Bacteria-Mediated Synergistic Cancer Therapy: Small Microbiome Has a Big Hope
Corresponding Author: Jin Sun
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 37
Abstract
The use of bacteria to specifically migrate to cancerous tissue and elicit an antitumor immune response provides a promising platform against cancer with significantly high potency. With dozens of clinical trials underway, some researchers hold the following views: “humans are nearing the first commercial live bacteria therapeutic.” However, the facultative anaerobe Salmonella typhimurium VNP20009, which is particularly safe and shows anticancer effects in preclinical studies, had failed in a phase I clinical trial due to low tumor regression and undesired dose-dependent side effects. This is almost certain to disappoint people’s inflated expectations, but it is noted that recent state-of-the-art research has turned attention to bacteria-mediated synergistic cancer therapy (BMSCT). In this review, the foundation of bacteria-mediated bio-therapy is outlined. Then, we summarize the potential benefits and challenges of bacterial bio-therapy in combination with different traditional anticancer therapeutic modalities (chemotherapy, photothermal therapy, reactive oxygen and nitrogen species therapy, immunotherapy, or prodrug-activating therapy) in the past 5 years. Next, we discuss multiple administration routes of BMSCT, highlighting potentiated antitumor responses and avoidance of potential side effects. Finally, we envision the opportunities and challenges for BMSCT development, with the purpose of inspiring medicinal scientists to widely utilize the microbiome approach in patient populations.
Highlights:
1 Introducing mechanisms of antitumor activation produced by bacteria-mediated bio-therapy in detail.
2 Comprehensively reviewing multiple administration routes of bacterial bio-therapy in combination with different traditional anticancer therapeutic modalities over the recent 5 years.
3 Discussing the potential benefits and challenges of this anticancer approach, and conveying the development tendency and the application prospect of this field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Bray, J. Ferlay, I. Soerjomataram, R. Siegel, L. Torre et al., Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018). https://doi.org/10.3322/caac.21492
- S. Felgner, V. Pawar, D. Kocijancic, M. Erhardt, S. Weiss, Tumour-targeting bacteria-based cancer therapies for increased specificity and improved outcome. Microb. Biotechnol. 10, 1074–1078 (2017). https://doi.org/10.1111/1751-7915.12787
- B. Sun, C. Luo, H. Yu, X. Zhang, Q. Chen et al., Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett. 18, 3643–3650 (2018). https://doi.org/10.1021/acs.nanolett.8b00737
- R. Wijdeven, B. Pang, Y. Assaraf, J. Neefjes, Old drugs, novel ways out: drug resistance toward cytotoxic chemotherapeutics. Drug Resist. Updat. 28, 65–81 (2016). https://doi.org/10.1016/j.drup.2016.07.001
- S. Cann, J. Van Netten, C. Netten, Dr William Coley and tumour regression: a place in history or in the future. Postgrad. Med. J. 79, 672–680 (2004). https://doi.org/10.1111/j.1526-4637.2003.03051.x
- W.B. Coley, The treatment of sarcoma of the long bones. Ann. Surg. 97, 434–460 (1933). https://doi.org/10.1097/00000658-193303000-00010
- W. Song, A.C. Anselmo, L. Huang, Nanotechnology intervention of the microbiome for cancer therapy. Nat. Nanotechnol. 14, 1093–1103 (2019). https://doi.org/10.1038/s41565-019-0589-5
- S. Zhou, C. Gravekamp, D. Bermudes, K. Liu, Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018). https://doi.org/10.1038/s41568-018-0070-z
- H. Nishikawa, E. Sato, G. Briones, L.M. Chen, M. Matsuo et al., In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J. Clin. Investig. 116, 1946–1954 (2006). https://doi.org/10.1172/jci28045
- L. He, H. Yang, J. Tang, Z. Liu, Y. Chen et al., Intestinal probiotics Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy. J. Biol. Eng. 13, 58 (2019). https://doi.org/10.1186/s13036-019-0189-9
- M. Jimenez, R. Langer, G. Traverso, Microbial therapeutics: new opportunities for drug delivery. J. Exp. Med. 216, 1005–1009 (2019). https://doi.org/10.1084/jem.20190609
- Y. Zhang, N. Zhang, M. Zhao, R. Hoffman, Comparison of the selective targeting efficacy of Salmonella typhimurium A1-R and VNP20009 on the Lewis lung carcinoma in nude mice. Oncotarget 6, 14625–14631 (2015). https://doi.org/10.18632/oncotarget.3342
- C. Lee, C. Wu, A. Shiau, Salmonella choleraesuis as an anticancer agent in a syngeneic model of orthotopic hepatocellular carcinoma. Int. J. Cancer 122, 930–935 (2008). https://doi.org/10.1002/ijc.23047
- L. Leschner, K. Westphal, N. Dietrich, N. Viegas, J. Jablonska et al., Tumor invasion of Salmonella enterica serovar typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha. PLoS ONE 4, e6692 (2009). https://doi.org/10.1371/journal.pone.0006692
- R. Garza-Morales, B. Rendon, M. Malik, J. Garza-Cabrales, A. Aucouturier et al., Lactococcus lactis-targeting melanoma hypoxia with the food-grade lactic acid bacterium. Cancers 12, 438 (2020). https://doi.org/10.3390/cancers12020438
- R.W. Kasinskas, N.S. Forbes, Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 67, 3201–3209 (2007). https://doi.org/10.1158/0008-5472.Can-06-2618
- J.M. Pawelek, K.B. Low, D. Bermudes, Tumor-targeted salmonella as a novel anticancer vector. Cancer Res. 57, 4537–4544 (1997). https://doi.org/10.4067/S0717-95532002000100005
- A. Bolhassani, N. Naderi, S. Soleymani, Prospects and progress of listeria-based cancer vaccines. Expert Opin. Biol. Ther. 17, 1389–1400 (2017). https://doi.org/10.1080/14712598.2017.1366446
- V.M. Kim, A.B. Blair, P. Lauer, K. Foley, X. Che et al., Anti-pancreatic tumor efficacy of a listeria-based, annexin A2-targeting immunotherapy in combination with anti-PD-1 antibodies. J. Immunother. Cancer 7, 132 (2019). https://doi.org/10.1186/s40425-019-0601-5
- B. Beutler, A. Cerami, The biology of cachectin/TNF—a primary mediator of the host response. Annu. Rev. Immunol. 7, 625–655 (1989). https://doi.org/10.1146/annurev.iy.07.040189.003205
- J.E. Kim, T.X. Phan, V.H. Nguyen, H.V. Dinh-Vu, J.H. Zheng et al., Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1β. Theranostics 5, 1328–1342 (2015). https://doi.org/10.7150/thno.11432
- T. Phan, V. Nguyen, M. Duong, Y. Hong, H. Choy et al., Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiol. Immunol. 59, 664–675 (2015). https://doi.org/10.1111/1348-0421.12333
- F. Avogadri, C. Martinoli, L. Petrovska, C. Chiodoni, P. Transidico et al., Cancer immunotherapy based on killing of salmonella-infected tumor cells. Cancer Res. 65, 3920–3927 (2005). https://doi.org/10.1158/0008-5472.Can-04-3002
- L. Sfondrini, A. Rossini, D. Besusso, A. Merlo, E. Tagliabue et al., Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J. Immunol. 176, 6624–6630 (2006). https://doi.org/10.4049/jimmunol.176.11.6624
- F. Coll, E. Harrison, M. Toleman, S. Reuter, K. Raven et al., Longitudinal genomic surveillance of MRSA in the UK reveals transmission patterns in hospitals and the community. Sci. Transl. Med. 9, eaak9745 (2017). https://doi.org/10.1126/scitranslmed.aak9745
- W.W. Chang, C.H. Lai, M.C. Chen, C.F. Liu, Y.D. Kuan et al., Salmonella enhance chemosensitivity in tumor through connexin 43 upregulation. Int. J. Cancer 133, 1926–1935 (2013). https://doi.org/10.1002/ijc.28155
- D. Chandra, A. Jahangir, W. Quispe-Tintaya, M. Einstein, C. Gravekamp, Myeloid-derived suppressor cells have a central role in attenuated listeria monocytogenes-based immunotherapy against metastatic breast cancer in young and old mice. Br. J. Cancer 108, 2281–2290 (2013). https://doi.org/10.1038/bjc.2013.206
- Q. Hu, M. Wu, C. Fang, C. Cheng, M. Zhao et al., Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 15, 2732–2739 (2015). https://doi.org/10.1021/acs.nanolett.5b00570
- N.S. Forbes, Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785–794 (2010). https://doi.org/10.1038/nrc2934
- A. Bhatt, M. Redinbo, S. Bultman, The role of the microbiome in cancer development and therapy. CA Cancer J. Clin. 67, 326–344 (2017). https://doi.org/10.3322/caac.21398
- S. Chowdhury, S. Castro, C. Coker, T. Hinchliffe, N. Arpaia et al., Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25, 1057–1063 (2019). https://doi.org/10.1038/s41591-019-0498-z
- S. Picardo, B. Coburn, A. Hansen, The microbiome and cancer for clinicians. Crit. Rev. Oncol. Hematol. 141, 1–12 (2019). https://doi.org/10.1016/j.critrevonc.2019.06.004
- Z. Eslami-S, K. Majidzadeh-A, S. Halvaei, F. Babapirali, R. Esmaeili, Microbiome and breast cancer: new role for an ancient population. Front. Oncol. 10, 120 (2020). https://doi.org/10.3389/fonc.2020.00120
- K.B. Low, M. Ittensohn, T. Le, J. Platt, S. Sodi et al., Lipid a mutant salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat. Biotechnol. 17, 37–41 (1999). https://doi.org/10.1038/5205
- L.A. Diaz Jr., I. Cheong, C.A. Foss, X. Zhang et al., Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicol. Sci. 88, 562–575 (2005). https://doi.org/10.1093/toxsci/kfi316
- M. Shinnoh, M. Horinaka, T. Yasuda, S. Yoshikawa, M. Morita et al., Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8. Int. J. Oncol. 42, 903–911 (2013). https://doi.org/10.3892/ijo.2013.1790
- D.T. Le, T.W. Dubenksy Jr., D.G. Brockstedt, Clinical development of listeria monocytogenes-based immunotherapies. Semin. Oncol. 39, 311–322 (2012). https://doi.org/10.1053/j.seminoncol.2012.02.008
- O. Felfoul, M. Mohammadi, S. Taherkhani, D. de Lanauze, Y.Z. Xu et al., Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016). https://doi.org/10.1038/nnano.2016.137
- S. Xie, L. Zhao, X. Song, M. Tang, C. Mo et al., Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. J. Control. Release 268, 390–399 (2017). https://doi.org/10.1016/j.jconrel.2017.10.041
- J. Stritzker, S. Weibel, P. Hill, T. Oelschlaeger, W. Goebel et al., Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. IJMM 297, 151–162 (2007). https://doi.org/10.1016/j.ijmm.2007.01.008
- S. Xie, M. Chen, X. Song, Z. Zhang, Z. Zhang et al., Bacterial microbots for acid-labile release of hybrid micelles to promote the synergistic antitumor efficacy. Acta Biomater. 78, 198–210 (2018). https://doi.org/10.1016/j.actbio.2018.07.041
- P.A. de Boer, R.E. Crossley, L.I. Rothfield, A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56, 641–649 (1989). https://doi.org/10.1016/0092-8674(89)90586-2
- J.A. MacDiarmid, J. Madrid-Weiss, N.B. Amaro-Mugridge, L. Phillips, H. Brahmbhatt, Bacterially-derived nanocells for tumor-targeted delivery of chemotherapeutics and cell cycle inhibitors. Cell Cycle 6, 2099–2105 (2007). https://doi.org/10.4161/cc.6.17.4648
- K. Matsuo, V.K. Bond, M.L. Eno, D.D. Im, N.B. Rosenshein, Low drug resistance to both platinum and taxane chemotherapy on an in vitro drug resistance assay predicts improved survival in patients with advanced epithelial ovarian, fallopian and peritoneal cancer. Int. J. Cancer 125, 2721–2727 (2009). https://doi.org/10.1002/ijc.24654
- J.A. MacDiarmid, N.B. Amaro-Mugridge, J. Madrid-Weiss, I. Sedliarou, S. Wetzel et al., Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat. Biotechnol. 27, 643–651 (2009). https://doi.org/10.1038/nbt.1547
- S. Felgner, D. Kocijancic, M. Frahm, R. Curtiss, M. Erhardt et al., Optimizing Salmonella enterica serovar typhimurium for bacteria-mediated tumor therapy. Gut Microbes 7, 171–177 (2016). https://doi.org/10.1080/19490976.2016.1155021
- J. Nam, S. Son, L.J. Ochyl, R. Kuai, A. Schwendeman et al., Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 9, 1074 (2018). https://doi.org/10.1038/s41467-018-03473-9
- F. Chen, Z. Zang, Z. Chen, L. Cui, Z. Chang et al., Nanophotosensitizer-engineered salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials 214, 119226 (2019). https://doi.org/10.1016/j.biomaterials.2019.119226
- W. Chen, Y. Wang, M. Qin, X. Zhang, Z. Zhang et al., Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 12, 5995–6005 (2018). https://doi.org/10.1021/acsnano.8b02235
- J. Huang, L. Lin, D. Sun, H. Chen, D. Yang et al., Cheminform abstract: bio-inspired synthesis of metal nanomaterials and applications. ChemInform (2015). https://doi.org/10.1002/chin.201541232
- Q.-W. Chen, X.-H. Liu, J.-X. Fan, S.-Y. Peng, J.-W. Wang et al., Self-mineralized photothermal bacteria hybridizing with mitochondria-targeted metal–organic frameworks for augmenting photothermal tumor therapy. Adv. Funct. Mater. 30, 1909806 (2020). https://doi.org/10.1002/adfm.201909806
- C.H. Luo, C.T. Huang, C.H. Su, C.S. Yeh, Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett. 16, 3493–3499 (2016). https://doi.org/10.1021/acs.nanolett.6b00262
- V. Gujrati, J. Prakash, J. Malekzadeh-Najafabadi, A. Stiel, U. Klemm et al., Bioengineered bacterial vesicles as biological nano-heaters for optoacoustic imaging. Nat. Commun. 10, 1114 (2019). https://doi.org/10.1038/s41467-019-09034-y
- Y. Ye, C. Wang, X. Zhang, Q. Hu, Y. Zhang et al., A melanin-mediated cancer immunotherapy patch. Sci. Immunol. (2017). https://doi.org/10.1126/sciimmunol.aan5692
- Q. Chen, G. Huang, W. Wu, J. Wang, J. Hu et al., A hybrid eukaryotic-prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination. Adv. Mater. 32, e1908185 (2020). https://doi.org/10.1002/adma.201908185
- E. Kolaczkowska, P. Kubes, Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013). https://doi.org/10.1038/nri3399
- J. Nicolás-Ávila, J.M. Adrover, A. Hidalgo, Neutrophils in homeostasis, immunity, and cancer. Immunity 46, 15–28 (2017). https://doi.org/10.1016/j.immuni.2016.12.012
- M. Li, S. Li, H. Zhou, X. Tang, Y. Wu et al., Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat. Commun. 11, 1126 (2020). https://doi.org/10.1038/s41467-020-14963-0
- B. Sun, C. Luo, X. Zhang, M. Guo, M. Sun et al., Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 10, 3211 (2019). https://doi.org/10.1038/s41467-019-11193-x
- C. Luo, J. Sun, D. Liu, B. Sun, L. Miao et al., Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 16, 5401–5408 (2016). https://doi.org/10.1021/acs.nanolett.6b01632
- S. Mijatović, A. Savić-Radojević, M. Plješa-Ercegovac, T. Simić, F. Nicoletti et al., The double-faced role of nitric oxide and reactive oxygen species in solid tumors. Antioxidants 9, 374 (2020). https://doi.org/10.3390/antiox9050374
- D.W. Zheng, Y. Chen, Z.H. Li, L. Xu, C.X. Li et al., Optically-controlled bacterial metabolite for cancer therapy. Nat. Commun. 9, 1680 (2018). https://doi.org/10.1038/s41467-018-03233-9
- J.-X. Fan, M.-Y. Peng, H. Wang, H.-R. Zheng, Z.-L. Liu et al., Biomedical materials: engineered bacterial bioreactor for tumor therapy via fenton-like reaction with localized H2O2 generation. Adv. Mater. 31, 1970119 (2019). https://doi.org/10.1002/adma.201970119
- L. Feng, L. Cheng, Z. Dong, D. Tao, T.E. Barnhart et al., Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano 11, 927–937 (2017). https://doi.org/10.1021/acsnano.6b07525
- L. Liu, H. He, Z. Luo, H. Zhou, R. Liang et al., In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer. Adv. Funct. Mater. 30, 1910176 (2020). https://doi.org/10.1002/adfm.201910176
- M. Wu, W. Wu, Y. Duan, X. Li, G. Qi et al., Photosensitizer-bacteria biohybrids promote photodynamic cancer cell ablation and intracellular protein delivery. Chem. Mater. 31, 7212–7220 (2019). https://doi.org/10.1021/acs.chemmater.9b01518
- C. Stern, N. Kasnitz, D. Kocijancic, S. Trittel, P. Riese et al., Induction of CD4(+) and CD8(+) anti-tumor effector T cell responses by bacteria mediated tumor therapy. Int. J. Cancer 137, 2019–2028 (2015). https://doi.org/10.1002/ijc.29567
- J.H. Zheng, V.H. Nguyen, S.N. Jiang, S.H. Park, W. Tan et al., Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. (2017). https://doi.org/10.1126/scitranslmed.aak9537
- C. Gurbatri, I. Lia, R. Vincent, C. Coker, S. Castro et al., Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. (2020). https://doi.org/10.1126/scitranslmed.aax0876
- O.Y. Kim, H.T. Park, N.T.H. Dinh, S.J. Choi, J. Lee et al., Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat. Commun. 8, 626 (2017). https://doi.org/10.1038/s41467-017-00729-8
- R.B. Patel, M. Ye, P.M. Carlson, A. Jaquish, L. Zangl et al., Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv. Mater. 31, e1902626 (2019). https://doi.org/10.1002/adma.201902626
- Q. Chen, H. Bai, W. Wu, G. Huang, Y. Li et al., Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention. Nano Lett. 20, 11–21 (2020). https://doi.org/10.1021/acs.nanolett.9b02182
- W. Chen, Z. Guo, Y. Zhu, N. Qiao, Z. Zhang et al., Combination of bacterial-photothermal therapy with an anti-pd-1 peptide depot for enhanced immunity against advanced cancer. Adv. Funct. Mater. 30, 1906623 (2020). https://doi.org/10.1002/adfm.201906623
- P. Lehouritis, C. Springer, M. Tangney, Bacterial-directed enzyme prodrug therapy. J. Control. Release 170, 120–131 (2013). https://doi.org/10.1016/j.jconrel.2013.05.005
- P. Lehouritis, G. Hogan, M. Tangney, Designer bacteria as intratumoural enzyme biofactories. Adv. Drug Deliv. Rev. 118, 8–23 (2017). https://doi.org/10.1016/j.addr.2017.09.012
- P. Lehouritis, M. Stanton, F.O. McCarthy, M. Jeavons, M. Tangney, Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria. J. Control. Release 222, 9–17 (2016). https://doi.org/10.1016/j.jconrel.2015.11.030
- C.M. Cheng, F.M. Chen, Y.L. Lu, S.C. Tzou, J.Y. Wang et al., Expression of β-glucuronidase on the surface of bacteria enhances activation of glucuronide prodrugs. Cancer Gene Ther. 20, 276–281 (2013). https://doi.org/10.1038/cgt.2013.17
- J.V.E. Chan-Hyams, D.F. Ackerley, Protocol for evaluating the abilities of diverse nitroaromatic prodrug metabolites to exit a model gram negative bacterial vector. MethodsX 7, 100797 (2020). https://doi.org/10.1016/j.mex.2020.100797
- B. Wei, P.P. Wang, Z.X. Yan, R. Yan, Characteristics and molecular determinants of a highly selective and efficient glycyrrhizin-hydrolyzing β-glucuronidase from Staphylococcus pasteuri 3I10. Appl. Microbiol. Biotechnol. 102, 9193–9205 (2018). https://doi.org/10.1007/s00253-018-9285-x
- A. Afkhami-Poostchi, M. Mashreghi, M. Iranshahi, M. Matin, Use of a genetically engineered E. coli overexpressing β-glucuronidase accompanied by glycyrrhizic acid, a natural and anti-inflammatory agent, for directed treatment of colon carcinoma in a mouse model. Int. J. Pharm. 579, 119159 (2020). https://doi.org/10.1016/j.ijpharm.2020.119159
- S. Bochum, S. Berger, U.M. Martens, Olaparib. Recent Results Cancer Res. 211, 217–233 (2018). https://doi.org/10.1007/978-3-319-91442-8_15
- Y. Shi, W. Zheng, K. Yang, K.G. Harris, K. Ni et al., Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J. Exp. Med. (2020). https://doi.org/10.1084/jem.20192282
- A.C. Anselmo, K.J. McHugh, J. Webster, R. Langer, A. Jaklenec, Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 28, 9486–9490 (2016). https://doi.org/10.1002/adma.201603270
- Z. Cao, X. Wang, Y. Pang, S. Cheng, J. Liu, Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat. Commun. 10, 5783 (2019). https://doi.org/10.1038/s41467-019-13727-9
- Z. Cao, S. Cheng, X. Wang, Y. Pang, J. Liu, Camouflaging bacteria by wrapping with cell membranes. Nat. Commun. 10, 3452 (2019). https://doi.org/10.1038/s41467-019-11390-8
- B. Mostaghaci, O. Yasa, J. Zhuang, M. Sitti, Bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts. Adv. Sci. 4, 1700058 (2017). https://doi.org/10.1002/advs.201700058
- J.X. Fan, Z.H. Li, X.H. Liu, D.W. Zheng, Y. Chen et al., Bacteria-mediated tumor therapy utilizing photothermally-controlled tnf-α expression via oral administration. Nano Lett. 18, 2373–2380 (2018). https://doi.org/10.1021/acs.nanolett.7b05323
- Q. Song, C. Zheng, J. Jia, H. Zhao, Q. Feng et al., A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy. Adv. Mater. 31, 1903793 (2019). https://doi.org/10.1002/adma.201903793
- T. Ren, J. Gou, W. Sun, X. Tao, X. Tan et al., Entrapping of nanoparticles in yeast cell wall microparticles for macrophage-targeted oral delivery of cabazitaxel. Mol. Pharm. 15, 2870–2882 (2018). https://doi.org/10.1021/acs.molpharmaceut.8b00357
- X. Zhou, X. Zhang, S. Han, Y. Dou, M. Liu et al., Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral route. Nano Lett. 17, 1056–1064 (2017). https://doi.org/10.1021/acs.nanolett.6b04523
- L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent et al., Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015). https://doi.org/10.3322/caac.21262
- M. Zhang, M. Li, L. Du, J. Zeng, T. Yao et al., Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int. J. Pharm. 578, 119177 (2020). https://doi.org/10.1016/j.ijpharm.2020.119177
- L. Peng, M. Wang, Y. Chu, L. Zhang, J. Niu et al., Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-trail-programmed therapy against melanoma. Sci. Adv. 6, eaba2735 (2020). https://doi.org/10.1126/sciadv.aba2735
- M. Prausnitz, R. Langer, Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008). https://doi.org/10.1038/nbt.1504
- L. Yepes-Molina, M.C. Martínez-Ballesta, M. Carvajal, Plant plasma membrane vesicles interaction with keratinocytes reveals their potential as carriers. J. Adv. Res. 23, 101–111 (2020). https://doi.org/10.1016/j.jare.2020.02.004
- F. Martinez-Morales, A. Borges, A. Martinez, K. Shanmugam, L. Ingram, Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons used during construction. J. Bacteriol. 181, 7143–7148 (1999). https://doi.org/10.1128/jb.181.22.7143-7148.1999
References
F. Bray, J. Ferlay, I. Soerjomataram, R. Siegel, L. Torre et al., Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018). https://doi.org/10.3322/caac.21492
S. Felgner, V. Pawar, D. Kocijancic, M. Erhardt, S. Weiss, Tumour-targeting bacteria-based cancer therapies for increased specificity and improved outcome. Microb. Biotechnol. 10, 1074–1078 (2017). https://doi.org/10.1111/1751-7915.12787
B. Sun, C. Luo, H. Yu, X. Zhang, Q. Chen et al., Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett. 18, 3643–3650 (2018). https://doi.org/10.1021/acs.nanolett.8b00737
R. Wijdeven, B. Pang, Y. Assaraf, J. Neefjes, Old drugs, novel ways out: drug resistance toward cytotoxic chemotherapeutics. Drug Resist. Updat. 28, 65–81 (2016). https://doi.org/10.1016/j.drup.2016.07.001
S. Cann, J. Van Netten, C. Netten, Dr William Coley and tumour regression: a place in history or in the future. Postgrad. Med. J. 79, 672–680 (2004). https://doi.org/10.1111/j.1526-4637.2003.03051.x
W.B. Coley, The treatment of sarcoma of the long bones. Ann. Surg. 97, 434–460 (1933). https://doi.org/10.1097/00000658-193303000-00010
W. Song, A.C. Anselmo, L. Huang, Nanotechnology intervention of the microbiome for cancer therapy. Nat. Nanotechnol. 14, 1093–1103 (2019). https://doi.org/10.1038/s41565-019-0589-5
S. Zhou, C. Gravekamp, D. Bermudes, K. Liu, Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018). https://doi.org/10.1038/s41568-018-0070-z
H. Nishikawa, E. Sato, G. Briones, L.M. Chen, M. Matsuo et al., In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J. Clin. Investig. 116, 1946–1954 (2006). https://doi.org/10.1172/jci28045
L. He, H. Yang, J. Tang, Z. Liu, Y. Chen et al., Intestinal probiotics Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy. J. Biol. Eng. 13, 58 (2019). https://doi.org/10.1186/s13036-019-0189-9
M. Jimenez, R. Langer, G. Traverso, Microbial therapeutics: new opportunities for drug delivery. J. Exp. Med. 216, 1005–1009 (2019). https://doi.org/10.1084/jem.20190609
Y. Zhang, N. Zhang, M. Zhao, R. Hoffman, Comparison of the selective targeting efficacy of Salmonella typhimurium A1-R and VNP20009 on the Lewis lung carcinoma in nude mice. Oncotarget 6, 14625–14631 (2015). https://doi.org/10.18632/oncotarget.3342
C. Lee, C. Wu, A. Shiau, Salmonella choleraesuis as an anticancer agent in a syngeneic model of orthotopic hepatocellular carcinoma. Int. J. Cancer 122, 930–935 (2008). https://doi.org/10.1002/ijc.23047
L. Leschner, K. Westphal, N. Dietrich, N. Viegas, J. Jablonska et al., Tumor invasion of Salmonella enterica serovar typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha. PLoS ONE 4, e6692 (2009). https://doi.org/10.1371/journal.pone.0006692
R. Garza-Morales, B. Rendon, M. Malik, J. Garza-Cabrales, A. Aucouturier et al., Lactococcus lactis-targeting melanoma hypoxia with the food-grade lactic acid bacterium. Cancers 12, 438 (2020). https://doi.org/10.3390/cancers12020438
R.W. Kasinskas, N.S. Forbes, Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 67, 3201–3209 (2007). https://doi.org/10.1158/0008-5472.Can-06-2618
J.M. Pawelek, K.B. Low, D. Bermudes, Tumor-targeted salmonella as a novel anticancer vector. Cancer Res. 57, 4537–4544 (1997). https://doi.org/10.4067/S0717-95532002000100005
A. Bolhassani, N. Naderi, S. Soleymani, Prospects and progress of listeria-based cancer vaccines. Expert Opin. Biol. Ther. 17, 1389–1400 (2017). https://doi.org/10.1080/14712598.2017.1366446
V.M. Kim, A.B. Blair, P. Lauer, K. Foley, X. Che et al., Anti-pancreatic tumor efficacy of a listeria-based, annexin A2-targeting immunotherapy in combination with anti-PD-1 antibodies. J. Immunother. Cancer 7, 132 (2019). https://doi.org/10.1186/s40425-019-0601-5
B. Beutler, A. Cerami, The biology of cachectin/TNF—a primary mediator of the host response. Annu. Rev. Immunol. 7, 625–655 (1989). https://doi.org/10.1146/annurev.iy.07.040189.003205
J.E. Kim, T.X. Phan, V.H. Nguyen, H.V. Dinh-Vu, J.H. Zheng et al., Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1β. Theranostics 5, 1328–1342 (2015). https://doi.org/10.7150/thno.11432
T. Phan, V. Nguyen, M. Duong, Y. Hong, H. Choy et al., Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiol. Immunol. 59, 664–675 (2015). https://doi.org/10.1111/1348-0421.12333
F. Avogadri, C. Martinoli, L. Petrovska, C. Chiodoni, P. Transidico et al., Cancer immunotherapy based on killing of salmonella-infected tumor cells. Cancer Res. 65, 3920–3927 (2005). https://doi.org/10.1158/0008-5472.Can-04-3002
L. Sfondrini, A. Rossini, D. Besusso, A. Merlo, E. Tagliabue et al., Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J. Immunol. 176, 6624–6630 (2006). https://doi.org/10.4049/jimmunol.176.11.6624
F. Coll, E. Harrison, M. Toleman, S. Reuter, K. Raven et al., Longitudinal genomic surveillance of MRSA in the UK reveals transmission patterns in hospitals and the community. Sci. Transl. Med. 9, eaak9745 (2017). https://doi.org/10.1126/scitranslmed.aak9745
W.W. Chang, C.H. Lai, M.C. Chen, C.F. Liu, Y.D. Kuan et al., Salmonella enhance chemosensitivity in tumor through connexin 43 upregulation. Int. J. Cancer 133, 1926–1935 (2013). https://doi.org/10.1002/ijc.28155
D. Chandra, A. Jahangir, W. Quispe-Tintaya, M. Einstein, C. Gravekamp, Myeloid-derived suppressor cells have a central role in attenuated listeria monocytogenes-based immunotherapy against metastatic breast cancer in young and old mice. Br. J. Cancer 108, 2281–2290 (2013). https://doi.org/10.1038/bjc.2013.206
Q. Hu, M. Wu, C. Fang, C. Cheng, M. Zhao et al., Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 15, 2732–2739 (2015). https://doi.org/10.1021/acs.nanolett.5b00570
N.S. Forbes, Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785–794 (2010). https://doi.org/10.1038/nrc2934
A. Bhatt, M. Redinbo, S. Bultman, The role of the microbiome in cancer development and therapy. CA Cancer J. Clin. 67, 326–344 (2017). https://doi.org/10.3322/caac.21398
S. Chowdhury, S. Castro, C. Coker, T. Hinchliffe, N. Arpaia et al., Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25, 1057–1063 (2019). https://doi.org/10.1038/s41591-019-0498-z
S. Picardo, B. Coburn, A. Hansen, The microbiome and cancer for clinicians. Crit. Rev. Oncol. Hematol. 141, 1–12 (2019). https://doi.org/10.1016/j.critrevonc.2019.06.004
Z. Eslami-S, K. Majidzadeh-A, S. Halvaei, F. Babapirali, R. Esmaeili, Microbiome and breast cancer: new role for an ancient population. Front. Oncol. 10, 120 (2020). https://doi.org/10.3389/fonc.2020.00120
K.B. Low, M. Ittensohn, T. Le, J. Platt, S. Sodi et al., Lipid a mutant salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat. Biotechnol. 17, 37–41 (1999). https://doi.org/10.1038/5205
L.A. Diaz Jr., I. Cheong, C.A. Foss, X. Zhang et al., Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicol. Sci. 88, 562–575 (2005). https://doi.org/10.1093/toxsci/kfi316
M. Shinnoh, M. Horinaka, T. Yasuda, S. Yoshikawa, M. Morita et al., Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8. Int. J. Oncol. 42, 903–911 (2013). https://doi.org/10.3892/ijo.2013.1790
D.T. Le, T.W. Dubenksy Jr., D.G. Brockstedt, Clinical development of listeria monocytogenes-based immunotherapies. Semin. Oncol. 39, 311–322 (2012). https://doi.org/10.1053/j.seminoncol.2012.02.008
O. Felfoul, M. Mohammadi, S. Taherkhani, D. de Lanauze, Y.Z. Xu et al., Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016). https://doi.org/10.1038/nnano.2016.137
S. Xie, L. Zhao, X. Song, M. Tang, C. Mo et al., Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. J. Control. Release 268, 390–399 (2017). https://doi.org/10.1016/j.jconrel.2017.10.041
J. Stritzker, S. Weibel, P. Hill, T. Oelschlaeger, W. Goebel et al., Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. IJMM 297, 151–162 (2007). https://doi.org/10.1016/j.ijmm.2007.01.008
S. Xie, M. Chen, X. Song, Z. Zhang, Z. Zhang et al., Bacterial microbots for acid-labile release of hybrid micelles to promote the synergistic antitumor efficacy. Acta Biomater. 78, 198–210 (2018). https://doi.org/10.1016/j.actbio.2018.07.041
P.A. de Boer, R.E. Crossley, L.I. Rothfield, A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56, 641–649 (1989). https://doi.org/10.1016/0092-8674(89)90586-2
J.A. MacDiarmid, J. Madrid-Weiss, N.B. Amaro-Mugridge, L. Phillips, H. Brahmbhatt, Bacterially-derived nanocells for tumor-targeted delivery of chemotherapeutics and cell cycle inhibitors. Cell Cycle 6, 2099–2105 (2007). https://doi.org/10.4161/cc.6.17.4648
K. Matsuo, V.K. Bond, M.L. Eno, D.D. Im, N.B. Rosenshein, Low drug resistance to both platinum and taxane chemotherapy on an in vitro drug resistance assay predicts improved survival in patients with advanced epithelial ovarian, fallopian and peritoneal cancer. Int. J. Cancer 125, 2721–2727 (2009). https://doi.org/10.1002/ijc.24654
J.A. MacDiarmid, N.B. Amaro-Mugridge, J. Madrid-Weiss, I. Sedliarou, S. Wetzel et al., Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat. Biotechnol. 27, 643–651 (2009). https://doi.org/10.1038/nbt.1547
S. Felgner, D. Kocijancic, M. Frahm, R. Curtiss, M. Erhardt et al., Optimizing Salmonella enterica serovar typhimurium for bacteria-mediated tumor therapy. Gut Microbes 7, 171–177 (2016). https://doi.org/10.1080/19490976.2016.1155021
J. Nam, S. Son, L.J. Ochyl, R. Kuai, A. Schwendeman et al., Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 9, 1074 (2018). https://doi.org/10.1038/s41467-018-03473-9
F. Chen, Z. Zang, Z. Chen, L. Cui, Z. Chang et al., Nanophotosensitizer-engineered salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials 214, 119226 (2019). https://doi.org/10.1016/j.biomaterials.2019.119226
W. Chen, Y. Wang, M. Qin, X. Zhang, Z. Zhang et al., Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 12, 5995–6005 (2018). https://doi.org/10.1021/acsnano.8b02235
J. Huang, L. Lin, D. Sun, H. Chen, D. Yang et al., Cheminform abstract: bio-inspired synthesis of metal nanomaterials and applications. ChemInform (2015). https://doi.org/10.1002/chin.201541232
Q.-W. Chen, X.-H. Liu, J.-X. Fan, S.-Y. Peng, J.-W. Wang et al., Self-mineralized photothermal bacteria hybridizing with mitochondria-targeted metal–organic frameworks for augmenting photothermal tumor therapy. Adv. Funct. Mater. 30, 1909806 (2020). https://doi.org/10.1002/adfm.201909806
C.H. Luo, C.T. Huang, C.H. Su, C.S. Yeh, Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett. 16, 3493–3499 (2016). https://doi.org/10.1021/acs.nanolett.6b00262
V. Gujrati, J. Prakash, J. Malekzadeh-Najafabadi, A. Stiel, U. Klemm et al., Bioengineered bacterial vesicles as biological nano-heaters for optoacoustic imaging. Nat. Commun. 10, 1114 (2019). https://doi.org/10.1038/s41467-019-09034-y
Y. Ye, C. Wang, X. Zhang, Q. Hu, Y. Zhang et al., A melanin-mediated cancer immunotherapy patch. Sci. Immunol. (2017). https://doi.org/10.1126/sciimmunol.aan5692
Q. Chen, G. Huang, W. Wu, J. Wang, J. Hu et al., A hybrid eukaryotic-prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination. Adv. Mater. 32, e1908185 (2020). https://doi.org/10.1002/adma.201908185
E. Kolaczkowska, P. Kubes, Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013). https://doi.org/10.1038/nri3399
J. Nicolás-Ávila, J.M. Adrover, A. Hidalgo, Neutrophils in homeostasis, immunity, and cancer. Immunity 46, 15–28 (2017). https://doi.org/10.1016/j.immuni.2016.12.012
M. Li, S. Li, H. Zhou, X. Tang, Y. Wu et al., Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat. Commun. 11, 1126 (2020). https://doi.org/10.1038/s41467-020-14963-0
B. Sun, C. Luo, X. Zhang, M. Guo, M. Sun et al., Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 10, 3211 (2019). https://doi.org/10.1038/s41467-019-11193-x
C. Luo, J. Sun, D. Liu, B. Sun, L. Miao et al., Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 16, 5401–5408 (2016). https://doi.org/10.1021/acs.nanolett.6b01632
S. Mijatović, A. Savić-Radojević, M. Plješa-Ercegovac, T. Simić, F. Nicoletti et al., The double-faced role of nitric oxide and reactive oxygen species in solid tumors. Antioxidants 9, 374 (2020). https://doi.org/10.3390/antiox9050374
D.W. Zheng, Y. Chen, Z.H. Li, L. Xu, C.X. Li et al., Optically-controlled bacterial metabolite for cancer therapy. Nat. Commun. 9, 1680 (2018). https://doi.org/10.1038/s41467-018-03233-9
J.-X. Fan, M.-Y. Peng, H. Wang, H.-R. Zheng, Z.-L. Liu et al., Biomedical materials: engineered bacterial bioreactor for tumor therapy via fenton-like reaction with localized H2O2 generation. Adv. Mater. 31, 1970119 (2019). https://doi.org/10.1002/adma.201970119
L. Feng, L. Cheng, Z. Dong, D. Tao, T.E. Barnhart et al., Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano 11, 927–937 (2017). https://doi.org/10.1021/acsnano.6b07525
L. Liu, H. He, Z. Luo, H. Zhou, R. Liang et al., In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer. Adv. Funct. Mater. 30, 1910176 (2020). https://doi.org/10.1002/adfm.201910176
M. Wu, W. Wu, Y. Duan, X. Li, G. Qi et al., Photosensitizer-bacteria biohybrids promote photodynamic cancer cell ablation and intracellular protein delivery. Chem. Mater. 31, 7212–7220 (2019). https://doi.org/10.1021/acs.chemmater.9b01518
C. Stern, N. Kasnitz, D. Kocijancic, S. Trittel, P. Riese et al., Induction of CD4(+) and CD8(+) anti-tumor effector T cell responses by bacteria mediated tumor therapy. Int. J. Cancer 137, 2019–2028 (2015). https://doi.org/10.1002/ijc.29567
J.H. Zheng, V.H. Nguyen, S.N. Jiang, S.H. Park, W. Tan et al., Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. (2017). https://doi.org/10.1126/scitranslmed.aak9537
C. Gurbatri, I. Lia, R. Vincent, C. Coker, S. Castro et al., Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. (2020). https://doi.org/10.1126/scitranslmed.aax0876
O.Y. Kim, H.T. Park, N.T.H. Dinh, S.J. Choi, J. Lee et al., Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat. Commun. 8, 626 (2017). https://doi.org/10.1038/s41467-017-00729-8
R.B. Patel, M. Ye, P.M. Carlson, A. Jaquish, L. Zangl et al., Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv. Mater. 31, e1902626 (2019). https://doi.org/10.1002/adma.201902626
Q. Chen, H. Bai, W. Wu, G. Huang, Y. Li et al., Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention. Nano Lett. 20, 11–21 (2020). https://doi.org/10.1021/acs.nanolett.9b02182
W. Chen, Z. Guo, Y. Zhu, N. Qiao, Z. Zhang et al., Combination of bacterial-photothermal therapy with an anti-pd-1 peptide depot for enhanced immunity against advanced cancer. Adv. Funct. Mater. 30, 1906623 (2020). https://doi.org/10.1002/adfm.201906623
P. Lehouritis, C. Springer, M. Tangney, Bacterial-directed enzyme prodrug therapy. J. Control. Release 170, 120–131 (2013). https://doi.org/10.1016/j.jconrel.2013.05.005
P. Lehouritis, G. Hogan, M. Tangney, Designer bacteria as intratumoural enzyme biofactories. Adv. Drug Deliv. Rev. 118, 8–23 (2017). https://doi.org/10.1016/j.addr.2017.09.012
P. Lehouritis, M. Stanton, F.O. McCarthy, M. Jeavons, M. Tangney, Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria. J. Control. Release 222, 9–17 (2016). https://doi.org/10.1016/j.jconrel.2015.11.030
C.M. Cheng, F.M. Chen, Y.L. Lu, S.C. Tzou, J.Y. Wang et al., Expression of β-glucuronidase on the surface of bacteria enhances activation of glucuronide prodrugs. Cancer Gene Ther. 20, 276–281 (2013). https://doi.org/10.1038/cgt.2013.17
J.V.E. Chan-Hyams, D.F. Ackerley, Protocol for evaluating the abilities of diverse nitroaromatic prodrug metabolites to exit a model gram negative bacterial vector. MethodsX 7, 100797 (2020). https://doi.org/10.1016/j.mex.2020.100797
B. Wei, P.P. Wang, Z.X. Yan, R. Yan, Characteristics and molecular determinants of a highly selective and efficient glycyrrhizin-hydrolyzing β-glucuronidase from Staphylococcus pasteuri 3I10. Appl. Microbiol. Biotechnol. 102, 9193–9205 (2018). https://doi.org/10.1007/s00253-018-9285-x
A. Afkhami-Poostchi, M. Mashreghi, M. Iranshahi, M. Matin, Use of a genetically engineered E. coli overexpressing β-glucuronidase accompanied by glycyrrhizic acid, a natural and anti-inflammatory agent, for directed treatment of colon carcinoma in a mouse model. Int. J. Pharm. 579, 119159 (2020). https://doi.org/10.1016/j.ijpharm.2020.119159
S. Bochum, S. Berger, U.M. Martens, Olaparib. Recent Results Cancer Res. 211, 217–233 (2018). https://doi.org/10.1007/978-3-319-91442-8_15
Y. Shi, W. Zheng, K. Yang, K.G. Harris, K. Ni et al., Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J. Exp. Med. (2020). https://doi.org/10.1084/jem.20192282
A.C. Anselmo, K.J. McHugh, J. Webster, R. Langer, A. Jaklenec, Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 28, 9486–9490 (2016). https://doi.org/10.1002/adma.201603270
Z. Cao, X. Wang, Y. Pang, S. Cheng, J. Liu, Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat. Commun. 10, 5783 (2019). https://doi.org/10.1038/s41467-019-13727-9
Z. Cao, S. Cheng, X. Wang, Y. Pang, J. Liu, Camouflaging bacteria by wrapping with cell membranes. Nat. Commun. 10, 3452 (2019). https://doi.org/10.1038/s41467-019-11390-8
B. Mostaghaci, O. Yasa, J. Zhuang, M. Sitti, Bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts. Adv. Sci. 4, 1700058 (2017). https://doi.org/10.1002/advs.201700058
J.X. Fan, Z.H. Li, X.H. Liu, D.W. Zheng, Y. Chen et al., Bacteria-mediated tumor therapy utilizing photothermally-controlled tnf-α expression via oral administration. Nano Lett. 18, 2373–2380 (2018). https://doi.org/10.1021/acs.nanolett.7b05323
Q. Song, C. Zheng, J. Jia, H. Zhao, Q. Feng et al., A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy. Adv. Mater. 31, 1903793 (2019). https://doi.org/10.1002/adma.201903793
T. Ren, J. Gou, W. Sun, X. Tao, X. Tan et al., Entrapping of nanoparticles in yeast cell wall microparticles for macrophage-targeted oral delivery of cabazitaxel. Mol. Pharm. 15, 2870–2882 (2018). https://doi.org/10.1021/acs.molpharmaceut.8b00357
X. Zhou, X. Zhang, S. Han, Y. Dou, M. Liu et al., Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral route. Nano Lett. 17, 1056–1064 (2017). https://doi.org/10.1021/acs.nanolett.6b04523
L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent et al., Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015). https://doi.org/10.3322/caac.21262
M. Zhang, M. Li, L. Du, J. Zeng, T. Yao et al., Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int. J. Pharm. 578, 119177 (2020). https://doi.org/10.1016/j.ijpharm.2020.119177
L. Peng, M. Wang, Y. Chu, L. Zhang, J. Niu et al., Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-trail-programmed therapy against melanoma. Sci. Adv. 6, eaba2735 (2020). https://doi.org/10.1126/sciadv.aba2735
M. Prausnitz, R. Langer, Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008). https://doi.org/10.1038/nbt.1504
L. Yepes-Molina, M.C. Martínez-Ballesta, M. Carvajal, Plant plasma membrane vesicles interaction with keratinocytes reveals their potential as carriers. J. Adv. Res. 23, 101–111 (2020). https://doi.org/10.1016/j.jare.2020.02.004
F. Martinez-Morales, A. Borges, A. Martinez, K. Shanmugam, L. Ingram, Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons used during construction. J. Bacteriol. 181, 7143–7148 (1999). https://doi.org/10.1128/jb.181.22.7143-7148.1999