High Yield Transfer of Clean Large-Area Epitaxial Oxide Thin Films
Corresponding Author: Judith L. MacManus‑Driscoll
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 39
Abstract
In this work, we have developed a new method for manipulating and transferring up to 5 mm × 10 mm epitaxial oxide thin films. The method involves fixing a PET frame onto a PMMA attachment film, enabling transfer of epitaxial films lifted-off by wet chemical etching of a Sr3Al2O6 sacrificial layer. The crystallinity, surface morphology, continuity, and purity of the films are all preserved in the transfer process. We demonstrate the applicability of our method for three different film compositions and structures of thickness ~ 100 nm. Furthermore, we show that by using epitaxial nanocomposite films, lift-off yield is improved by ~ 50% compared to plain epitaxial films and we ascribe this effect to the higher fracture toughness of the composites. This work shows important steps towards large-scale perovskite thin-film-based electronic device applications.
Highlights:
1 A new way to achieve high yield and large area oxide thin film transfer is developed. Three different film compositions are demonstrated: SrRuO3, CeO2, and CeO2/STO nanocomposite films.
2 Cracks, wrinkles, and damages are prevented by the new transfer method. They are commonly introduced by conventional transfer processes.
3 Vertically aligned nanocomposite (VAN) structures can further improve the transfer yield. Possible mechanisms related to increased fracture toughness are proposed.
4 We have opened up a route to large-scale oxide thin-film-based electronic device applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Li, J. Gu, Q. He, K.H.L. Zhang, C. Wang et al., Oxygen-vacancy-mediated dielectric property in perovskite Eu0.5Ba0.5TiO3-δ epitaxial thin films. Appl. Phys. Lett. 112, 182906 (2018). https://doi.org/10.1063/1.5025607
- S. Cho, C. Yun, Y.S. Kim, H. Wang, J. Jian et al., Strongly enhanced dielectric and energy storage properties in lead-free perovskite titanate thin films by alloying. Nano Energy 45, 398–406 (2018). https://doi.org/10.1016/j.nanoen.2018.01.003
- D. Fuchs, C. Pinta, T. Schwarz, P. Schweiss, P. Nagel et al., Ferromagnetic order in epitaxially strained LaCoO3 thin films. Phys. Rev. B 75, 144402 (2007). https://doi.org/10.1103/PhysRevB.75.144402
- C. Park, R. Wu, P. Lu, H. Zhao, J. Yang et al., Use of mesoscopic host matrix to induce ferrimagnetism in antiferromagnetic spinel oxide. Adv. Funct. Mater. 28, 1706220 (2018). https://doi.org/10.1002/adfm.201706220
- E.M. Choi, B. Zhu, P. Lu, J. Feighan, X. Sun et al., Magnetic signatures of 120 k superconductivity at interfaces in La2CuO4+δ. Nanoscale 12, 3157–3165 (2020). https://doi.org/10.1039/c9nr04996g
- J. Cao, D. Massarotti, M.E. Vickers, A. Kursumovic, A. Di Bernardo et al., Enhanced localized superconductivity in Sr2RuO4 thin film by pulsed laser deposition. Supercond. Sci. Technol. 29, 095005 (2016). https://doi.org/10.1088/0953-2048/29/9/095005
- S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y.W. Ju et al., Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015). https://doi.org/10.1038/nmat4166
- S. Lee, W. Zhang, F. Khatkhatay, H. Wang, Q. Jia et al., Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical yttria-stabilized ZrO2 nanocomposite films. Nano Lett. 15, 7362–7369 (2015). https://doi.org/10.1021/acs.nanolett.5b02726
- J. Wang, Y.J. Lee, J.W.P. Hsu, Sub-10 nm copper chromium oxide nanocrystals as a solution processed p-type hole transport layer for organic photovoltaics. J. Mater. Chem. C 4, 3607–3613 (2016). https://doi.org/10.1039/c6tc00541a
- Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang et al., Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J. Am. Chem. Soc. 139, 7302–7309 (2017). https://doi.org/10.1021/jacs.7b01493
- S. Cho, C. Yun, S. Tappertzhofen, A. Kursumovic, S. Lee et al., Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching. Nat. Commun. 7, 1–10 (2016). https://doi.org/10.1038/ncomms12373
- M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 10, 625–630 (2011). https://doi.org/10.1038/nmat3070
- R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2d materials: to graphene and beyond. Nanoscale 3, 20–30 (2011). https://doi.org/10.1039/c0nr00323a
- J.C. Costa, F. Spina, P. Lugoda, L. Garcia-Garcia, D. Roggen et al., Flexible sensors—from materials to applications. Technologies 7, 35 (2019). https://doi.org/10.3390/technologies7020035
- M. Khokhlova, M. Dykas, V. Krishnan-Kutty, A. Patra, T. Venkatesan et al., Oxide thin films as bioactive coatings. J. Phys.: Condens Matter. 31, 33001–33001 (2018). https://doi.org/10.1088/1361-648x/aaefbc
- J. Heo, K.E. Byun, J. Lee, H.J. Chung, S. Jeon et al., Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics. Nano Lett. 13, 5967–5971 (2013). https://doi.org/10.1021/nl403142v
- X. Wang, L.X. You, D.K. Liu, C.T. Lin, X.M. Xie et al., Thin-film-like BSCCO single crystals made by mechanical exfoliation. Physica C 474, 13–17 (2012). https://doi.org/10.1016/j.physc.2011.12.006
- Y. Zhang, Q. Su, J. Zhu, S. Koirala, S.J. Koester et al., Thickness-dependent thermal conductivity of mechanically exfoliated β-Ga2O3 thin films. Appl. Phys. Lett. 116, 202101–202101 (2020). https://doi.org/10.1063/5.0004984
- M.I.B. Utama, F.J. Belarre, C. Magen, B. Peng, J. Arbiol et al., Incommensurate van der waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates. Nano Lett. 12, 2146–2152 (2012). https://doi.org/10.1021/nl300554t
- J. Liu, Y. Feng, R. Tang, R. Zhao, J. Gao et al., Mechanically tunable magnetic properties of flexible SrRuO3 epitaxial thin films on mica substrates. Adv. Electron. Mater. 4, 1700522 (2018). https://doi.org/10.1002/aelm.201700522
- H.J. Liu, C.K. Wang, D. Su, T. Amrillah, Y.H. Hsieh et al., Flexible heteroepitaxy of CoFe2O4/muscovite bimorph with large magnetostriction. ACS Appl. Mater. Interfaces 9, 7297–7304 (2017). https://doi.org/10.1021/acsami.6b16485
- C.H. Ma, J.C. Lin, H.J. Liu, T.H. Do, Y.M. Zhu et al., Van der waals epitaxy of functional MoO2 film on mica for flexible electronics. Appl. Phys. Lett. 108, 253104 (2016). https://doi.org/10.1063/1.4954172
- J.H. Kim, A.M. Grishin, Free-standing epitaxial La1-x (Sr, Ca)xMnO3 membrane on Si for uncooled infrared microbolometer. Appl. Phys. Lett. 87, 033502 (2005). https://doi.org/10.1063/1.1996845
- C.K. Jeong, S.B. Cho, J.H. Han, D.Y. Park, S. Yang et al., Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 10, 437–455 (2017). https://doi.org/10.1007/s12274-016-1304-6
- D.J. Joe, S. Kim, J.H. Park, D.Y. Park, H.E. Lee et al., Laser–material interactions for flexible applications. Adv. Mater. 29, 1606586 (2017). https://doi.org/10.1002/adma.201606586
- L. Tsakalakos, T. Sands, Epitaxial ferroelectric (Pb, La)(Zr, Ti)O3 thin films on stainless steel by excimer laser liftoff. Appl. Phys. Lett. 76, 227–229 (2000). https://doi.org/10.1063/1.125710
- C. Deneke, E. Wild, K. Boldyreva, S. Baunack, P. Cendula et al., Rolled-up tubes and cantilevers by releasing SrRuO3-Pr 0.7Ca 0.3MnO3 nanomembranes. Nanoscale Res. Lett. 6, 1–8 (2011). https://doi.org/10.1186/1556-276X-6-621
- Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit et al., Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–1336 (2011). https://doi.org/10.1021/nl104412b
- L. Pellegrino, M. Biasotti, E. Bellingeri, C. Bernini, A.S. Siri et al., All-oxide crystalline microelectromechanical systems: bending the functionalities of transition-metal oxide thin films. Adv. Mater. 21, 2377–2381 (2009). https://doi.org/10.1002/adma.200803360
- Y. Zhang, L. Shen, M. Liu, X. Li, X. Lu et al., Flexible quasi-two-dimensional CoFe2O4 epitaxial thin films for continuous strain tuning of magnetic properties. ACS Nano 11, 8002–8009 (2017). https://doi.org/10.1021/acsnano.7b02637
- D.M. Paskiewicz, R. Sichel-Tissot, E. Karapetrova, L. Stan, D.D. Fong, Single-crystalline SrRuO3 nanomembranes: a platform for flexible oxide electronics. Nano Lett. 16, 534–542 (2016). https://doi.org/10.1021/acs.nanolett.5b04176
- D. Lu, D.J. Baek, S.S. Hong, L.F. Kourkoutis, Y. Hikita et al., Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016). https://doi.org/10.1038/nmat4749
- Y. Zhang, C. Ma, X. Lu, M. Liu, Recent progress on flexible inorganic single-crystalline functional oxide films for advanced electronics. Mater. Horiz. 6, 911–930 (2019). https://doi.org/10.1039/c8mh01598h
- S.S. Hong, J.H. Yu, D. Lu, A.F. Marshall, Y. Hikita et al., Two-dimensional limit of crystalline order in perovskite membrane films. Sci. Adv. 3, 5173 (2017). https://doi.org/10.1126/sciadv.aao5173
- X. Luo, B. Zhang, G. Zhang, Fatigue of metals at nanoscale: metal thin films and conductive interconnects for flexible device application. Nano Mater. Sci. 1, 198–207 (2019). https://doi.org/10.1016/j.nanoms.2019.02.003
- W. Liu, H. Wang, Flexible oxide epitaxial thin films for wearable electronics: fabrication, physical properties, and applications. J. Materiomics 6, 385–396 (2020). https://doi.org/10.1016/j.jmat.2019.12.006
- R. Xu, J. Huang, E.S. Barnard, S.S. Hong, P. Singh et al., Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nat. Commun. 11, 3141 (2020). https://doi.org/10.1038/s41467-020-16912-3
- S.H. Chae, W.J. Yu, J.J. Bae, D.L. Duong, D. Perello et al., Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 12, 403–409 (2013). https://doi.org/10.1038/nmat3572
- D. Ji, S. Cai, T.R. Paudel, H. Sun, C. Zhang et al., Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019). https://doi.org/10.1038/s41586-019-1255-7
- S.R. Bakaul, C.R. Serrao, M. Lee, C.W. Yeung, A. Sarker et al., Single crystal functional oxides on silicon. Calif. Manag. Rev. 7, 1–5 (2016). https://doi.org/10.1038/ncomms10547
- L. Shen, L. Wu, Q. Sheng, C. Ma, Y. Zhang et al., Epitaxial lift-off of centimeter-scaled spinel ferrite oxide thin films for flexible electronics. Adv. Mater. 29, 1702411 (2017). https://doi.org/10.1002/adma.201702411
- J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed et al., Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011). https://doi.org/10.1021/nn201207c
- Y. Chen, X.L. Gong, J.G. Gai, Progress and challenges in transfer of large-area graphene films. Adv. Sci. 3, 1500343 (2016). https://doi.org/10.1002/advs.201500343
- S.J. Kim, T. Choi, B. Lee, S. Lee, K. Choi et al., Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films. Nano Lett. 15, 3236–3240 (2015). https://doi.org/10.1021/acs.nanolett.5b00440
- X. Liang, B.A. Sperling, I. Calizo, G. Cheng, C.A. Hacker et al., Toward clean and crackless transfer of graphene. ACS Nano 5, 9144–9153 (2011). https://doi.org/10.1021/nn203377t
- Z. Lu, J. Liu, J. Feng, X. Zheng, L.-H. Yang et al., Synthesis of single-crystal La0.67Sr 0.33 MnO3 freestanding films with different crystal-orientation. APL Mater. 8, 051105 (2020). https://doi.org/10.1063/1.5145029
- D. Lu, S. Crossley, R. Xu, Y. Hikita, H.Y. Hwang, Freestanding oxide ferroelectric tunnel junction memories transferred onto silicon. Nano Lett. 19, 3999–4003 (2019). https://doi.org/10.1021/acs.nanolett.9b01327
- R.W. Davidge, Mechanical properties of ceramic materials. Contemp. Phys. 10, 105–124 (1969). https://doi.org/10.1080/00107516908220103
- K. Niihara, New design concept of structural ceramics. Ceram. nanocompos. J. Ceram. Soc. Jap. 99, 974–982 (1991). https://doi.org/10.2109/jcersj.99.974
- I. Levin, W.D. Kaplan, D.G. Brandon, A.A. Layyous, Effect of sic submicrometer particle size and content on fracture toughness of alumina–sic “nanocomposites.” J. Am. Ceram. Soc. 78, 254–256 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08397.x
- S.M. Yang, S. Lee, J. Jian, W. Zhang, P. Lu et al., Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms9588
- J. Kang, D. Shin, S. Bae, B.H. Hong, Graphene transfer: Key for applications. Nanoscale 4, 5527–5537 (2012). https://doi.org/10.1039/C2NR31317K
- A. Biswas, Y. Jeong, in Strain Effect in Epitaxial Oxide Heterostructures, ed. by M. Zhong (Books on Demand, Deutschland, 2018)
- A. Vailionis, W. Siemons, G. Koster, Room temperature epitaxial stabilization of a tetragonal phase in aRuO3 (a=Ca and Sr) thin films. Appl. Phys. Lett. 93, 051909 (2008). https://doi.org/10.1063/1.2967878
- M. Dudek, M. Mróz, Ł Zych, E. Drozdz-Cieśla, Synthesis of ceria-based nanopowders suitable for manufacturing solid oxide electrolytes. Mater. Sci-Poland. 26, 319–329 (2008)
- K.-H. Yang, N.-J. Ho, H.-Y. Lu, Deformation microstructure in (001) single crystal strontium titanate by vickers indentation. J. Am. Ceram. Soc. 92, 2345–2353 (2009). https://doi.org/10.1111/j.1551-2916.2009.03189.x
- A. Fluri, D. Pergolesi, V. Roddatis, A. Wokaun, T. Lippert, In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction. Nat. Commun. 7, 1–9 (2016). https://doi.org/10.1038/ncomms10692
- T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 4th edn. (CRC Press, Florida, 2017).
- A. Kossoy, J.P. Nair, E. Wachtel, I. Lubomirsky, J. Fleig et al., Room temperature phase transition in CeO2 nanocrystalline films. J. Electroceram. 13, 605–608 (2004). https://doi.org/10.1007/s10832-004-5165-0
- F. Sommer, R. Landfried, F. Kern, R. Gadow, Mechanical properties of zirconia toughened alumina with 10–24vol.% 1y-tzp reinforcement. J. Eur. Ceram. Soc. 32, 4177–4184 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.06.019
- F. Kern, P. Palmero, F.G. Marro, A. Mestra, Processing of alumina–zirconia composites by surface modification route with enhanced hardness and wear resistance. Ceram. Int. 41, 889–898 (2015). https://doi.org/10.1016/j.ceramint.2014.09.006
- F. Kern, P. Palmero, Microstructure and mechanical properties of alumina 5 vol% zirconia nanocomposites prepared by powder coating and powder mixing routes. Ceram. Int. 39, 673–682 (2013). https://doi.org/10.1016/j.ceramint.2012.06.078
- J. Zhao, L.C. Stearns, M.P. Harmer, H.M. Chan, G.A. Miller et al., Mechanical behavior of alumina–silicon carbide “nanocomposites.” J. Am. Ceram. Soc. 76, 503–510 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03814.x
- J. Pérez-Rigueiro, J.Y. Pastor, J. Llorca, M. Elices, P. Miranzo et al., Revisiting the mechanical behavior of alumina/silicon carbide nanocomposites. Acta Mater. 46, 5399–5411 (1998). https://doi.org/10.1016/S1359-6454(98)00193-1
- F. Meschke, P. Alves-Riccardo, G.A. Schneider, N. Claussen, Failure behavior of alumina and alumina/silicon carbide nanocomposites with natural and artificial flaws. J. Mater. Res. 12, 3307–3315 (1997). https://doi.org/10.1557/JMR.1997.0435
- T. Liu, W.C. Tjiu, Y. Tong, C. He, S.S. Goh et al., Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. J. Appl. Polym. Sci. 94, 1236–1244 (2004). https://doi.org/10.1002/app.21033
- H. Wu, in 10 - Understanding Residual Stresses and Fracture Toughness in Ceramic Nanocomposites. Ed. by M.M Shokrieh (Woodhead publishing, Cambridge, 2014), pp. 256–292
- W. Liu, S.V. Hoa, M. Pugh, Organoclay-modified high performance epoxy nanocomposites. Compos. Sci. Technol. 65, 307–316 (2005). https://doi.org/10.1016/j.compscitech.2004.07.012
- I.A. Ovid’ko, Micromechanics of fracturing in nanoceramics. Phil. Trans. R. Soc. A 373, 1–14 (2015). https://doi.org/10.1098/rsta.2014.0129
- B. Zhu, G. Schusteritsch, P. Lu, J.L. Macmanus-Driscoll, C.J. Pickard, Determining interface structures in vertically aligned nanocomposite films. APL Mater. 7, 061105 (2019). https://doi.org/10.1063/1.5099204
References
W. Li, J. Gu, Q. He, K.H.L. Zhang, C. Wang et al., Oxygen-vacancy-mediated dielectric property in perovskite Eu0.5Ba0.5TiO3-δ epitaxial thin films. Appl. Phys. Lett. 112, 182906 (2018). https://doi.org/10.1063/1.5025607
S. Cho, C. Yun, Y.S. Kim, H. Wang, J. Jian et al., Strongly enhanced dielectric and energy storage properties in lead-free perovskite titanate thin films by alloying. Nano Energy 45, 398–406 (2018). https://doi.org/10.1016/j.nanoen.2018.01.003
D. Fuchs, C. Pinta, T. Schwarz, P. Schweiss, P. Nagel et al., Ferromagnetic order in epitaxially strained LaCoO3 thin films. Phys. Rev. B 75, 144402 (2007). https://doi.org/10.1103/PhysRevB.75.144402
C. Park, R. Wu, P. Lu, H. Zhao, J. Yang et al., Use of mesoscopic host matrix to induce ferrimagnetism in antiferromagnetic spinel oxide. Adv. Funct. Mater. 28, 1706220 (2018). https://doi.org/10.1002/adfm.201706220
E.M. Choi, B. Zhu, P. Lu, J. Feighan, X. Sun et al., Magnetic signatures of 120 k superconductivity at interfaces in La2CuO4+δ. Nanoscale 12, 3157–3165 (2020). https://doi.org/10.1039/c9nr04996g
J. Cao, D. Massarotti, M.E. Vickers, A. Kursumovic, A. Di Bernardo et al., Enhanced localized superconductivity in Sr2RuO4 thin film by pulsed laser deposition. Supercond. Sci. Technol. 29, 095005 (2016). https://doi.org/10.1088/0953-2048/29/9/095005
S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y.W. Ju et al., Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015). https://doi.org/10.1038/nmat4166
S. Lee, W. Zhang, F. Khatkhatay, H. Wang, Q. Jia et al., Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical yttria-stabilized ZrO2 nanocomposite films. Nano Lett. 15, 7362–7369 (2015). https://doi.org/10.1021/acs.nanolett.5b02726
J. Wang, Y.J. Lee, J.W.P. Hsu, Sub-10 nm copper chromium oxide nanocrystals as a solution processed p-type hole transport layer for organic photovoltaics. J. Mater. Chem. C 4, 3607–3613 (2016). https://doi.org/10.1039/c6tc00541a
Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang et al., Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J. Am. Chem. Soc. 139, 7302–7309 (2017). https://doi.org/10.1021/jacs.7b01493
S. Cho, C. Yun, S. Tappertzhofen, A. Kursumovic, S. Lee et al., Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching. Nat. Commun. 7, 1–10 (2016). https://doi.org/10.1038/ncomms12373
M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 10, 625–630 (2011). https://doi.org/10.1038/nmat3070
R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2d materials: to graphene and beyond. Nanoscale 3, 20–30 (2011). https://doi.org/10.1039/c0nr00323a
J.C. Costa, F. Spina, P. Lugoda, L. Garcia-Garcia, D. Roggen et al., Flexible sensors—from materials to applications. Technologies 7, 35 (2019). https://doi.org/10.3390/technologies7020035
M. Khokhlova, M. Dykas, V. Krishnan-Kutty, A. Patra, T. Venkatesan et al., Oxide thin films as bioactive coatings. J. Phys.: Condens Matter. 31, 33001–33001 (2018). https://doi.org/10.1088/1361-648x/aaefbc
J. Heo, K.E. Byun, J. Lee, H.J. Chung, S. Jeon et al., Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics. Nano Lett. 13, 5967–5971 (2013). https://doi.org/10.1021/nl403142v
X. Wang, L.X. You, D.K. Liu, C.T. Lin, X.M. Xie et al., Thin-film-like BSCCO single crystals made by mechanical exfoliation. Physica C 474, 13–17 (2012). https://doi.org/10.1016/j.physc.2011.12.006
Y. Zhang, Q. Su, J. Zhu, S. Koirala, S.J. Koester et al., Thickness-dependent thermal conductivity of mechanically exfoliated β-Ga2O3 thin films. Appl. Phys. Lett. 116, 202101–202101 (2020). https://doi.org/10.1063/5.0004984
M.I.B. Utama, F.J. Belarre, C. Magen, B. Peng, J. Arbiol et al., Incommensurate van der waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates. Nano Lett. 12, 2146–2152 (2012). https://doi.org/10.1021/nl300554t
J. Liu, Y. Feng, R. Tang, R. Zhao, J. Gao et al., Mechanically tunable magnetic properties of flexible SrRuO3 epitaxial thin films on mica substrates. Adv. Electron. Mater. 4, 1700522 (2018). https://doi.org/10.1002/aelm.201700522
H.J. Liu, C.K. Wang, D. Su, T. Amrillah, Y.H. Hsieh et al., Flexible heteroepitaxy of CoFe2O4/muscovite bimorph with large magnetostriction. ACS Appl. Mater. Interfaces 9, 7297–7304 (2017). https://doi.org/10.1021/acsami.6b16485
C.H. Ma, J.C. Lin, H.J. Liu, T.H. Do, Y.M. Zhu et al., Van der waals epitaxy of functional MoO2 film on mica for flexible electronics. Appl. Phys. Lett. 108, 253104 (2016). https://doi.org/10.1063/1.4954172
J.H. Kim, A.M. Grishin, Free-standing epitaxial La1-x (Sr, Ca)xMnO3 membrane on Si for uncooled infrared microbolometer. Appl. Phys. Lett. 87, 033502 (2005). https://doi.org/10.1063/1.1996845
C.K. Jeong, S.B. Cho, J.H. Han, D.Y. Park, S. Yang et al., Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 10, 437–455 (2017). https://doi.org/10.1007/s12274-016-1304-6
D.J. Joe, S. Kim, J.H. Park, D.Y. Park, H.E. Lee et al., Laser–material interactions for flexible applications. Adv. Mater. 29, 1606586 (2017). https://doi.org/10.1002/adma.201606586
L. Tsakalakos, T. Sands, Epitaxial ferroelectric (Pb, La)(Zr, Ti)O3 thin films on stainless steel by excimer laser liftoff. Appl. Phys. Lett. 76, 227–229 (2000). https://doi.org/10.1063/1.125710
C. Deneke, E. Wild, K. Boldyreva, S. Baunack, P. Cendula et al., Rolled-up tubes and cantilevers by releasing SrRuO3-Pr 0.7Ca 0.3MnO3 nanomembranes. Nanoscale Res. Lett. 6, 1–8 (2011). https://doi.org/10.1186/1556-276X-6-621
Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit et al., Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–1336 (2011). https://doi.org/10.1021/nl104412b
L. Pellegrino, M. Biasotti, E. Bellingeri, C. Bernini, A.S. Siri et al., All-oxide crystalline microelectromechanical systems: bending the functionalities of transition-metal oxide thin films. Adv. Mater. 21, 2377–2381 (2009). https://doi.org/10.1002/adma.200803360
Y. Zhang, L. Shen, M. Liu, X. Li, X. Lu et al., Flexible quasi-two-dimensional CoFe2O4 epitaxial thin films for continuous strain tuning of magnetic properties. ACS Nano 11, 8002–8009 (2017). https://doi.org/10.1021/acsnano.7b02637
D.M. Paskiewicz, R. Sichel-Tissot, E. Karapetrova, L. Stan, D.D. Fong, Single-crystalline SrRuO3 nanomembranes: a platform for flexible oxide electronics. Nano Lett. 16, 534–542 (2016). https://doi.org/10.1021/acs.nanolett.5b04176
D. Lu, D.J. Baek, S.S. Hong, L.F. Kourkoutis, Y. Hikita et al., Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016). https://doi.org/10.1038/nmat4749
Y. Zhang, C. Ma, X. Lu, M. Liu, Recent progress on flexible inorganic single-crystalline functional oxide films for advanced electronics. Mater. Horiz. 6, 911–930 (2019). https://doi.org/10.1039/c8mh01598h
S.S. Hong, J.H. Yu, D. Lu, A.F. Marshall, Y. Hikita et al., Two-dimensional limit of crystalline order in perovskite membrane films. Sci. Adv. 3, 5173 (2017). https://doi.org/10.1126/sciadv.aao5173
X. Luo, B. Zhang, G. Zhang, Fatigue of metals at nanoscale: metal thin films and conductive interconnects for flexible device application. Nano Mater. Sci. 1, 198–207 (2019). https://doi.org/10.1016/j.nanoms.2019.02.003
W. Liu, H. Wang, Flexible oxide epitaxial thin films for wearable electronics: fabrication, physical properties, and applications. J. Materiomics 6, 385–396 (2020). https://doi.org/10.1016/j.jmat.2019.12.006
R. Xu, J. Huang, E.S. Barnard, S.S. Hong, P. Singh et al., Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nat. Commun. 11, 3141 (2020). https://doi.org/10.1038/s41467-020-16912-3
S.H. Chae, W.J. Yu, J.J. Bae, D.L. Duong, D. Perello et al., Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 12, 403–409 (2013). https://doi.org/10.1038/nmat3572
D. Ji, S. Cai, T.R. Paudel, H. Sun, C. Zhang et al., Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019). https://doi.org/10.1038/s41586-019-1255-7
S.R. Bakaul, C.R. Serrao, M. Lee, C.W. Yeung, A. Sarker et al., Single crystal functional oxides on silicon. Calif. Manag. Rev. 7, 1–5 (2016). https://doi.org/10.1038/ncomms10547
L. Shen, L. Wu, Q. Sheng, C. Ma, Y. Zhang et al., Epitaxial lift-off of centimeter-scaled spinel ferrite oxide thin films for flexible electronics. Adv. Mater. 29, 1702411 (2017). https://doi.org/10.1002/adma.201702411
J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed et al., Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011). https://doi.org/10.1021/nn201207c
Y. Chen, X.L. Gong, J.G. Gai, Progress and challenges in transfer of large-area graphene films. Adv. Sci. 3, 1500343 (2016). https://doi.org/10.1002/advs.201500343
S.J. Kim, T. Choi, B. Lee, S. Lee, K. Choi et al., Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films. Nano Lett. 15, 3236–3240 (2015). https://doi.org/10.1021/acs.nanolett.5b00440
X. Liang, B.A. Sperling, I. Calizo, G. Cheng, C.A. Hacker et al., Toward clean and crackless transfer of graphene. ACS Nano 5, 9144–9153 (2011). https://doi.org/10.1021/nn203377t
Z. Lu, J. Liu, J. Feng, X. Zheng, L.-H. Yang et al., Synthesis of single-crystal La0.67Sr 0.33 MnO3 freestanding films with different crystal-orientation. APL Mater. 8, 051105 (2020). https://doi.org/10.1063/1.5145029
D. Lu, S. Crossley, R. Xu, Y. Hikita, H.Y. Hwang, Freestanding oxide ferroelectric tunnel junction memories transferred onto silicon. Nano Lett. 19, 3999–4003 (2019). https://doi.org/10.1021/acs.nanolett.9b01327
R.W. Davidge, Mechanical properties of ceramic materials. Contemp. Phys. 10, 105–124 (1969). https://doi.org/10.1080/00107516908220103
K. Niihara, New design concept of structural ceramics. Ceram. nanocompos. J. Ceram. Soc. Jap. 99, 974–982 (1991). https://doi.org/10.2109/jcersj.99.974
I. Levin, W.D. Kaplan, D.G. Brandon, A.A. Layyous, Effect of sic submicrometer particle size and content on fracture toughness of alumina–sic “nanocomposites.” J. Am. Ceram. Soc. 78, 254–256 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08397.x
S.M. Yang, S. Lee, J. Jian, W. Zhang, P. Lu et al., Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms9588
J. Kang, D. Shin, S. Bae, B.H. Hong, Graphene transfer: Key for applications. Nanoscale 4, 5527–5537 (2012). https://doi.org/10.1039/C2NR31317K
A. Biswas, Y. Jeong, in Strain Effect in Epitaxial Oxide Heterostructures, ed. by M. Zhong (Books on Demand, Deutschland, 2018)
A. Vailionis, W. Siemons, G. Koster, Room temperature epitaxial stabilization of a tetragonal phase in aRuO3 (a=Ca and Sr) thin films. Appl. Phys. Lett. 93, 051909 (2008). https://doi.org/10.1063/1.2967878
M. Dudek, M. Mróz, Ł Zych, E. Drozdz-Cieśla, Synthesis of ceria-based nanopowders suitable for manufacturing solid oxide electrolytes. Mater. Sci-Poland. 26, 319–329 (2008)
K.-H. Yang, N.-J. Ho, H.-Y. Lu, Deformation microstructure in (001) single crystal strontium titanate by vickers indentation. J. Am. Ceram. Soc. 92, 2345–2353 (2009). https://doi.org/10.1111/j.1551-2916.2009.03189.x
A. Fluri, D. Pergolesi, V. Roddatis, A. Wokaun, T. Lippert, In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction. Nat. Commun. 7, 1–9 (2016). https://doi.org/10.1038/ncomms10692
T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 4th edn. (CRC Press, Florida, 2017).
A. Kossoy, J.P. Nair, E. Wachtel, I. Lubomirsky, J. Fleig et al., Room temperature phase transition in CeO2 nanocrystalline films. J. Electroceram. 13, 605–608 (2004). https://doi.org/10.1007/s10832-004-5165-0
F. Sommer, R. Landfried, F. Kern, R. Gadow, Mechanical properties of zirconia toughened alumina with 10–24vol.% 1y-tzp reinforcement. J. Eur. Ceram. Soc. 32, 4177–4184 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.06.019
F. Kern, P. Palmero, F.G. Marro, A. Mestra, Processing of alumina–zirconia composites by surface modification route with enhanced hardness and wear resistance. Ceram. Int. 41, 889–898 (2015). https://doi.org/10.1016/j.ceramint.2014.09.006
F. Kern, P. Palmero, Microstructure and mechanical properties of alumina 5 vol% zirconia nanocomposites prepared by powder coating and powder mixing routes. Ceram. Int. 39, 673–682 (2013). https://doi.org/10.1016/j.ceramint.2012.06.078
J. Zhao, L.C. Stearns, M.P. Harmer, H.M. Chan, G.A. Miller et al., Mechanical behavior of alumina–silicon carbide “nanocomposites.” J. Am. Ceram. Soc. 76, 503–510 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03814.x
J. Pérez-Rigueiro, J.Y. Pastor, J. Llorca, M. Elices, P. Miranzo et al., Revisiting the mechanical behavior of alumina/silicon carbide nanocomposites. Acta Mater. 46, 5399–5411 (1998). https://doi.org/10.1016/S1359-6454(98)00193-1
F. Meschke, P. Alves-Riccardo, G.A. Schneider, N. Claussen, Failure behavior of alumina and alumina/silicon carbide nanocomposites with natural and artificial flaws. J. Mater. Res. 12, 3307–3315 (1997). https://doi.org/10.1557/JMR.1997.0435
T. Liu, W.C. Tjiu, Y. Tong, C. He, S.S. Goh et al., Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. J. Appl. Polym. Sci. 94, 1236–1244 (2004). https://doi.org/10.1002/app.21033
H. Wu, in 10 - Understanding Residual Stresses and Fracture Toughness in Ceramic Nanocomposites. Ed. by M.M Shokrieh (Woodhead publishing, Cambridge, 2014), pp. 256–292
W. Liu, S.V. Hoa, M. Pugh, Organoclay-modified high performance epoxy nanocomposites. Compos. Sci. Technol. 65, 307–316 (2005). https://doi.org/10.1016/j.compscitech.2004.07.012
I.A. Ovid’ko, Micromechanics of fracturing in nanoceramics. Phil. Trans. R. Soc. A 373, 1–14 (2015). https://doi.org/10.1098/rsta.2014.0129
B. Zhu, G. Schusteritsch, P. Lu, J.L. Macmanus-Driscoll, C.J. Pickard, Determining interface structures in vertically aligned nanocomposite films. APL Mater. 7, 061105 (2019). https://doi.org/10.1063/1.5099204