. Wang, J. Li et al., Pyridinic-N protected synthesis of 3D nitrogen-doped porous carbon with increased mesoporous defects for oxygen reduction. Small 15(11), e1805325 (2019). https://doi.org/10.1002/smll.201805325
D. Cheng, Z. Wang, C. Chen, K. Zhou, Defect-enriched, nitrogen-doped graphitic carbon microspheres within 3D interconnected super-macropores as efficient oxygen electrocatalysts for breathing Zn–air battery. Carbon 145, 38–46 (2019). https://doi.org/10.1016/j.carbon.2019.01.010
J. Zhang, C.Y. Zhang, Y.F. Zhao, I.S. Amiinu, H. Zhou et al., Three dimensional few-layer porous carbon nanosheets towards oxygen reduction. Appl. Catal. B Environ. 211, 148–156 (2017). https://doi.org/10.1016/j.apcatb.2017.04.038
D. Liu, L. Tao, D. Yan, Y. Zou, S. Wang, Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. ChemElectroChem 5(14), 1775–1785 (2018). https://doi.org/10.1002/celc.201800086
J. Zhu, W. Li, S. Li, J. Zhang, H. Zhou et al., Defective N/S-codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn–Air batteries. Small 14(21), e1800563 (2018). https://doi.org/10.1002/smll.201800563
J. Zhang, X.L. Li, S. Fan, S. Huang, D. Yan et al., 3D-printed functional electrodes towards Zn–air batteries. Mater. Today Energy 16, 100407 (2020). https://doi.org/10.1016/j.mtener.2020.100407
X. Xiao, X. Li, Z. Wang, G. Yan, H. Guo et al., Robust template-activator cooperated pyrolysis enabling hierarchically porous honeycombed defective carbon as highly-efficient metal-free bifunctional electrocatalyst for Zn–air batteries. Appl. Catal. B Environ. 265, 118603 (2020). https://doi.org/10.1016/j.apcatb.2020.118603
C. Xuan, B. Hou, W. Xia, Z. Peng, T. Shen et al., From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: an efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 6(23), 10731–10739 (2018). https://doi.org/10.1039/c8ta02385a
T.L. Zhai, C. Xuan, J. Xu, L. Ban, Z. Cheng et al., Hyperporous-carbon-supported nonprecious metal electrocatalysts for the oxygen reduction reaction. Chemistry 13(18), 2671–2676 (2018). https://doi.org/10.1002/asia.201800747
Y. Liu, K. Sun, X. Cui, B. Li, J. Jiang, Defect-rich, graphenelike carbon sheets derived from biomass as efficient electrocatalysts for rechargeable zinc–air batteries. ACS Sustain. Chem. Engin. 8(7), 2981–2989 (2020). https://doi.org/10.1021/acssuschemeng.9b07621
G.L. Chai, Z. Hou, D.J. Shu, T. Ikeda, K. Terakura, Active sites and mechanisms for oxygen reduction reaction on nitrogen-doped carbon alloy catalysts: stone–wales defect and curvature effect. J. Am. Chem. Soc. 136(39), 13629–13640 (2014). https://doi.org/10.1021/ja502646c
M. Fan, Y. Huang, F. Yuan, Q. Hao, J. Yang et al., Effects of multiple heteroatom species and topographic defects on electrocatalytic and capacitive performances of graphene. J. Power Sources 366, 143–150 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.016
Y. Dong, S. Zhang, X. Du, S. Hong, S. Zhao et al., Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling. Adv. Funct. Mater. 29(24), 1901127 (2019). https://doi.org/10.1002/adfm.201901127
J. Chen, Y. Han, X. Kong, X. Deng, H.J. Park et al., The origin of improved electrical double-layer capacitance by inclusion of topological defects and dopants in graphene for supercapacitors. Angew. Chem. Int. Ed. 55(44), 13822–13827 (2016). https://doi.org/10.1002/anie.201605926
X. Yan, H. Liu, Y. Jia, L. Zhang, W. Xu et al., Clarifying the origin of oxygen reduction activity in heteroatom-modified defective carbon. Cell Rep. Phys. Sci. 1(7), 100083 (2020). https://doi.org/10.1016/j.xcrp.2020.100083
C. Van Pham, M. Klingele, B. Britton, K.R. Vuyyuru, T. Unmuessig et al., Tridoped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction demonstrated in acidic and alkaline polymer electrolyte fuel cells. Adv. Sustain. Syst. 1(5), 1600038 (2017). https://doi.org/10.1002/adsu.201600038
Z. Wu, R. Liu, J. Wang, J. Zhu, W. Xiao et al., Nitrogen and sulfur co-doping of 3D hollow-structured carbon spheres as an efficient and stable metal free catalyst for the oxygen reduction reaction. Nanoscale 8(45), 19086–19092 (2016). https://doi.org/10.1039/c6nr06817k
J. Wang, Z.X. Wu, L.L. Han, Y.Y. Liu, J.P. Guo et al., Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction. Chin. Chem. Lett. 27(4), 597–601 (2016). https://doi.org/10.1016/j.cclet.2016.03.011
J. Nong, M. Zhu, K. He, A. Zhu, P. Xie et al., N/S co-doped 3D carbon framework prepared by a facile morphology-controlled solid-state pyrolysis method for oxygen reduction reaction in both acidic and alkaline media. J. Energy Chem. 34, 220–226 (2019). https://doi.org/10.1016/j.jechem.2018.10.006
L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115(22), 11170–11176 (2011). https://doi.org/10.1021/jp201991j
J. Zhang, H. Zhou, J. Zhu, P. Hu, C. Hang et al., Facile synthesis of defect-rich and S/N co-doped graphene-like carbon nanosheets as an efficient electrocatalyst for primary and all-solid-state Zn–air batteries. ACS Appl. Mater. Interfaces 9(29), 24545–24554 (2017). https://doi.org/10.1021/acsami.7b04665
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
M. Borghei, J. Lehtonen, L. Liu, O.J. Rojas, Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 30(24), e1703691 (2018). https://doi.org/10.1002/adma.201703691
C. Xuan, Z. Peng, J. Wang, W. Lei, K. Xia et al., Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors. Chin. Chem. Lett. 28(12), 2227–2230 (2017). https://doi.org/10.1016/j.cclet.2017.09.009
X. Lin, X. Wang, L. Li, M. Yan, Y. Tian, Rupturing cotton microfibers into mesoporous nitrogen-doped carbon nanosheets as metal-free catalysts for efficient oxygen electroreduction. ACS Sustain. Chem. Eng. 5(11), 9709–9717 (2017). https://doi.org/10.1021/acssuschemeng.7b01398
S.T. Senthilkumar, S.O. Park, J. Kim, S.M. Hwang, S.K. Kwak et al., Seawater battery performance enhancement enabled by a defect/edge-rich, oxygen self-doped porous carbon electrocatalyst. J. Mater. Chem. A 5(27), 14174–14181 (2017). https://doi.org/10.1039/c7ta03298f
J. Zhang, S. Wu, X. Chen, M. Pan, S. Mu, Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for oxygen reduction. J. Power Sources 271, 522–529 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.038
H. Zhou, J. Zhang, J. Zhu, Z. Liu, C. Zhang et al., A self-template and KOH activation co-coupling strategy to synthesize ultrahigh surface area nitrogen-doped porous graphene for oxygen reduction. RSC Adv. 6(77), 73292–73300 (2016). https://doi.org/10.1039/c6ra16703a
H. Zhou, J. Zhang, I.S. Amiinu, C. Zhang, X. Liu et al., Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction. Phys. Chem. Chem. Phys. 18(15), 10392–10399 (2016). https://doi.org/10.1039/c6cp00174b
G. Han, Y. Liu, J. Gao, L. Han, H. Cao et al., Local plant-derived carbon sheets as sustainable catalysts for efficient oxygen reduction reaction. ACS Sustain. Chem. Eng. 7(2), 2107–2115 (2018). https://doi.org/10.1021/acssuschemeng.8b04705
I.S. Amiinu, J. Zhang, Z. Kou, X. Liu, O.K. Asare et al., Self-organized 3D porous graphene dual-doped with biomass-sponsored nitrogen and sulfur for oxygen reduction and evolution. ACS Appl. Mater. Interfaces 8(43), 29408–29418 (2016). https://doi.org/10.1021/acsami.6b08719
K.N. Chaudhari, M.Y. Song, J.S. Yu, Transforming hair into heteroatom-doped carbon with high surface area. Small 10(13), 2625–2636 (2014). https://doi.org/10.1002/smll.201303831
P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang et al., Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15, 9–23 (2015). https://doi.org/10.1016/j.nanoen.2015.02.035
H.W. Liang, Z.Y. Wu, L.F. Chen, C. Li, S.H. Yu, Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc–air battery. Nano Energy 11, 366–376 (2015). https://doi.org/10.1016/j.nanoen.2014.11.008
X. Wu, K. Chen, Z. Lin, Y. Zhang, H. Meng, Nitrogen doped graphitic carbon from biomass as non noble metal catalyst for oxygen reduction reaction. Mater. Today Energy 13, 100–108 (2019). https://doi.org/10.1016/j.mtener.2019.05.004
Z. Lu, J. Wang, S. Huang, Y. Hou, Y. Li et al., N, B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy 42, 334–340 (2017). https://doi.org/10.1016/j.nanoen.2017.11.004
T. Sun, J. Wang, C. Qiu, X. Ling, B. Tian et al., B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions. Adv. Sci. 5(7), 1800036 (2018). https://doi.org/10.1002/advs.201800036
X. Zou, L. Wang, B.I. Yakobson, Mechanisms of the oxygen reduction reaction on B- and/or N-doped carbon nanomaterials with curvature and edge effects. Nanoscale 10(3), 1129–1134 (2018). https://doi.org/10.1039/c7nr08061a
D. Sen, R. Thapa, K.K. Chattopadhyay, Rules of boron-nitrogen doping in defect graphene sheets: a first-principles investigation of band-gap tuning and oxygen reduction reaction catalysis capabilities. ChemPhysChem 15(12), 2542–2549 (2014). https://doi.org/10.1002/cphc.201402147
B. Huang, Y. Liu, X. Huang, Z. Xie, Multiple heteroatom-doped few-layer carbons for the electrochemical oxygen reduction reaction. J. Mater. Chem. A 6(44), 22277–22286 (2018). https://doi.org/10.1039/c8ta06743k
C.V. Pham, B. Britton, T. Böhm, S. Holdcroft, S. Thiele, Doped, defect-enriched carbon nanotubes as an efficient oxygen reduction catalyst for anion exchange membrane fuel cells. Adv. Mater. Interfaces 5(12), 1800184 (2018). https://doi.org/10.1002/admi.201800184
C. Hu, L. Dai, Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29(9), 1604942 (2017). https://doi.org/10.1002/adma.201604942
J. Wu, X. Zheng, C. Jin, J. Tian, R. Yang, Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction. Carbon 92, 327–338 (2015). https://doi.org/10.1016/j.carbon.2015.05.013
M. Wu, J. Wang, Z. Wu, H.L. Xin, D. Wang, Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanosphere insertion for the electrocatalytic oxygen reduction reaction. J. Mater. Chem. A 3(15), 7727–7731 (2015). https://doi.org/10.1039/c4ta06323f
X. Peng, T.J. Omasta, E. Magliocca, L. Wang, J.R. Varcoe et al., Nitrogen‐doped carbon–CoOx nanohybrids: a precious metal free cathode that exceeds 1.0 W cm−2 peak power and 100 h life in anion‐exchange membrane fuel cells. Angew. Chem. Int. Ed. 131(4), 1058–1063 (2018). https://doi.org/10.1002/ange.201811099
Y. Wang, L. Tao, Z. Xiao, R. Chen, Z. Jiang et al., 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 28(11), 1705356 (2018). https://doi.org/10.1002/adfm.201705356
Y.H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2(4), e1501122 (2016). https://doi.org/10.1126/sciadv.1501122
Q. Xiang, S. Li, X. Zou, Y. Qiang, B. Hu et al., Self-assembly porous metal-free electrocatalysts templated from sulfur for efficient oxygen reduction reaction. Appl. Surf. Sci. 462, 65–72 (2018). https://doi.org/10.1016/j.apsusc.2018.08.022
C. Hang, J. Zhang, J. Zhu, W. Li, Z. Kou et al., In situ exfoliating and generating active sites on graphene nanosheets strongly coupled with carbon fiber toward self-standing bifunctional cathode for rechargeable Zn–air batteries. Adv. Energy Mater. 8(16), 1703539 (2018). https://doi.org/10.1002/aenm.201703539
M. Wang, W. Wang, T. Qian, S. Liu, Y. Li et al., Oxidizing vacancies in nitrogen-doped carbon enhance air-cathode activity. Adv. Mater. 31(5), e1803339 (2019). https://doi.org/10.1002/adma.201803339