Present and Future of Phase-Selectively Disordered Blue TiO2 for Energy and Society Sustainability
Corresponding Author: Hyoyoung Lee
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 45
Abstract
Titanium dioxide (TiO2) has garnered attention for its promising photocatalytic activity, energy storage capability, low cost, high chemical stability, and nontoxicity. However, conventional TiO2 has low energy harvesting efficiency and charge separation ability, though the recently developed black TiO2 formed under high temperature or pressure has achieved elevated performance. The phase-selectively ordered/disordered blue TiO2 (BTO), which has visible-light absorption and efficient exciton disassociation, can be formed under normal pressure and temperature (NPT) conditions. This perspective article first discusses TiO2 materials development milestones and insights of the BTO structure and construction mechanism. Then, current applications of BTO and potential extensions are summarized and suggested, respectively, including hydrogen (H2) production, carbon dioxide (CO2) and nitrogen (N2) reduction, pollutant degradation, microbial disinfection, and energy storage. Last, future research prospects are proposed for BTO to advance energy and environmental sustainability by exploiting different strategies and aspects. The unique NPT-synthesized BTO can offer more societally beneficial applications if its potential is fully explored by the research community.
Highlights:
1 Milestones of TiO2 development and invention of phase-selectively ordered/disordered blue TiO2 (BTO) is in-depth illustrated.
2 The explored and potential applications of BTO are reviewed and proposed thoroughly.
3 The forthcoming flourishing research trends based on account of BTO are suggested.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Keidel, The fading of aniline dyes in the presence of titanium white. Farben-Zeitung 34, 1242–1243 (1929)
- A. Fujishima, K. Honda, S. Kikuchi, Photochemical reactions of semiconductors. I. Photosensitized electrolytic oxidation on semiconducting n-type TiO2 electrode. Kogyo Kagaku Zasshi 72(1), 108–113 (1969). https://doi.org/10.1246/nikkashi1898.72.108
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1038/238037a0
- F. Haque, T. Daeneke, K. Kalantar-Zadeh, J.Z. Ou, Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-micro Lett. 10(2), 23 (2018). https://doi.org/10.1007/s40820-017-0176-y
- D. Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss et al., Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14), 145605 (2008). https://doi.org/10.1088/0957-4484/19/14/145605
- K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269–8285 (2005). https://doi.org/10.1143/jjap.44.8269
- T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter et al., Why is anatase a better photocatalyst than rutile?–model studies on epitaxial TiO2 films. Sci. Rep. 4, 4043 (2014). https://doi.org/10.1038/srep04043
- R.H. West, M.S. Celnik, O.R. Inderwildi, M. Kraft, G.J.O. Beran et al., Toward a comprehensive model of the synthesis of TiO2 particles from TiCl4. Angew. Ind. Eng. Chem. Res. 46(19), 6147–6156 (2007). https://doi.org/10.1021/ie0706414
- S. Ngamta, N. Boonprakob, N. Wetchakun, K. Ounnunkad, S. Phanichphant et al., A facile synthesis of nanocrystalline anatase TiO2 from TiOSO4 aqueous solution. Mater. Lett. 105, 76–79 (2013). https://doi.org/10.1016/j.matlet.2013.04.064
- L. Qi, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys. Chem. Chem. Phys. 13(19), 8915–8923 (2011). https://doi.org/10.1039/c1cp20079h
- Y. Ide, N. Inami, H. Hattori, K. Saito, M. Sohmiya et al., Remarkable charge separation and photocatalytic efficiency enhancement through interconnection of TiO2 nanoparticles by hydrothermal treatment. Angew. Chem. Int. Ed. 55(11), 3600–3605 (2016). https://doi.org/10.1002/anie.201510000
- M. Moztahida, D.S. Lee, Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: optimization using response surface methodology. J. Hazard. Mater. 400, 123314 (2020). https://doi.org/10.1016/j.jhazmat.2020.123314
- B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, What is degussa (evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A: Chem. 216(2–3), 179–182 (2010). https://doi.org/10.1016/j.jphotochem.2010.07.024
- M.T. Noman, M.A. Ashraf, A. Ali, Synthesis and applications of nano-TiO2: a review. Environ. Sci. Pollut. Res. Int. 26(4), 3262–3291 (2019). https://doi.org/10.1007/s11356-018-3884-z
- A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
- A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor, A. Rouhi, Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses? J. Colloid. Interface Sci. 580, 503–514 (2020). https://doi.org/10.1016/j.jcis.2020.07.047
- X. Chen, C. Burda, The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130(15), 5018–5019 (2008). https://doi.org/10.1021/ja711023z
- S.N.R. Inturi, T. Boningari, M. Suidan, P.G. Smirniotis, Flame aerosol synthesized Cr incorporated TiO2 for visible light photodegradation of gas phase acetonitrile. J. Phys. Chem. C 118(1), 231–242 (2013). https://doi.org/10.1021/jp404290g
- A. Ali, E. Yassitepe, I. Ruzybayev, S.I. Shah, A.S. Bhatti, Improvement of (004) texturing by slow growth of Nd doped TiO2 films. J. Appl. Phys. 112(11), 113505 (2012). https://doi.org/10.1063/1.4767361
- X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011). https://doi.org/10.1126/science.1200448
- L. Wang, K. Zhang, J.K. Kim, M. Ma, G. Veerappan et al., An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy. Environ. Sci. 9(2), 499–503 (2016). https://doi.org/10.1039/c5ee03100a
- J. Pan, G. Liu, G.Q. Lu, H.M. Cheng, On the true photoreactivity order of 001}, {010}, and {101 facets of anatase TiO2 crystals. Angew. Chem. Int. Ed. 50(9), 2133–2137 (2011). https://doi.org/10.1002/anie.201006057
- M. Xu, Y. Gao, E.M. Moreno, M. Kunst, M. Muhler et al., Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys. Rev. Lett. 106(13), 138302 (2011). https://doi.org/10.1103/PhysRevLett.106.138302
- D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107(19), 4545–4549 (2003). https://doi.org/10.1021/jp0273934
- T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Morphology of a TiO2 photocatalyst (degussa, P25) consisting of anatase and rutile crystalline phases. J. Catal. 203(1), 82–86 (2001). https://doi.org/10.1006/jcat.2001.3316
- X. Chen, L. Liu, F.Q. Huang, Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44(7), 1861–1885 (2015). https://doi.org/10.1039/c4cs00330f
- A.J. Birch, 117. Reduction by dissolving metals. Part I. J. Chem. Soc. (Resumed). (1944). https://doi.org/10.1039/JR9440000430
- H.M. Hwang, S. Oh, J.-H. Shim, Y.-M. Kim, A. Kim et al., Phase-selective disordered anatase/ordered rutile interface system for visible-light-driven, metal-free CO2 reduction. ACS Appl. Mater. Interfaces 11(39), 35693–35701 (2019). https://doi.org/10.1021/acsami.9b10837
- L.E. Oi, M.-Y. Choo, H.V. Lee, H.C. Ong, S.B.A. Hamid et al., Recent advances of titanium dioxide (TiO2) for green organic synthesis. RSC Adv. 6(110), 108741–108754 (2016). https://doi.org/10.1039/C6RA22894A
- J. Pal, T. Pal, Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. Nanoscale 7(34), 14159–14190 (2015). https://doi.org/10.1039/c5nr03395k
- Y. Kim, H.M. Hwang, L. Wang, I. Kim, Y. Yoon et al., Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2. Sci. Rep. 6, 25212 (2016). https://doi.org/10.1038/srep25212
- C.T.K. Nguyen, N.Q. Tran, S. Seo, H. Hwang, S. Oh et al., Highly efficient nanostructured metal-decorated hybrid semiconductors for solar conversion of CO2 with almost complete CO selectivity. Mater. Today 35, 25–33 (2020). https://doi.org/10.1016/j.mattod.2019.11.005
- S. Bak, S.M. Lee, H.M. Hwang, H. Lee, Phase-selective modulation of TiO2 for visible light-driven charylation: tuning of absorption and adsorptivity. Mol. Catal. 471, 71–76 (2019). https://doi.org/10.1016/j.mcat.2019.04.017
- S. McAllister, J.Y. Chen, A.C. Fernandez-Pello, Fundamentals of Combustion Processes (Springer, New York, 2011), p. 244
- G.D. Cooke, R.H. Kennedy, Managing drinking water supplies. Lake Reserv. Manag. 17(3), 157–174 (2001). https://doi.org/10.1080/07438140109354128
- X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119(6), 3962–4179 (2019). https://doi.org/10.1021/acs.chemrev.8b00400
- A.L. da Silva, L. Wu, L.B. Caliman, R.H.R. Castro, A. Navrotsky et al., Energetics of CO2 and H2O adsorption on alkaline earth metal doped TiO2. Phys. Chem. Chem. Phys. 22(27), 15600–15607 (2020). https://doi.org/10.1039/d0cp01787f
- X. Lang, X. Chen, J. Zhao, Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 43(1), 473–486 (2014). https://doi.org/10.1039/c3cs60188a
- L. Wang, M. Xia, H. Wang, K. Huang, C. Qian et al., Greening ammonia toward the solar ammonia refinery. Joule 2(6), 1055–1074 (2018). https://doi.org/10.1016/j.joule.2018.04.017
- X. Xue, R. Chen, C. Yan, P. Zhao, Y. Hu et al., Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Res. 12(6), 1229–1249 (2019). https://doi.org/10.1007/s12274-018-2268-5
- G.N. Schrauzer, T.D. Guth, Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 99(22), 7189–7193 (1977). https://doi.org/10.1021/ja00464a015
- M. Stucchi, F. Galli, C.L. Bianchi, C. Pirola, D.C. Boffito et al., Simultaneous photodegradation of VOC mixture by TiO2 powders. Chemosphere 193, 198–206 (2018). https://doi.org/10.1016/j.chemosphere.2017.11.003
- M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos. Environ. 140, 117–134 (2016). https://doi.org/10.1016/j.atmosenv.2016.05.031
- D. Li, A.Z. Gu, M. He, H.C. Shi, W. Yang, UV inactivation and resistance of rotavirus evaluated by integrated cell culture and real-time RT-PCR assay. Water Res. 43(13), 3261–3269 (2009). https://doi.org/10.1016/j.watres.2009.03.044
- J.C. Sjogren, R.A. Sierka, Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Appl. Environ. Microbiol. 60(1), 344 (1994)
- M. Liu, K. Sunada, K. Hashimoto, M. Miyauchi, Visible-light sensitive Cu(ii)–TiO2 with sustained anti-viral activity for efficient indoor environmental remediation. J. Mater. Chem. A 3(33), 17312–17319 (2015). https://doi.org/10.1039/c5ta03756e
- R. Nakano, M. Hara, H. Ishiguro, Y. Yao, T. Ochiai et al., Broad spectrum microbicidal activity of photocatalysis by TiO2. Catalysts 3(1), 310–323 (2013). https://doi.org/10.3390/catal3010310
- Y. Luo, L. Wang, Y. Hwang, J. Yu, J. Lee et al., Binder-free TiO2 hydrophilic film covalently coated by microwave treatment. Mater. Chem. Phys. 258, 123884 (2021). https://doi.org/10.1016/j.matchemphys.2020.123884
- J. Yang, X. Xiao, W. Gong, L. Zhao, G. Li et al., Size-independent fast ion intercalation in two-dimensional titania nanosheets for alkali-metal-ion batteries. Angew. Chem. Int. Ed. 58(26), 8740–8745 (2019). https://doi.org/10.1002/anie.201902478
- Y. Wang, X. Xue, P. Liu, C. Wang, X. Yi et al., Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2- x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 12(12), 12492–12502 (2018). https://doi.org/10.1021/acsnano.8b06917
- S. Wang, K.V. Kravchyk, S. Pigeot-Rémy, W. Tang, F. Krumeich et al., Anatase TiO2 nanorods as cathode materials for aluminum-ion batteries. ACS Appl. Nano Mater. 2(10), 6428–6435 (2019). https://doi.org/10.1021/acsanm.9b01391
- S.-T. Myung, M. Kikuchi, C.S. Yoon, H. Yashiro, S.-J. Kim et al., Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energ. Environ. Sci. 6(9), 2609 (2013). https://doi.org/10.1039/c3ee41960f
- J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57(4), 724–803 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.003
- M. P. Nagaraja, Water on the space station. (NASA Science Share the Science, 2000). https://science.nasa.gov/science-news/science-atnasa/2000/ast02nov_1. Accessed 5 Nov 2020
- J.L. Coutts, P.E. Hintze, A. Meier, M.G. Shah, R.W. Devor et al., Visible-light-responsive photocatalysis: ag-doped TiO2 catalyst development and reactor design testing. 46th International conference on environmental systems. 169 (2016)
- M.S. Robinson, B.W. Hapke, J.B. Garvin, D. Skillman, J.F. Bell et al., High resolution mapping of TiO2 abundances on the moon using the hubble space telescope. Geophys. Res. Lett. 34(13), L13203 (2007). https://doi.org/10.1029/2007gl029754
References
E. Keidel, The fading of aniline dyes in the presence of titanium white. Farben-Zeitung 34, 1242–1243 (1929)
A. Fujishima, K. Honda, S. Kikuchi, Photochemical reactions of semiconductors. I. Photosensitized electrolytic oxidation on semiconducting n-type TiO2 electrode. Kogyo Kagaku Zasshi 72(1), 108–113 (1969). https://doi.org/10.1246/nikkashi1898.72.108
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1038/238037a0
F. Haque, T. Daeneke, K. Kalantar-Zadeh, J.Z. Ou, Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-micro Lett. 10(2), 23 (2018). https://doi.org/10.1007/s40820-017-0176-y
D. Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss et al., Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14), 145605 (2008). https://doi.org/10.1088/0957-4484/19/14/145605
K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269–8285 (2005). https://doi.org/10.1143/jjap.44.8269
T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter et al., Why is anatase a better photocatalyst than rutile?–model studies on epitaxial TiO2 films. Sci. Rep. 4, 4043 (2014). https://doi.org/10.1038/srep04043
R.H. West, M.S. Celnik, O.R. Inderwildi, M. Kraft, G.J.O. Beran et al., Toward a comprehensive model of the synthesis of TiO2 particles from TiCl4. Angew. Ind. Eng. Chem. Res. 46(19), 6147–6156 (2007). https://doi.org/10.1021/ie0706414
S. Ngamta, N. Boonprakob, N. Wetchakun, K. Ounnunkad, S. Phanichphant et al., A facile synthesis of nanocrystalline anatase TiO2 from TiOSO4 aqueous solution. Mater. Lett. 105, 76–79 (2013). https://doi.org/10.1016/j.matlet.2013.04.064
L. Qi, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys. Chem. Chem. Phys. 13(19), 8915–8923 (2011). https://doi.org/10.1039/c1cp20079h
Y. Ide, N. Inami, H. Hattori, K. Saito, M. Sohmiya et al., Remarkable charge separation and photocatalytic efficiency enhancement through interconnection of TiO2 nanoparticles by hydrothermal treatment. Angew. Chem. Int. Ed. 55(11), 3600–3605 (2016). https://doi.org/10.1002/anie.201510000
M. Moztahida, D.S. Lee, Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: optimization using response surface methodology. J. Hazard. Mater. 400, 123314 (2020). https://doi.org/10.1016/j.jhazmat.2020.123314
B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, What is degussa (evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A: Chem. 216(2–3), 179–182 (2010). https://doi.org/10.1016/j.jphotochem.2010.07.024
M.T. Noman, M.A. Ashraf, A. Ali, Synthesis and applications of nano-TiO2: a review. Environ. Sci. Pollut. Res. Int. 26(4), 3262–3291 (2019). https://doi.org/10.1007/s11356-018-3884-z
A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor, A. Rouhi, Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses? J. Colloid. Interface Sci. 580, 503–514 (2020). https://doi.org/10.1016/j.jcis.2020.07.047
X. Chen, C. Burda, The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130(15), 5018–5019 (2008). https://doi.org/10.1021/ja711023z
S.N.R. Inturi, T. Boningari, M. Suidan, P.G. Smirniotis, Flame aerosol synthesized Cr incorporated TiO2 for visible light photodegradation of gas phase acetonitrile. J. Phys. Chem. C 118(1), 231–242 (2013). https://doi.org/10.1021/jp404290g
A. Ali, E. Yassitepe, I. Ruzybayev, S.I. Shah, A.S. Bhatti, Improvement of (004) texturing by slow growth of Nd doped TiO2 films. J. Appl. Phys. 112(11), 113505 (2012). https://doi.org/10.1063/1.4767361
X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011). https://doi.org/10.1126/science.1200448
L. Wang, K. Zhang, J.K. Kim, M. Ma, G. Veerappan et al., An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy. Environ. Sci. 9(2), 499–503 (2016). https://doi.org/10.1039/c5ee03100a
J. Pan, G. Liu, G.Q. Lu, H.M. Cheng, On the true photoreactivity order of 001}, {010}, and {101 facets of anatase TiO2 crystals. Angew. Chem. Int. Ed. 50(9), 2133–2137 (2011). https://doi.org/10.1002/anie.201006057
M. Xu, Y. Gao, E.M. Moreno, M. Kunst, M. Muhler et al., Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys. Rev. Lett. 106(13), 138302 (2011). https://doi.org/10.1103/PhysRevLett.106.138302
D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107(19), 4545–4549 (2003). https://doi.org/10.1021/jp0273934
T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Morphology of a TiO2 photocatalyst (degussa, P25) consisting of anatase and rutile crystalline phases. J. Catal. 203(1), 82–86 (2001). https://doi.org/10.1006/jcat.2001.3316
X. Chen, L. Liu, F.Q. Huang, Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44(7), 1861–1885 (2015). https://doi.org/10.1039/c4cs00330f
A.J. Birch, 117. Reduction by dissolving metals. Part I. J. Chem. Soc. (Resumed). (1944). https://doi.org/10.1039/JR9440000430
H.M. Hwang, S. Oh, J.-H. Shim, Y.-M. Kim, A. Kim et al., Phase-selective disordered anatase/ordered rutile interface system for visible-light-driven, metal-free CO2 reduction. ACS Appl. Mater. Interfaces 11(39), 35693–35701 (2019). https://doi.org/10.1021/acsami.9b10837
L.E. Oi, M.-Y. Choo, H.V. Lee, H.C. Ong, S.B.A. Hamid et al., Recent advances of titanium dioxide (TiO2) for green organic synthesis. RSC Adv. 6(110), 108741–108754 (2016). https://doi.org/10.1039/C6RA22894A
J. Pal, T. Pal, Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. Nanoscale 7(34), 14159–14190 (2015). https://doi.org/10.1039/c5nr03395k
Y. Kim, H.M. Hwang, L. Wang, I. Kim, Y. Yoon et al., Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2. Sci. Rep. 6, 25212 (2016). https://doi.org/10.1038/srep25212
C.T.K. Nguyen, N.Q. Tran, S. Seo, H. Hwang, S. Oh et al., Highly efficient nanostructured metal-decorated hybrid semiconductors for solar conversion of CO2 with almost complete CO selectivity. Mater. Today 35, 25–33 (2020). https://doi.org/10.1016/j.mattod.2019.11.005
S. Bak, S.M. Lee, H.M. Hwang, H. Lee, Phase-selective modulation of TiO2 for visible light-driven charylation: tuning of absorption and adsorptivity. Mol. Catal. 471, 71–76 (2019). https://doi.org/10.1016/j.mcat.2019.04.017
S. McAllister, J.Y. Chen, A.C. Fernandez-Pello, Fundamentals of Combustion Processes (Springer, New York, 2011), p. 244
G.D. Cooke, R.H. Kennedy, Managing drinking water supplies. Lake Reserv. Manag. 17(3), 157–174 (2001). https://doi.org/10.1080/07438140109354128
X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119(6), 3962–4179 (2019). https://doi.org/10.1021/acs.chemrev.8b00400
A.L. da Silva, L. Wu, L.B. Caliman, R.H.R. Castro, A. Navrotsky et al., Energetics of CO2 and H2O adsorption on alkaline earth metal doped TiO2. Phys. Chem. Chem. Phys. 22(27), 15600–15607 (2020). https://doi.org/10.1039/d0cp01787f
X. Lang, X. Chen, J. Zhao, Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 43(1), 473–486 (2014). https://doi.org/10.1039/c3cs60188a
L. Wang, M. Xia, H. Wang, K. Huang, C. Qian et al., Greening ammonia toward the solar ammonia refinery. Joule 2(6), 1055–1074 (2018). https://doi.org/10.1016/j.joule.2018.04.017
X. Xue, R. Chen, C. Yan, P. Zhao, Y. Hu et al., Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Res. 12(6), 1229–1249 (2019). https://doi.org/10.1007/s12274-018-2268-5
G.N. Schrauzer, T.D. Guth, Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 99(22), 7189–7193 (1977). https://doi.org/10.1021/ja00464a015
M. Stucchi, F. Galli, C.L. Bianchi, C. Pirola, D.C. Boffito et al., Simultaneous photodegradation of VOC mixture by TiO2 powders. Chemosphere 193, 198–206 (2018). https://doi.org/10.1016/j.chemosphere.2017.11.003
M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos. Environ. 140, 117–134 (2016). https://doi.org/10.1016/j.atmosenv.2016.05.031
D. Li, A.Z. Gu, M. He, H.C. Shi, W. Yang, UV inactivation and resistance of rotavirus evaluated by integrated cell culture and real-time RT-PCR assay. Water Res. 43(13), 3261–3269 (2009). https://doi.org/10.1016/j.watres.2009.03.044
J.C. Sjogren, R.A. Sierka, Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Appl. Environ. Microbiol. 60(1), 344 (1994)
M. Liu, K. Sunada, K. Hashimoto, M. Miyauchi, Visible-light sensitive Cu(ii)–TiO2 with sustained anti-viral activity for efficient indoor environmental remediation. J. Mater. Chem. A 3(33), 17312–17319 (2015). https://doi.org/10.1039/c5ta03756e
R. Nakano, M. Hara, H. Ishiguro, Y. Yao, T. Ochiai et al., Broad spectrum microbicidal activity of photocatalysis by TiO2. Catalysts 3(1), 310–323 (2013). https://doi.org/10.3390/catal3010310
Y. Luo, L. Wang, Y. Hwang, J. Yu, J. Lee et al., Binder-free TiO2 hydrophilic film covalently coated by microwave treatment. Mater. Chem. Phys. 258, 123884 (2021). https://doi.org/10.1016/j.matchemphys.2020.123884
J. Yang, X. Xiao, W. Gong, L. Zhao, G. Li et al., Size-independent fast ion intercalation in two-dimensional titania nanosheets for alkali-metal-ion batteries. Angew. Chem. Int. Ed. 58(26), 8740–8745 (2019). https://doi.org/10.1002/anie.201902478
Y. Wang, X. Xue, P. Liu, C. Wang, X. Yi et al., Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2- x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 12(12), 12492–12502 (2018). https://doi.org/10.1021/acsnano.8b06917
S. Wang, K.V. Kravchyk, S. Pigeot-Rémy, W. Tang, F. Krumeich et al., Anatase TiO2 nanorods as cathode materials for aluminum-ion batteries. ACS Appl. Nano Mater. 2(10), 6428–6435 (2019). https://doi.org/10.1021/acsanm.9b01391
S.-T. Myung, M. Kikuchi, C.S. Yoon, H. Yashiro, S.-J. Kim et al., Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energ. Environ. Sci. 6(9), 2609 (2013). https://doi.org/10.1039/c3ee41960f
J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57(4), 724–803 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.003
M. P. Nagaraja, Water on the space station. (NASA Science Share the Science, 2000). https://science.nasa.gov/science-news/science-atnasa/2000/ast02nov_1. Accessed 5 Nov 2020
J.L. Coutts, P.E. Hintze, A. Meier, M.G. Shah, R.W. Devor et al., Visible-light-responsive photocatalysis: ag-doped TiO2 catalyst development and reactor design testing. 46th International conference on environmental systems. 169 (2016)
M.S. Robinson, B.W. Hapke, J.B. Garvin, D. Skillman, J.F. Bell et al., High resolution mapping of TiO2 abundances on the moon using the hubble space telescope. Geophys. Res. Lett. 34(13), L13203 (2007). https://doi.org/10.1029/2007gl029754