Band Engineering and Morphology Control of Oxygen-Incorporated Graphitic Carbon Nitride Porous Nanosheets for Highly Efficient Photocatalytic Hydrogen Evolution
Corresponding Author: Yazhou Zhou
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 48
Abstract
Graphitic carbon nitride (g-C3N4)-based photocatalysts have shown great potential in the splitting of water. However, the intrinsic drawbacks of g-C3N4, such as low surface area, poor diffusion, and charge separation efficiency, remain as the bottleneck to achieve highly efficient hydrogen evolution. Here, a hollow oxygen-incorporated g-C3N4 nanosheet (OCN) with an improved surface area of 148.5 m2 g−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere, wherein the C–O bonds are formed through two ways of physical adsorption and doping. The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects, leading to the formation of hollow morphology, while the O-doping results in reduced band gap of g-C3N4. The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6 μmol g−1 h−1 for ~ 20 h, which is over four times higher than that of g-C3N4 (850.1 μmol g−1 h−1) and outperforms most of the reported g-C3N4 catalysts.
Highlights:
1 The multiple thermal treatments strategy is proposed for preparing the hollow oxygen-incorporated g-C3N4 nanosheets (OCN).
2 Oxygen-adsorption creates a lot of defects to the formation of hollow and monolayered structure, while oxygen-doping reduces the band gap significantly.
3 OCN exhibits stable and high photocatalytic hydrogen evolution with increased surface area, enhanced charge transport, and reduced band gap.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Qian, X. Meng, J. Sun, L. Jiang, Y. Wang et al., Salt-assisted synthesis of 3D porous g-C3N4 as a bifunctional photo- and electrocatalyst. ACS Appl. Mater. Interfaces 11, 27226–27232 (2019). https://doi.org/10.1021/acsami.9b08651
- J. Sun, J. Xu, A. Grafmueller, X. Huang, C. Liedel et al., Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Appl. Catal. B: Environ. 205, 1–10 (2017). https://doi.org/10.1016/j.apcatb.2016.12.030
- O. Elbanna, M. Zhu, M. Fujitsuka, T. Majima, Black phosphorus sensitized TiO2 mesocrystal photocatalyst for hydrogen evolution with visible and near-infrared light irradiation. ACS Catal. 9, 3618–3626 (2019). https://doi.org/10.1021/acscatal.8b05081
- J. Sun, R. Malishev, A. Azoulay, J. Tzadikov, M. Volokh et al., Carbon and nitrogen based nanosheets as fluorescent probes with tunable emission. Small 14, 1800516 (2018). https://doi.org/10.1002/smll.201800516
- X. Tao, Y. Zhou, K. Xu, Y. Wu, J. Mi et al., Bifunctional material with organic pollutant removing and antimicrobial properties: graphene aerogel decorated with highly dispersed Ag and CeO2 nanoparticles. ACS Sustain. Chem. Eng. 6, 16907–16919 (2018). https://doi.org/10.1021/acssuschemeng.8b04251
- J. Ran, J. Qu, H. Zhang, T. Wen, H. Wang et al., 2D metal organic framework nanosheet: a universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 9, 1803402 (2019). https://doi.org/10.1002/aenm.201803402
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
- X. Qian, J. Ding, J. Zhang, Y. Zhang, Y. Wang et al., Ultrathin molybdenum disulfide/carbon nitride nanosheets with abundant active sites for enhanced hydrogen evolution. Nanoscale 10, 1766–1773 (2018). https://doi.org/10.1039/C7NR07213A
- X. Han, D. Xu, L. An, C. Hou, Y. Li et al., Ni-Mo nanoparticles as co-catalyst for drastically enhanced photocatalytic hydrogen production activity over g-C3N4. Appl. Catal. B: Environ. 243, 136–144 (2019). https://doi.org/10.1016/j.apcatb.2018.10.003
- W. Luo, X. Chen, Z. Wei, D. Liu, W. Yao et al., Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance. Appl. Catal. B: Environ. 255, 117761 (2019). https://doi.org/10.1016/j.apcatb.2019.117761
- Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto et al., Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4, 774–780 (2014). https://doi.org/10.1021/cs401208c
- H. Huang, M. Yan, C. Yang, H. He, Q. Jiang et al., Graphene nanoarchitectonics: recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv. Mater. 31, 1903415 (2019). https://doi.org/10.1002/adma.201903415
- H. Wang, Q. Lin, L. Yin, Y. Yang, Y. Qiu et al., Biomimetic design of hollow flower-like g-C3N4@PDA organic framework nanospheres for realizing an efficient photoreactivity. Small 15, 1900011 (2019). https://doi.org/10.1002/smll.201900011
- Q. Xu, B. Zhu, B. Cheng, J. Yu, M. Zhou et al., Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites. Appl. Catal. B: Environ. 255, 117770 (2019). https://doi.org/10.1016/j.apcatb.2019.117770
- X. Li, X. Wang, M. Antonietti, Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 3, 2170–2174 (2012). https://doi.org/10.1039/C2SC20289A
- G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen et al., Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132, 11642–11648 (2010). https://doi.org/10.1021/ja103798k
- J. Huang, D. Li, R. Li, Q. Zhang, T. Chen et al., An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics. Chem. Eng. J. 374, 242–253 (2019). https://doi.org/10.1016/j.cej.2019.05.175
- Y. Kang, Y. Yang, L. Yin, X. Kang, G. Liu et al., An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 27, 4572–4577 (2015). https://doi.org/10.1002/adma.201501939
- X. She, J. Wu, H. Xu, J. Zhong, Y. Wang et al., High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv. Energy Mater. 7, 1700025 (2017). https://doi.org/10.1002/aenm.201700025
- P. Niu, M. Qiao, Y. Li, L. Huang, T. Zhai, Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy 44, 73–81 (2018). https://doi.org/10.1016/j.nanoen.2017.11.059
- J. Ran, T.Y. Ma, G. Gao, X. Du, S. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015). https://doi.org/10.1039/C5EE02650D
- J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu et al., Metal-free 2D/2D phosphorene/g-C3N4 van der waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 30, 1800128 (2018). https://doi.org/10.1002/adma.201800128
- Y. Zhang, T. Mori, J. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132, 6294–6295 (2010). https://doi.org/10.1021/ja101749y
- F. Yang, D. Liu, Y. Li, L. Cheng, J. Ye, Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production. Appl. Catal. B: Environ. 240, 64–71 (2019). https://doi.org/10.1016/j.apcatb.2018.08.072
- B. Wulan, S. Yi, S. Li, Y. Duan, J. Yan et al., Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting. Appl. Catal. B: Environ. 231, 43–50 (2018). https://doi.org/10.1016/j.apcatb.2018.02.045
- Y. Zhu, T. Ren, Z. Yuan, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 7, 16850–16856 (2015). https://doi.org/10.1021/acsami.5b04947
- X. She, J. Wu, J. Zhong, H. Xu, Y. Yang et al., Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy 27, 138–146 (2016). https://doi.org/10.1016/j.nanoen.2016.06.042
- H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29, 1605148 (2017). https://doi.org/10.1002/adma.201605148
- Y. Zeng, X. Liu, C. Liu, L. Wang, Y. Xia et al., Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B: Environ. 224, 1–9 (2018). https://doi.org/10.1016/j.apcatb.2017.10.042
- Y. Wu, Y. Zhou, H. Xu, Q. Liu, Y. Li et al., Highly active, superstable, and biocompatible Ag/polydopamine/g-C3N4 bactericidal photocatalyst: synthesis, characterization, and mechanism. ACS Sustain. Chem. Eng. 6, 14082–14094 (2018). https://doi.org/10.1021/acssuschemeng.8b02620
- Y. Kang, Y. Yang, L. Yin, X. Kang, L. Wang et al., Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv. Mater. 28, 6471–6477 (2016). https://doi.org/10.1002/adma.201601567
- S. Su, Q. Han, X. Wang, J. Zhu, Synthesis of nanosheet-based hierarchical BiO2 microtubes and its photocatalytic performance. Appl. Surf. Sci. 455, 616–621 (2018). https://doi.org/10.1016/j.apsusc.2018.05.164
- Y. Wu, L. Zhang, Y. Zhou, L. Zhang, Y. Li et al., Light-induced ZnO/Ag/rGO bactericidal photocatalyst with synergistic effect of sustained release of silver ions and enhanced reactive oxygen species. Chin. J. Catal. 40, 691–702 (2019). https://doi.org/10.1016/S1872-2067(18)63193-6
- X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131, 11658–11659 (2009). https://doi.org/10.1021/ja903923s
- Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang et al., Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 30, 1704342 (2018). https://doi.org/10.1002/adma.201704342
- C. Dong, Z. Ma, R. Qie, X. Guo, C. Li et al., Morphology and defects regulation of carbon nitride by hydrochloric acid to boost visible light absorption and photocatalytic activity. Appl. Catal. B: Environ. 217, 629–636 (2017). https://doi.org/10.1016/j.apcatb.2017.06.028
- J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You et al., Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13, 1603938 (2017). https://doi.org/10.1002/smll.201603938
- F. Wei, Y. Liu, H. Zhao, X. Ren, J. Liu et al., Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance. Nanoscale 10, 4515–4522 (2018). https://doi.org/10.1039/C7NR09660G
- C. Yang, Q. Jiang, W. Li, H. He, L. Yang et al., Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced grapheme oxide and MXene nanosheets for methanol oxidation. Chem. Mater. 31, 9277–9287 (2019). https://doi.org/10.1021/acs.chemmater.9b02115
- R. Zhong, Z. Zhang, S. Luo, Z.C. Zhang, L. Huang et al., Comparison of TiO2 and g-C3N4 2D/2D nanocomposites from three synthesis protocols for visible-light induced hydrogen evolution. Catal. Sci. Technol. 9, 75–85 (2019). https://doi.org/10.1039/C8CY00965A
- V.W. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M.B. Mesch et al., Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nature Commun. 7, 12165 (2016). https://doi.org/10.1038/ncomms12165
- C. Liu, H. Huang, W. Cui, F. Dong, Y. Zhang, Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 230, 115–124 (2018). https://doi.org/10.1016/j.apcatb.2018.02.038
- Y. Yu, W. Yan, X. Wang, P. Li, W. Gao et al., Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 30, 1705060 (2018). https://doi.org/10.1002/adma.201705060
- D. Xu, B. Cheng, W. Wang, C. Jiang, J. Yu, Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B: Environ. 231, 368–380 (2018). https://doi.org/10.1016/j.apcatb.2018.03.036
- J. Tang, R. Guo, W. Zhou, C. Huang, W. Pan, Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl. Catal. B: Environ. 237, 802–810 (2018). https://doi.org/10.1016/j.apcatb.2018.06.042
- H. Li, Y. Wu, C. Li, Y. Gong, L. Niu et al., Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction. Appl. Catal. B: Environ. 251, 305–312 (2019). https://doi.org/10.1016/j.apcatb.2019.03.079
- D. Zeng, T. Zhou, W. Ong, M. Wu, X. Duan et al., Sub-5 nm ultra-fine FeP nanodots as efficient Co-catalysts modified porous g-C3N4 for precious-metal-free photocatalytic hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 11, 5651–5660 (2019). https://doi.org/10.1021/acsami.8b20958
- Z. Guan, Y. Wu, P. Wang, Q. Zhang, Z. Wang et al., Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light. Appl. Catal. B: Environ. 245, 522–527 (2019). https://doi.org/10.1016/j.apcatb.2019.01.019
- S. Zang, G. Zhang, Z. Lan, D. Zheng, X. Wang, Enhancement of photocatalytic H2 evolution on pyrene-based polymer promoted by MoS2 and visible light. Appl. Catal. B: Environ. 251, 102–111 (2019). https://doi.org/10.1016/j.apcatb.2019.03.061
- L. Yang, L. Zeng, H. Liu, Y. Deng, Z. Zhou et al., Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. Appl. Catal. B: Environ. 249, 98–105 (2019). https://doi.org/10.1016/j.apcatb.2019.02.062
- Q. Liu, J. Shen, X. Yu, X. Yang, W. Liu et al., Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C3N4 nanosheets. Appl. Catal. B: Environ. 248, 84–94 (2019). https://doi.org/10.1016/j.apcatb.2019.02.020
- X. Zhang, C. Yang, Z. Xue, C. Zhang, J. Qin et al., Spatial separation of charge carriers via heterogeneous structural defects in graphitic carbon nitride for photocatalytic hydrogen evolution. ACS Appl. Nano Mater. 3, 4428–4436 (2020). https://doi.org/10.1021/acsanm.0c00535
- J. Chen, X. Tao, L. Tao, H. Li, C. Li et al., Novel conjugated organic polymers as candidates for visible-light-driven photocatalytic hydrogen production. Appl. Catal. B: Environ. 241, 461–470 (2019). https://doi.org/10.1016/j.apcatb.2018.09.011
References
X. Qian, X. Meng, J. Sun, L. Jiang, Y. Wang et al., Salt-assisted synthesis of 3D porous g-C3N4 as a bifunctional photo- and electrocatalyst. ACS Appl. Mater. Interfaces 11, 27226–27232 (2019). https://doi.org/10.1021/acsami.9b08651
J. Sun, J. Xu, A. Grafmueller, X. Huang, C. Liedel et al., Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Appl. Catal. B: Environ. 205, 1–10 (2017). https://doi.org/10.1016/j.apcatb.2016.12.030
O. Elbanna, M. Zhu, M. Fujitsuka, T. Majima, Black phosphorus sensitized TiO2 mesocrystal photocatalyst for hydrogen evolution with visible and near-infrared light irradiation. ACS Catal. 9, 3618–3626 (2019). https://doi.org/10.1021/acscatal.8b05081
J. Sun, R. Malishev, A. Azoulay, J. Tzadikov, M. Volokh et al., Carbon and nitrogen based nanosheets as fluorescent probes with tunable emission. Small 14, 1800516 (2018). https://doi.org/10.1002/smll.201800516
X. Tao, Y. Zhou, K. Xu, Y. Wu, J. Mi et al., Bifunctional material with organic pollutant removing and antimicrobial properties: graphene aerogel decorated with highly dispersed Ag and CeO2 nanoparticles. ACS Sustain. Chem. Eng. 6, 16907–16919 (2018). https://doi.org/10.1021/acssuschemeng.8b04251
J. Ran, J. Qu, H. Zhang, T. Wen, H. Wang et al., 2D metal organic framework nanosheet: a universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 9, 1803402 (2019). https://doi.org/10.1002/aenm.201803402
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
X. Qian, J. Ding, J. Zhang, Y. Zhang, Y. Wang et al., Ultrathin molybdenum disulfide/carbon nitride nanosheets with abundant active sites for enhanced hydrogen evolution. Nanoscale 10, 1766–1773 (2018). https://doi.org/10.1039/C7NR07213A
X. Han, D. Xu, L. An, C. Hou, Y. Li et al., Ni-Mo nanoparticles as co-catalyst for drastically enhanced photocatalytic hydrogen production activity over g-C3N4. Appl. Catal. B: Environ. 243, 136–144 (2019). https://doi.org/10.1016/j.apcatb.2018.10.003
W. Luo, X. Chen, Z. Wei, D. Liu, W. Yao et al., Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance. Appl. Catal. B: Environ. 255, 117761 (2019). https://doi.org/10.1016/j.apcatb.2019.117761
Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto et al., Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4, 774–780 (2014). https://doi.org/10.1021/cs401208c
H. Huang, M. Yan, C. Yang, H. He, Q. Jiang et al., Graphene nanoarchitectonics: recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv. Mater. 31, 1903415 (2019). https://doi.org/10.1002/adma.201903415
H. Wang, Q. Lin, L. Yin, Y. Yang, Y. Qiu et al., Biomimetic design of hollow flower-like g-C3N4@PDA organic framework nanospheres for realizing an efficient photoreactivity. Small 15, 1900011 (2019). https://doi.org/10.1002/smll.201900011
Q. Xu, B. Zhu, B. Cheng, J. Yu, M. Zhou et al., Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites. Appl. Catal. B: Environ. 255, 117770 (2019). https://doi.org/10.1016/j.apcatb.2019.117770
X. Li, X. Wang, M. Antonietti, Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 3, 2170–2174 (2012). https://doi.org/10.1039/C2SC20289A
G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen et al., Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132, 11642–11648 (2010). https://doi.org/10.1021/ja103798k
J. Huang, D. Li, R. Li, Q. Zhang, T. Chen et al., An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics. Chem. Eng. J. 374, 242–253 (2019). https://doi.org/10.1016/j.cej.2019.05.175
Y. Kang, Y. Yang, L. Yin, X. Kang, G. Liu et al., An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 27, 4572–4577 (2015). https://doi.org/10.1002/adma.201501939
X. She, J. Wu, H. Xu, J. Zhong, Y. Wang et al., High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv. Energy Mater. 7, 1700025 (2017). https://doi.org/10.1002/aenm.201700025
P. Niu, M. Qiao, Y. Li, L. Huang, T. Zhai, Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy 44, 73–81 (2018). https://doi.org/10.1016/j.nanoen.2017.11.059
J. Ran, T.Y. Ma, G. Gao, X. Du, S. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015). https://doi.org/10.1039/C5EE02650D
J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu et al., Metal-free 2D/2D phosphorene/g-C3N4 van der waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 30, 1800128 (2018). https://doi.org/10.1002/adma.201800128
Y. Zhang, T. Mori, J. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132, 6294–6295 (2010). https://doi.org/10.1021/ja101749y
F. Yang, D. Liu, Y. Li, L. Cheng, J. Ye, Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production. Appl. Catal. B: Environ. 240, 64–71 (2019). https://doi.org/10.1016/j.apcatb.2018.08.072
B. Wulan, S. Yi, S. Li, Y. Duan, J. Yan et al., Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting. Appl. Catal. B: Environ. 231, 43–50 (2018). https://doi.org/10.1016/j.apcatb.2018.02.045
Y. Zhu, T. Ren, Z. Yuan, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 7, 16850–16856 (2015). https://doi.org/10.1021/acsami.5b04947
X. She, J. Wu, J. Zhong, H. Xu, Y. Yang et al., Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy 27, 138–146 (2016). https://doi.org/10.1016/j.nanoen.2016.06.042
H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29, 1605148 (2017). https://doi.org/10.1002/adma.201605148
Y. Zeng, X. Liu, C. Liu, L. Wang, Y. Xia et al., Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B: Environ. 224, 1–9 (2018). https://doi.org/10.1016/j.apcatb.2017.10.042
Y. Wu, Y. Zhou, H. Xu, Q. Liu, Y. Li et al., Highly active, superstable, and biocompatible Ag/polydopamine/g-C3N4 bactericidal photocatalyst: synthesis, characterization, and mechanism. ACS Sustain. Chem. Eng. 6, 14082–14094 (2018). https://doi.org/10.1021/acssuschemeng.8b02620
Y. Kang, Y. Yang, L. Yin, X. Kang, L. Wang et al., Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv. Mater. 28, 6471–6477 (2016). https://doi.org/10.1002/adma.201601567
S. Su, Q. Han, X. Wang, J. Zhu, Synthesis of nanosheet-based hierarchical BiO2 microtubes and its photocatalytic performance. Appl. Surf. Sci. 455, 616–621 (2018). https://doi.org/10.1016/j.apsusc.2018.05.164
Y. Wu, L. Zhang, Y. Zhou, L. Zhang, Y. Li et al., Light-induced ZnO/Ag/rGO bactericidal photocatalyst with synergistic effect of sustained release of silver ions and enhanced reactive oxygen species. Chin. J. Catal. 40, 691–702 (2019). https://doi.org/10.1016/S1872-2067(18)63193-6
X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131, 11658–11659 (2009). https://doi.org/10.1021/ja903923s
Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang et al., Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 30, 1704342 (2018). https://doi.org/10.1002/adma.201704342
C. Dong, Z. Ma, R. Qie, X. Guo, C. Li et al., Morphology and defects regulation of carbon nitride by hydrochloric acid to boost visible light absorption and photocatalytic activity. Appl. Catal. B: Environ. 217, 629–636 (2017). https://doi.org/10.1016/j.apcatb.2017.06.028
J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You et al., Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13, 1603938 (2017). https://doi.org/10.1002/smll.201603938
F. Wei, Y. Liu, H. Zhao, X. Ren, J. Liu et al., Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance. Nanoscale 10, 4515–4522 (2018). https://doi.org/10.1039/C7NR09660G
C. Yang, Q. Jiang, W. Li, H. He, L. Yang et al., Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced grapheme oxide and MXene nanosheets for methanol oxidation. Chem. Mater. 31, 9277–9287 (2019). https://doi.org/10.1021/acs.chemmater.9b02115
R. Zhong, Z. Zhang, S. Luo, Z.C. Zhang, L. Huang et al., Comparison of TiO2 and g-C3N4 2D/2D nanocomposites from three synthesis protocols for visible-light induced hydrogen evolution. Catal. Sci. Technol. 9, 75–85 (2019). https://doi.org/10.1039/C8CY00965A
V.W. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M.B. Mesch et al., Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nature Commun. 7, 12165 (2016). https://doi.org/10.1038/ncomms12165
C. Liu, H. Huang, W. Cui, F. Dong, Y. Zhang, Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 230, 115–124 (2018). https://doi.org/10.1016/j.apcatb.2018.02.038
Y. Yu, W. Yan, X. Wang, P. Li, W. Gao et al., Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 30, 1705060 (2018). https://doi.org/10.1002/adma.201705060
D. Xu, B. Cheng, W. Wang, C. Jiang, J. Yu, Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B: Environ. 231, 368–380 (2018). https://doi.org/10.1016/j.apcatb.2018.03.036
J. Tang, R. Guo, W. Zhou, C. Huang, W. Pan, Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl. Catal. B: Environ. 237, 802–810 (2018). https://doi.org/10.1016/j.apcatb.2018.06.042
H. Li, Y. Wu, C. Li, Y. Gong, L. Niu et al., Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction. Appl. Catal. B: Environ. 251, 305–312 (2019). https://doi.org/10.1016/j.apcatb.2019.03.079
D. Zeng, T. Zhou, W. Ong, M. Wu, X. Duan et al., Sub-5 nm ultra-fine FeP nanodots as efficient Co-catalysts modified porous g-C3N4 for precious-metal-free photocatalytic hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 11, 5651–5660 (2019). https://doi.org/10.1021/acsami.8b20958
Z. Guan, Y. Wu, P. Wang, Q. Zhang, Z. Wang et al., Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light. Appl. Catal. B: Environ. 245, 522–527 (2019). https://doi.org/10.1016/j.apcatb.2019.01.019
S. Zang, G. Zhang, Z. Lan, D. Zheng, X. Wang, Enhancement of photocatalytic H2 evolution on pyrene-based polymer promoted by MoS2 and visible light. Appl. Catal. B: Environ. 251, 102–111 (2019). https://doi.org/10.1016/j.apcatb.2019.03.061
L. Yang, L. Zeng, H. Liu, Y. Deng, Z. Zhou et al., Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. Appl. Catal. B: Environ. 249, 98–105 (2019). https://doi.org/10.1016/j.apcatb.2019.02.062
Q. Liu, J. Shen, X. Yu, X. Yang, W. Liu et al., Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C3N4 nanosheets. Appl. Catal. B: Environ. 248, 84–94 (2019). https://doi.org/10.1016/j.apcatb.2019.02.020
X. Zhang, C. Yang, Z. Xue, C. Zhang, J. Qin et al., Spatial separation of charge carriers via heterogeneous structural defects in graphitic carbon nitride for photocatalytic hydrogen evolution. ACS Appl. Nano Mater. 3, 4428–4436 (2020). https://doi.org/10.1021/acsanm.0c00535
J. Chen, X. Tao, L. Tao, H. Li, C. Li et al., Novel conjugated organic polymers as candidates for visible-light-driven photocatalytic hydrogen production. Appl. Catal. B: Environ. 241, 461–470 (2019). https://doi.org/10.1016/j.apcatb.2018.09.011