Highly Sensitive Ultrathin Flexible Thermoplastic Polyurethane/Carbon Black Fibrous Film Strain Sensor with Adjustable Scaffold Networks
Corresponding Author: Dirk W. Schubert
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 64
Abstract
In recently years, high-performance wearable strain sensors have attracted great attention in academic and industrial. Herein, a conductive polymer composite of electrospun thermoplastic polyurethane (TPU) fibrous film matrix-embedded carbon black (CB) particles with adjustable scaffold network was fabricated for high-sensitive strain sensor. This work indicated the influence of stereoscopic scaffold network structure built under various rotating speeds of collection device in electrospinning process on the electrical response of TPU/CB strain sensor. This structure makes the sensor exhibit combined characters of high sensitivity under stretching strain (gauge factor of 8962.7 at 155% strain), fast response time (60 ms), outstanding stability and durability (> 10,000 cycles) and a widely workable stretching range (0–160%). This high-performance, wearable, flexible strain sensor has a broad vision of application such as intelligent terminals, electrical skins, voice measurement and human motion monitoring. Moreover, a theoretical approach was used to analyze mechanical property and a model based on tunneling theory was modified to describe the relative change of resistance upon the applied strain. Meanwhile, two equations based from this model were first proposed and offered an effective but simple approach to analyze the change of number of conductive paths and distance of adjacent conductive particles.
Highlights:
1 The sensors displayed high sensitivity (8962.7), fast response time (60 ms), outstanding stability and durability (> 10,000 cycles) and widely workable stretching range (0–160%).
2 A theoretical approach was used to analyze mechanical property, and a model based on tunneling theory was modified to describe the relative change of resistance.
3 Two equations were proposed and offered an effective but simple approach to analyze the change of number of conductive paths and distance of adjacent conductive particles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.J. Zhou, P.F. Zhan, M.N. Ren, G.Q. Zheng, K. Dai et al., Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring. ACS Appl. Mater. Interfaces 11, 7405 (2019). https://doi.org/10.1021/acsami.8b20768
- Y.L. Wang, J. Hao, Z.Q. Huang, G.Q. Zheng, K. Dai et al., Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126, 360 (2018). https://doi.org/10.1016/j.carbon.2017.10.034
- M.N. Ren, Y.J. Zhou, Y. Wang, G.Q. Zheng, K. Dai et al., Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wavelike structure. Chem. Eng. J. 360, 762 (2018). https://doi.org/10.1016/j.cej.2018.12.025
- H.L. Sun, K. Dai, W. Zhai, Y.J. Zhou, J. Li, G. Zheng et al., A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl. Mater. Interfaces 11, 36052 (2019). https://doi.org/10.1021/acsami.9b09229
- Y.J. Qin, M.C. Qu, Y.M. Pan, C.H. Zhang, D.W. Schubert, Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing. Compos. Part A: Appl. S. 129, 105724 (2020). https://doi.org/10.1016/j.compositesa.2019.105724
- H. Liu, Q.M. Li, S.D. Zhang, R. Yin, X.H. Liu et al., Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6, 12121 (2018). https://doi.org/10.1039/c8tc04079f
- J.H. Pu, X. Zhao, X. Zha, W.D. Li, K. Ke et al., A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy 74, 104814 (2020). https://doi.org/10.1016/j.nanoen.2020.104814
- J. Jia, J.H. Pu, J.H. Liu, X. Zhao, K. Ke et al., Surface structure engineering for a bionic fiber-based sensor toward linear, tunable, and multifunctional sensing. Mater. Horiz. 7, 2450 (2020). https://doi.org/10.1039/D0MH00716A
- Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424 (2011). https://doi.org/10.1038/nmat3001
- Y. Yu, Y. Luo, A. Guo, L. Yan, Y. Wu et al., Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale 9, 6716 (2017). https://doi.org/10.1039/c6nr09961k
- B.C. Zhang, H. Wang, Y. Zhao, F. Li, X.M. Ou et al., Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring. Nanoscale 8, 2123 (2016). https://doi.org/10.1039/c5nr07546g
- M. Xu, J. Qi, F. Li, Y. Zhang, Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics. Nanoscale 10, 5264 (2018). https://doi.org/10.1039/c7nr09022f
- Z. Cao, R. Wang, T. He, F. Xu, J. Sun, Interface-controlled conductive fibers for wearable strain sensors and stretchable conducting wires. ACS Appl. Mater. Interfaces 10, 14087 (2018). https://doi.org/10.1021/acsami.7b19699
- W. Huang, K. Dai, Y. Zhai, H. Liu, P. Zhan et al., Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Appl. Mater. Interfaces 9, 42266 (2017). https://doi.org/10.1021/acsami.7b16975
- M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8, 5154 (2014). https://doi.org/10.1021/nn501204t
- Z.F. Wang, Y. Huang, J.F. Sun, Y. Huang, H. Hu et al., Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl. Mater. Interfaces 8, 24837 (2016). https://doi.org/10.1021/acsami.6b08207
- Y. Wei, S. Chen, X. Yuan, P. Wang, L. Liu, Multiscale wrinkled microstructures for piezoresistive fibers. Adv. Funct. Mater. 26, 5078 (2016). https://doi.org/10.1002/adfm.201600580
- X.Z. Wang, H.L. Sun, X. Yue, Y. Yu, G. Zheng et al., A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos. Sci. Technol. 168, 126 (2018). https://doi.org/10.1016/j.compscitech.2018.09.006
- D.W. Schubert, Revealing novel power laws and quantization in electrospinning considering jet splitting-toward predicting fiber diameter and its distribution. Macromol. Theor. Simul. 28, 1900006 (2019). https://doi.org/10.1002/mats.201900006
- Y.P. Ding, W. Li, A. Correia, Y. Yang, K. Zheng et al., Electrospun polyhydroxybutyrate/poly(ε-caprolactone)/sol−gel-derived silica hybrid scaffolds with drug releasing function for bone tissue engineering applications. ACS Appl. Mater. Interfaces 10, 14540 (2018). https://doi.org/10.1021/acsami.8b02656
- X. Wang, Y.M. Pan, Y.J. Qin, M. Voigt, X.H. Liu et al., Creep and recovery behavior of injection-molded isotactic polypropylene with controllable skin-core structure. Polym. Test. 69, 478 (2018). https://doi.org/10.1016/j.polymertesting.2018.05.040
- Y. Qin, D.W. Schubert, Simple model to predict the effect of take-up pressure on fibre diameter of PET melt spinning. Polymer 181, 121769 (2019). https://doi.org/10.1016/j.polymer.2019.121769
- X.L. Wang, Y.M. Pan, X.H. Liu, H. Liu, N. Li et al., Facile fabrication of superhydrophobic and eco-friendly poly(lactic acid) foam for oil-water separation via skin peeling. ACS Appl. Mater. Interfaces 11, 14362 (2019). https://doi.org/10.1021/acsami.9b02285
- M.C. Qu, F. Nilsson, Y.J. Qin, G. Yang, Y. Pan et al., Electrical conductivity and mechanical properties of melt-spun ternary composites comprising PMMA, carbon fibers and carbon black. Compos. Sci. Technol. 150, 24 (2017). https://doi.org/10.1016/j.compscitech.2017.07.004
- X.H. Liu, J. Kruckel, G. Zheng, D.W. Schubert, Mapping the electrical conductivity of poly(methyl methacrylate)/carbon black composites prior to and after shear. ACS Appl. Mater. Interfaces 5, 8857 (2013). https://doi.org/10.1021/am4031517
- J. Wang, X. Yan, Z. Zhang, H. Ying, R. Guo et al., Facile preparation of high-content N-doped CNT microspheres for high-performance lithium storage. Adv. Funct. Mater. 29, 1904819 (2019). https://doi.org/10.1002/adfm.201904819
- H. Chen, Z. Su, Y. Song, X. Cheng, X. Chen et al., Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge. Adv. Funct. Mater. 27, 1604434 (2017). https://doi.org/10.1002/adfm.201604434
- J. Huang, D. Li, M. Zhao, A. Mensah, P. Lv, Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv. Electron. Mater. 5, 1900241 (2019). https://doi.org/10.1002/aelm.201900241
- K. Ke, Zh. Sang, I.M. Zloczower, Stretchable elastomer composites with segregated filler networks: effect of carbon nanofiller dimensionality. Nanoscale Adv. 1, 2337 (2019). https://doi.org/10.1039/C9NA00176J
- H.G. Xu, M.C. Qu, D.W. Schubert, Conductivity of poly(methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers. Compos. Sci. Technol. 181, 107690 (2019). https://doi.org/10.1016/j.compscitech.2019.107690
- C.S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou et al., Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354, 6317 (2016). https://doi.org/10.1126/science.aag2879
- Y. Li, S. Wang, Z. Xiao, Y. Yang, B. Deng et al., Flexible TPU strain sensors with tunable sensitivity and stretchability by coupling AgNWs with rGO. J. Mater. Chem. C 8, 4040 (2020). https://doi.org/10.1039/D0TC00029A
- J. Pu, X. Zhao, X. Zha, L. Bai, K. Ke et al., Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 7, 15913 (2019). https://doi.org/10.1039/C9TA04352G
- K. Yang, F. Yin, D. Xia, H. Peng, J. Yang et al., A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. J. Mater. Chem. A 11, 9949 (2019). https://doi.org/10.1039/c9nr00488b
- C. Lozano-Pérez, J.V. Cauich-Rodríguez, F. Avilés, Influence of rigid segment and carbon nanotube concentration on the cyclic piezoresistive and hysteretic behavior of multiwall carbon nanotube/segmented polyurethane composites. Compos. Sci. Technol. 128, 25 (2016). https://doi.org/10.1016/j.compscitech.2016.03.010
- Y. Wang, Y. Ji, Y. Zhou, Y. Wang, G. Zheng et al., Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J. Mater. Chem. C 6, 8160 (2018). https://doi.org/10.1039/c8tc02702a
- Z. Sang, K. Ke, I. Manas-Zloczower, Interface design strategy for the fabrication of highly stretchable strain sensors. ACS Appl. Mater. Interfaces 10, 36483 (2018). https://doi.org/10.1021/acsami.8b14573
- K. Ke, V.S. Bonab, D. Yuan, I. Manas-Zloczower, Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon 139, 52 (2018). https://doi.org/10.1016/j.carbon.2018.06.037
- S. Gong, J. Zhang, C. Wang, K. Ren, Z. Wang, A monocharged electret nanogenerator-based self-powered device for pressure and tactile sensor applications. Adv. Funct. Mater. 29, 1807618 (2019). https://doi.org/10.1002/adfm.201970284
- K. Zhao, S. Li, M. Huang, X. Shi, G. Zheng et al., Remarkably anisotropic conductive MWCNTs/polypropylene nanocomposites with alternating microlayers. Chem. Eng. J. 358, 924 (2019). https://doi.org/10.1016/j.cej.2018.10.078
- D.W. Schubert, Novel theoretical self-consistent mean-field approach to describe the conductivity of carbon fiber-filled thermoplastics: part iii—application of the concept to mechanical properties of composites and polymer solutions. Adv. Eng. Mater. (2020). https://doi.org/10.1002/adem.202000171
- Y.J. Zheng, Y.L. Li, Z. Li, Y. Wang, K. Dai et al., The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors. Compos. Sci. Technol. 139, 64 (2017). https://doi.org/10.1016/j.compscitech.2016.12.014
- J. Zhou, X.Z. Xu, Y. Xin, G. Lubineau, Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 28, 1705591 (2018). https://doi.org/10.1002/adfm.201705591
- Y. Li, B. Zhou, G. Zheng, X. Liu, T. Li et al., Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C 6, 2258 (2018). https://doi.org/10.1039/c7tc04959e
- M. Zhang, C. Wang, Q. Wang, M. Jian, Y. Zhang, Sheath–core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces 8, 20894 (2016). https://doi.org/10.1021/acsami.6b06984
- Y.Q. Li, W.B. Zhu, X.G. Yu, P. Huang, S.Y. Fu et al., Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite. ACS Appl. Mater. Interfaces 8, 33189 (2016). https://doi.org/10.1021/acsami.6b11196
- Y. Lin, S. Liu, S. Chen, Y. Wei, X. Dong, L. Liu, A highly stretchable and sensitive strain sensor based on graphene-elastomer composites with a novel double-interconnected network. J. Mater. Chem. C 4, 6345 (2016). https://doi.org/10.1039/C6TC01925K
- Y. Tang, Z. Zhao, H. Hu, Y. Liu, X. Wang et al., Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite. ACS Appl. Mater. Interfaces 7, 27432 (2015). https://doi.org/10.1021/acsami.5b09314
- G. Shi, Z. Zhao, J.H. Pai, I. Lee, L. Zhang et al., Highly sensitive, wearable, durable strain sensors and stretchable conductors using graphene/silicon rubber composites. Adv. Funct. Mater. 26, 7614 (2016). https://doi.org/10.1002/adfm.201602619
- S. Gong, D. Lai, B. Su, K. Si, Z. Ma et al., Highly stretchy black gold E-skin nanopatches as highly sensitive wearable biomedical sensors. Adv. Electron. Mater. 1, 1400063 (2015). https://doi.org/10.1002/aelm.201400063
- H. Liu, Y. Li, K. Dai, G. Zheng, C. Liu et al., Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. J. Mater. Chem. C 4, 157 (2016). https://doi.org/10.1039/C6NR02216B
- X. Wu, Y. Han, X. Zhang, C. Lu, Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl. Mater. Interfaces 9, 23007 (2017). https://doi.org/10.1021/acsami.6b01174
- F. Pan, S. Chen, Y. Li, Z. Tao, J. Ye et al., 3D graphene films enable simultaneously high sensitivity and large stretchability for strain sensors. Adv. Funct. Mater. 28, 1803221 (2018). https://doi.org/10.1002/adfm.201803221
- J. Huang, D. Li, M. Zhao, A. Mensah, P. Lv et al., Highly sensitive and stretchable CNT-bridged AgNP Strain Sensor Based on TPU electrospun membrane for human motion detection. Adv. Funct. Mater. 5, 1900241 (2019). https://doi.org/10.1002/aelm.201900241
- S. Zhao, D. Lou, G. Li, Y. Zheng, G. Zheng et al., Bridging the segregated structure in conductive polypropylene composites: an effective strategy to balance the sensitivity and stability of strain sensing performances. Compos. Sci. Technol. 163, 18 (2018). https://doi.org/10.1016/j.compscitech.2018.05.006
References
Y.J. Zhou, P.F. Zhan, M.N. Ren, G.Q. Zheng, K. Dai et al., Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring. ACS Appl. Mater. Interfaces 11, 7405 (2019). https://doi.org/10.1021/acsami.8b20768
Y.L. Wang, J. Hao, Z.Q. Huang, G.Q. Zheng, K. Dai et al., Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126, 360 (2018). https://doi.org/10.1016/j.carbon.2017.10.034
M.N. Ren, Y.J. Zhou, Y. Wang, G.Q. Zheng, K. Dai et al., Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wavelike structure. Chem. Eng. J. 360, 762 (2018). https://doi.org/10.1016/j.cej.2018.12.025
H.L. Sun, K. Dai, W. Zhai, Y.J. Zhou, J. Li, G. Zheng et al., A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl. Mater. Interfaces 11, 36052 (2019). https://doi.org/10.1021/acsami.9b09229
Y.J. Qin, M.C. Qu, Y.M. Pan, C.H. Zhang, D.W. Schubert, Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing. Compos. Part A: Appl. S. 129, 105724 (2020). https://doi.org/10.1016/j.compositesa.2019.105724
H. Liu, Q.M. Li, S.D. Zhang, R. Yin, X.H. Liu et al., Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6, 12121 (2018). https://doi.org/10.1039/c8tc04079f
J.H. Pu, X. Zhao, X. Zha, W.D. Li, K. Ke et al., A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy 74, 104814 (2020). https://doi.org/10.1016/j.nanoen.2020.104814
J. Jia, J.H. Pu, J.H. Liu, X. Zhao, K. Ke et al., Surface structure engineering for a bionic fiber-based sensor toward linear, tunable, and multifunctional sensing. Mater. Horiz. 7, 2450 (2020). https://doi.org/10.1039/D0MH00716A
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424 (2011). https://doi.org/10.1038/nmat3001
Y. Yu, Y. Luo, A. Guo, L. Yan, Y. Wu et al., Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale 9, 6716 (2017). https://doi.org/10.1039/c6nr09961k
B.C. Zhang, H. Wang, Y. Zhao, F. Li, X.M. Ou et al., Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring. Nanoscale 8, 2123 (2016). https://doi.org/10.1039/c5nr07546g
M. Xu, J. Qi, F. Li, Y. Zhang, Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics. Nanoscale 10, 5264 (2018). https://doi.org/10.1039/c7nr09022f
Z. Cao, R. Wang, T. He, F. Xu, J. Sun, Interface-controlled conductive fibers for wearable strain sensors and stretchable conducting wires. ACS Appl. Mater. Interfaces 10, 14087 (2018). https://doi.org/10.1021/acsami.7b19699
W. Huang, K. Dai, Y. Zhai, H. Liu, P. Zhan et al., Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Appl. Mater. Interfaces 9, 42266 (2017). https://doi.org/10.1021/acsami.7b16975
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8, 5154 (2014). https://doi.org/10.1021/nn501204t
Z.F. Wang, Y. Huang, J.F. Sun, Y. Huang, H. Hu et al., Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl. Mater. Interfaces 8, 24837 (2016). https://doi.org/10.1021/acsami.6b08207
Y. Wei, S. Chen, X. Yuan, P. Wang, L. Liu, Multiscale wrinkled microstructures for piezoresistive fibers. Adv. Funct. Mater. 26, 5078 (2016). https://doi.org/10.1002/adfm.201600580
X.Z. Wang, H.L. Sun, X. Yue, Y. Yu, G. Zheng et al., A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos. Sci. Technol. 168, 126 (2018). https://doi.org/10.1016/j.compscitech.2018.09.006
D.W. Schubert, Revealing novel power laws and quantization in electrospinning considering jet splitting-toward predicting fiber diameter and its distribution. Macromol. Theor. Simul. 28, 1900006 (2019). https://doi.org/10.1002/mats.201900006
Y.P. Ding, W. Li, A. Correia, Y. Yang, K. Zheng et al., Electrospun polyhydroxybutyrate/poly(ε-caprolactone)/sol−gel-derived silica hybrid scaffolds with drug releasing function for bone tissue engineering applications. ACS Appl. Mater. Interfaces 10, 14540 (2018). https://doi.org/10.1021/acsami.8b02656
X. Wang, Y.M. Pan, Y.J. Qin, M. Voigt, X.H. Liu et al., Creep and recovery behavior of injection-molded isotactic polypropylene with controllable skin-core structure. Polym. Test. 69, 478 (2018). https://doi.org/10.1016/j.polymertesting.2018.05.040
Y. Qin, D.W. Schubert, Simple model to predict the effect of take-up pressure on fibre diameter of PET melt spinning. Polymer 181, 121769 (2019). https://doi.org/10.1016/j.polymer.2019.121769
X.L. Wang, Y.M. Pan, X.H. Liu, H. Liu, N. Li et al., Facile fabrication of superhydrophobic and eco-friendly poly(lactic acid) foam for oil-water separation via skin peeling. ACS Appl. Mater. Interfaces 11, 14362 (2019). https://doi.org/10.1021/acsami.9b02285
M.C. Qu, F. Nilsson, Y.J. Qin, G. Yang, Y. Pan et al., Electrical conductivity and mechanical properties of melt-spun ternary composites comprising PMMA, carbon fibers and carbon black. Compos. Sci. Technol. 150, 24 (2017). https://doi.org/10.1016/j.compscitech.2017.07.004
X.H. Liu, J. Kruckel, G. Zheng, D.W. Schubert, Mapping the electrical conductivity of poly(methyl methacrylate)/carbon black composites prior to and after shear. ACS Appl. Mater. Interfaces 5, 8857 (2013). https://doi.org/10.1021/am4031517
J. Wang, X. Yan, Z. Zhang, H. Ying, R. Guo et al., Facile preparation of high-content N-doped CNT microspheres for high-performance lithium storage. Adv. Funct. Mater. 29, 1904819 (2019). https://doi.org/10.1002/adfm.201904819
H. Chen, Z. Su, Y. Song, X. Cheng, X. Chen et al., Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge. Adv. Funct. Mater. 27, 1604434 (2017). https://doi.org/10.1002/adfm.201604434
J. Huang, D. Li, M. Zhao, A. Mensah, P. Lv, Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv. Electron. Mater. 5, 1900241 (2019). https://doi.org/10.1002/aelm.201900241
K. Ke, Zh. Sang, I.M. Zloczower, Stretchable elastomer composites with segregated filler networks: effect of carbon nanofiller dimensionality. Nanoscale Adv. 1, 2337 (2019). https://doi.org/10.1039/C9NA00176J
H.G. Xu, M.C. Qu, D.W. Schubert, Conductivity of poly(methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers. Compos. Sci. Technol. 181, 107690 (2019). https://doi.org/10.1016/j.compscitech.2019.107690
C.S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou et al., Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354, 6317 (2016). https://doi.org/10.1126/science.aag2879
Y. Li, S. Wang, Z. Xiao, Y. Yang, B. Deng et al., Flexible TPU strain sensors with tunable sensitivity and stretchability by coupling AgNWs with rGO. J. Mater. Chem. C 8, 4040 (2020). https://doi.org/10.1039/D0TC00029A
J. Pu, X. Zhao, X. Zha, L. Bai, K. Ke et al., Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 7, 15913 (2019). https://doi.org/10.1039/C9TA04352G
K. Yang, F. Yin, D. Xia, H. Peng, J. Yang et al., A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. J. Mater. Chem. A 11, 9949 (2019). https://doi.org/10.1039/c9nr00488b
C. Lozano-Pérez, J.V. Cauich-Rodríguez, F. Avilés, Influence of rigid segment and carbon nanotube concentration on the cyclic piezoresistive and hysteretic behavior of multiwall carbon nanotube/segmented polyurethane composites. Compos. Sci. Technol. 128, 25 (2016). https://doi.org/10.1016/j.compscitech.2016.03.010
Y. Wang, Y. Ji, Y. Zhou, Y. Wang, G. Zheng et al., Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J. Mater. Chem. C 6, 8160 (2018). https://doi.org/10.1039/c8tc02702a
Z. Sang, K. Ke, I. Manas-Zloczower, Interface design strategy for the fabrication of highly stretchable strain sensors. ACS Appl. Mater. Interfaces 10, 36483 (2018). https://doi.org/10.1021/acsami.8b14573
K. Ke, V.S. Bonab, D. Yuan, I. Manas-Zloczower, Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon 139, 52 (2018). https://doi.org/10.1016/j.carbon.2018.06.037
S. Gong, J. Zhang, C. Wang, K. Ren, Z. Wang, A monocharged electret nanogenerator-based self-powered device for pressure and tactile sensor applications. Adv. Funct. Mater. 29, 1807618 (2019). https://doi.org/10.1002/adfm.201970284
K. Zhao, S. Li, M. Huang, X. Shi, G. Zheng et al., Remarkably anisotropic conductive MWCNTs/polypropylene nanocomposites with alternating microlayers. Chem. Eng. J. 358, 924 (2019). https://doi.org/10.1016/j.cej.2018.10.078
D.W. Schubert, Novel theoretical self-consistent mean-field approach to describe the conductivity of carbon fiber-filled thermoplastics: part iii—application of the concept to mechanical properties of composites and polymer solutions. Adv. Eng. Mater. (2020). https://doi.org/10.1002/adem.202000171
Y.J. Zheng, Y.L. Li, Z. Li, Y. Wang, K. Dai et al., The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors. Compos. Sci. Technol. 139, 64 (2017). https://doi.org/10.1016/j.compscitech.2016.12.014
J. Zhou, X.Z. Xu, Y. Xin, G. Lubineau, Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 28, 1705591 (2018). https://doi.org/10.1002/adfm.201705591
Y. Li, B. Zhou, G. Zheng, X. Liu, T. Li et al., Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C 6, 2258 (2018). https://doi.org/10.1039/c7tc04959e
M. Zhang, C. Wang, Q. Wang, M. Jian, Y. Zhang, Sheath–core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces 8, 20894 (2016). https://doi.org/10.1021/acsami.6b06984
Y.Q. Li, W.B. Zhu, X.G. Yu, P. Huang, S.Y. Fu et al., Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite. ACS Appl. Mater. Interfaces 8, 33189 (2016). https://doi.org/10.1021/acsami.6b11196
Y. Lin, S. Liu, S. Chen, Y. Wei, X. Dong, L. Liu, A highly stretchable and sensitive strain sensor based on graphene-elastomer composites with a novel double-interconnected network. J. Mater. Chem. C 4, 6345 (2016). https://doi.org/10.1039/C6TC01925K
Y. Tang, Z. Zhao, H. Hu, Y. Liu, X. Wang et al., Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite. ACS Appl. Mater. Interfaces 7, 27432 (2015). https://doi.org/10.1021/acsami.5b09314
G. Shi, Z. Zhao, J.H. Pai, I. Lee, L. Zhang et al., Highly sensitive, wearable, durable strain sensors and stretchable conductors using graphene/silicon rubber composites. Adv. Funct. Mater. 26, 7614 (2016). https://doi.org/10.1002/adfm.201602619
S. Gong, D. Lai, B. Su, K. Si, Z. Ma et al., Highly stretchy black gold E-skin nanopatches as highly sensitive wearable biomedical sensors. Adv. Electron. Mater. 1, 1400063 (2015). https://doi.org/10.1002/aelm.201400063
H. Liu, Y. Li, K. Dai, G. Zheng, C. Liu et al., Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. J. Mater. Chem. C 4, 157 (2016). https://doi.org/10.1039/C6NR02216B
X. Wu, Y. Han, X. Zhang, C. Lu, Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl. Mater. Interfaces 9, 23007 (2017). https://doi.org/10.1021/acsami.6b01174
F. Pan, S. Chen, Y. Li, Z. Tao, J. Ye et al., 3D graphene films enable simultaneously high sensitivity and large stretchability for strain sensors. Adv. Funct. Mater. 28, 1803221 (2018). https://doi.org/10.1002/adfm.201803221
J. Huang, D. Li, M. Zhao, A. Mensah, P. Lv et al., Highly sensitive and stretchable CNT-bridged AgNP Strain Sensor Based on TPU electrospun membrane for human motion detection. Adv. Funct. Mater. 5, 1900241 (2019). https://doi.org/10.1002/aelm.201900241
S. Zhao, D. Lou, G. Li, Y. Zheng, G. Zheng et al., Bridging the segregated structure in conductive polypropylene composites: an effective strategy to balance the sensitivity and stability of strain sensing performances. Compos. Sci. Technol. 163, 18 (2018). https://doi.org/10.1016/j.compscitech.2018.05.006