Photosensitizer Nanoparticles Boost Photodynamic Therapy for Pancreatic Cancer Treatment
Corresponding Author: Zhifei Dai
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 35
Abstract
Patients with pancreatic cancer (PCa) have a poor prognosis apart from the few suitable for surgery. Photodynamic therapy (PDT) is a minimally invasive treatment modality whose efficacy and safety in treating unresectable localized PCa have been corroborated in clinic. Yet, it suffers from certain limitations during clinical exploitation, including insufficient photosensitizers (PSs) delivery, tumor-oxygenation dependency, and treatment escape of aggressive tumors. To overcome these obstacles, an increasing number of researchers are currently on a quest to develop photosensitizer nanoparticles (NPs) by the use of a variety of nanocarrier systems to improve cellular uptake and biodistribution of photosensitizers. Encapsulation of PSs with NPs endows them significantly higher accumulation within PCa tumors due to the increased solubility and stability in blood circulation. A number of approaches have been explored to produce NPs co-delivering multi-agents affording PDT-based synergistic therapies for improved response rates and durability of response after treatment. This review provides an overview of available data regarding the design, methodology, and oncological outcome of the innovative NPs-based PDT of PCa.
Highlights:
1 Current clinical studies of photodynamic therapy against pancreatic cancer are reviewed.
2 Advantages of nanoparticles in boosting therapeutic efficacy of photodynamic therapy for pancreatic cancer treatment are summarized.
3 Challenges and outlook for the future development of nanoparticles-based photodynamic therapy in human are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019). https://doi.org/10.3322/caac.21551
- J.P. Neoptolemos, J. Kleeff, P. Michl, E. Costello, W. Greenhalf et al., Therapeutic developments in pancreatic cancer: current and future perspectives. Nat. Rev. Gastroenterol. Hepatol. 15, 333–348 (2018). https://doi.org/10.1038/s41575-018-0005-x
- M.G. Keane, K. Bramis, S.P. Pereira, G.K. Fusai, Systematic review of novel ablative methods in locally advanced pancreatic cancer. World J. Gastroenterol. 20, 2267–2278 (2014). https://doi.org/10.3748/wjg.v20.i9.2267
- T. Conroy, F. Desseigne, M. Ychou, O. Bouche, R. Guimbaud et al., FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New Engl. J. Med. 364, 1817–1825 (2011). https://doi.org/10.1056/NEJMoa1011923
- S. Tangutoori, B.Q. Spring, Z. Mai, A. Palanisami, L.B. Mensah et al., Simultaneous delivery of cytotoxic and biologic therapeutics using nanophotoactivatable liposomes enhances treatment efficacy in a mouse model of pancreatic cancer. Nanomedicine 12, 223–234 (2016). https://doi.org/10.1016/j.nano.2015.08.007
- H.C. Huang, S. Mallidi, J. Liu, C.T. Chiang, Z. Mai et al., Photodynamic therapy synergizes with irinotecan to overcome compensatory mechanisms and improve treatment outcomes in pancreatic cancer. Cancer Res. 76, 1066–1077 (2016). https://doi.org/10.1158/0008-5472.CAN-15-0391
- M. Sivasubramanian, Y.C. Chuang, L.W. Lo, Evolution of nanoparticle-mediated photodynamic therapy: from superficial to deep-seated cancers. Molecules 24, 520 (2019). https://doi.org/10.3390/molecules24030520
- P.N. Manghnani, W. Wu, S. Xu, F. Hu, C. The et al., Visualizing photodynamic therapy in transgenic zebrafish using organic nanoparticles with aggregation-induced emission. Nano-Micro Lett. 10, 61 (2018). https://doi.org/10.1007/s40820-018-0214-4
- S.S. Jalde, A.K. Chauhan, J.H. Lee, P.K. Chaturvedi, J.S. Park et al., Synthesis of novel Chlorin e6-curcumin conjugates as photosensitizers for photodynamic therapy against pancreatic carcinoma. Eur. J. Med. Chem. 147, 66–76 (2018). https://doi.org/10.1016/j.ejmech.2018.01.099
- S.W. Tait, D.R. Green, Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010). https://doi.org/10.1038/nrm2952
- H. Su, Z. Li, L. Lazar, Y. Alhamoud, X. Song et al., In vitro evaluation of the toxicity and underlying molecular mechanisms of Janus Fe3O4–TiO2 nanoparticles in human liver cells. Environ. Toxicol. 33, 1078–1088 (2018). https://doi.org/10.1002/tox.22631
- S.G. Bown, A.Z. Rogowska, D.E. Whitelaw, W.R. Lees, L.B. Lovat et al., Photodynamic therapy for cancer of the pancreas. Gut 50, 549–557 (2002). https://doi.org/10.1136/gut.50.4.549
- S.K. Rajendrakumar, S. Uthaman, C.S. Cho, I.K. Park, Nanoparticle-based phototriggered cancer immunotherapy and its domino effect in the tumor microenvironment. Biomacromolecules 19, 1869–1887 (2018). https://doi.org/10.1021/acs.biomac.8b00460
- M. Saeed, W. Ren, A. Wu, Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomater. Sci. 6, 708–725 (2018). https://doi.org/10.1039/c7bm00999b
- M.T. Huggett, M. Jermyn, A. Gillams, R. Illing, S. Mosse et al., Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br. J. Cancer 110, 1698–1704 (2014). https://doi.org/10.1038/bjc.2014.95
- J.-H. Choi, D. Oh, J. Lee, J.-H. Park, K.-P. Kim et al., Initial human experience of endoscopic ultrasound-guided photodynamic therapy with a novel photosensitizer and a flexible laser-light catheter. Endoscopy 47, 1035–1038 (2015). https://doi.org/10.1055/s-0034-1392150
- J.M. DeWitt, K. Sandrasegaran, B. O’Neil, M.G. House, N.J. Zyromski et al., Phase 1 study of EUS-guided photodynamic therapy for locally advanced pancreatic cancer. Gastrointest. Endosc. 89, 390–398 (2019). https://doi.org/10.1016/j.gie.2018.09.007
- L. Chambre, W.S. Saw, G. Ekineker, L.V. Kiew, W.Y. Chong et al., Surfactant-free direct access to porphyrin-cross-linked nanogels for photodynamic and photothermal therapy. Bioconjug. Chem. 29, 4149–4159 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00787
- F. Hu, S. Xu, B. Liu, Photosensitizers with aggregation-induced emission: materials and biomedical applications. Adv. Mater. 30, e1801350 (2018). https://doi.org/10.1002/adma.201801350
- Y. Wang, G. Wei, X. Zhang, F. Xu, X. Xiong et al., A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv. Mater. 29, 1605357 (2017). https://doi.org/10.1002/adma.201605357
- K.A. Carter, D. Luo, A. Razi, J. Geng, S. Shao et al., Sphingomyelin liposomes containing porphyrin-phospholipid for irinotecan chemophototherapy. Theranostics 6, 2329–2336 (2016). https://doi.org/10.7150/thno.15701
- D. Luo, K.A. Carter, A. Razi, J. Geng, S. Shao et al., Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 75, 193–202 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.027
- R. Liu, J. Tang, Y. Xu, Z. Dai, Bioluminescence imaging of inflammation in vivo based on bioluminescence and fluorescence resonance energy transfer using nanobubble ultrasound contrast agent. ACS Nano 13, 5124–5132 (2019). https://doi.org/10.1021/acsnano.8b08359
- C. Gao, P. Bhattarai, M. Chen, N. Zhang, S. Hameed et al., Amphiphilic drug conjugates as nanomedicines for combined cancer therapy. Bioconjug. Chem. 29, 3967–3981 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00692
- C. Gao, X. Liang, S. Mo, N. Zhang, D. Sun et al., Near-infrared cyanine-loaded liposome-like nanocapsules of camptothecin-floxuridine conjugate for enhanced chemophotothermal combination cancer therapy. ACS Appl. Mater. Interfaces 10, 3219–3228 (2018). https://doi.org/10.1021/acsami.7b14125
- R.A. Day, D.A. Estabrook, J.K. Logan, E.M. Sletten, Fluorous photosensitizers enhance photodynamic therapy with perfluorocarbon nanoemulsions. Chem. Commun. 53, 13043–13046 (2017). https://doi.org/10.1039/c7cc07038a
- H. Hu, X. Yan, H. Wang, J. Tanaka, M. Wang et al., Perfluorocarbon-based O2 nanocarrier for efficient photodynamic therapy. J. Mater. Chem. B 7, 1116–1123 (2019). https://doi.org/10.1039/c8tb01844h
- N. Yang, W. Xiao, X. Song, W. Wang, X. Dong, Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nano-Micro Lett. 12, 15 (2020). https://doi.org/10.1007/s40820-019-0347-0
- S.K. Golombek, J.N. May, B. Theek, L. Appold, N. Drude et al., Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018). https://doi.org/10.1016/j.addr.2018.07.007
- J. Yoo, C. Park, G. Yi, D. Lee, H. Koo, Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 11, 640 (2019). https://doi.org/10.3390/cancers11050640
- S. Hameed, P. Bhattarai, X. Liang, N. Zhang, Y. Xu et al., Self-assembly of porphyrin-grafted lipid into nanoparticles encapsulating doxorubicin for synergistic chemo-photodynamic therapy and fluorescence imaging. Theranostics 8, 5501–5518 (2018). https://doi.org/10.7150/thno.27721
- X. Liang, X. Li, L. Jing, X. Yue, Z. Dai, Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy. Biomaterials 35, 6379–6388 (2014). https://doi.org/10.1016/j.biomaterials.2014.04.094
- Y. You, X. Liang, T. Yin, M. Chen, C. Qiu et al., Porphyrin-grafted lipid microbubbles for the enhanced efficacy of photodynamic therapy in prostate cancer through ultrasound-controlled in situ accumulation. Theranostics 8, 1665–1677 (2018). https://doi.org/10.7150/thno.22469
- X. Liang, X. Li, X. Yue, Z. Dai, Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer. Angew. Chem. Int. Ed. 50, 11622–11627 (2011). https://doi.org/10.1002/anie.201103557
- X. Liang, M. Chen, P. Bhattarai, S. Hameed, Z. Dai, Perfluorocarbon@porphyrin nanoparticles for tumor hypoxia relief to enhance photodynamic therapy against liver metastasis of colon cancer. ACS Nano (2020). https://doi.org/10.1021/acsnano.0c05617
- F. Ding, H.J. Li, J.X. Wang, W. Tao, Y.H. Zhu et al., Chlorin e6-encapsulated polyphosphoester based nanocarriers with viscous flow core for effective treatment of pancreatic cancer. ACS Appl. Mater. Interfaces 7, 18856–18865 (2015). https://doi.org/10.1021/acsami.5b05724
- D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014). https://doi.org/10.1056/NEJMra1404198
- Y. Cheng, H. Cheng, C. Jiang, X. Qiu, K. Wang et al., Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 6, 8785 (2015). https://doi.org/10.1038/ncomms9785
- Y. Shi, J. Zhang, H. Huang, C. Cao, J. Yin et al., Fe-doped polyoxometalate as acid-aggregated nanoplatform for NIR-II photothermal-enhanced chemodynamic therapy. Adv. Healthc. Mater. 9, e2000005 (2020). https://doi.org/10.1002/adhm.202000005
- D. Hu, Z. Chen, Z. Sheng, D. Gao, F. Yan et al., A catalase-loaded hierarchical zeolite as an implantable nanocapsule for ultrasound-guided oxygen self-sufficient photodynamic therapy against pancreatic cancer. Nanoscale 10, 17283–17292 (2018). https://doi.org/10.1039/c8nr05548c
- S. Kang, Y.G. Gil, D.H. Min, H. Jang, Nonrecurring circuit nanozymatic enhancement of hypoxic pancreatic cancer phototherapy using speckled Ru–Te hollow nanorods. ACS Nano 14, 4383–4394 (2020). https://doi.org/10.1021/acsnano.9b09974
- J. Li, K. Wei, S. Zuo, Y. Xu, Z. Zha et al., Light-triggered clustered vesicles with self-supplied oxygen and tissue penetrability for photodynamic therapy against hypoxic tumor. Adv. Funct. Mater. 27, 1702108 (2017). https://doi.org/10.1002/adfm.201702108
- V.P. Chauhan, J.D. Martin, H. Liu, D.A. Lacorre, S.R. Jain et al., Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 2516 (2013). https://doi.org/10.1038/ncomms3516
- L. Li, Z. Yang, W. Fan, L. He, C. Cui et al., In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS-mediated anticancer therapy. Adv. Funct. Mater. 30, 1907716 (2019). https://doi.org/10.1002/adfm.201907716
- Y. Liu, H. Miyoshi, M. Nakamura, Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007). https://doi.org/10.1002/ijc.22709
- P.P. Adiseshaiah, R.M. Crist, S.S. Hook, S.E. McNeil, Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat. Rev. Clin. Oncol. 13, 750–765 (2016). https://doi.org/10.1038/nrclinonc.2016.119
- Z. Gong, M. Chen, Q. Ren, X. Yue, Z. Dai, Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct. Target Ther. 5, 12 (2020). https://doi.org/10.1038/s41392-019-0104-3
- R.K. Jain, T. Stylianopoulos, Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010). https://doi.org/10.1038/nrclinonc.2010.139
- H.C. Manning, N.B. Merchant, A.C. Foutch, J.M. Virostko, S.K. Wyatt et al., Molecular imaging of therapeutic response to epidermal growth factor receptor blockade in colorectal cancer. Clin. Cancer Res. 14, 7413–7422 (2008). https://doi.org/10.1158/1078-0432.CCR-08-0239
- A.V. Salnikov, A. Groth, A. Apel, G. Kallifatidis, B.M. Beckermann et al., Targeting of cancer stem cell marker EpCAM by bispecific antibody EpCAMxCD3 inhibits pancreatic carcinoma. J. Cell Mol. Med. 13, 4023–4033 (2009). https://doi.org/10.1111/j.1582-4934.2009.00723.x
- S. Liu, T.H. Bugge, S.H. Leppla, Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J. Biol. Chem. 276, 17976–17984 (2001). https://doi.org/10.1074/jbc.M011085200
- T. Lin, Q. Ren, W. Zuo, R. Jia, L. Xie et al., Valproic acid exhibits anti-tumor activity selectively against EGFR/ErbB2/ErbB3-coexpressing pancreatic cancer via induction of ErbB family members-targeting microRNAs. J. Exp. Clin. Cancer Res. 38, 150 (2019). https://doi.org/10.1186/s13046-019-1160-9
- O. Er, S.G. Colak, K. Ocakoglu, M. Ince, R. Bresoli-Obach et al., Selective photokilling of human pancreatic cancer cells using cetuximab-targeted mesoporous silica nanoparticles for delivery of zinc phthalocyanine. Molecules 23, 2749 (2018). https://doi.org/10.3390/molecules23112749
- G. Obaid, S. Bano, S. Mallidi, M. Broekgaarden, J. Kuriakose et al., Impacting pancreatic cancer therapy in heterotypic in vitro organoids and in vivo tumors with specificity-tuned, NIR-activable photoimmunonanoconjugates: towards conquering desmoplasia? Nano Lett. 19, 7573–7587 (2019). https://doi.org/10.1021/acs.nanolett.9b00859
- B.Q. Spring, R. Bryan Sears, L.Z. Zheng, Z. Mai, R. Watanabe et al., A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat. Nanotechnol. 11, 378–387 (2016). https://doi.org/10.1038/nnano.2015.311
- Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48, 2053–2108 (2019). https://doi.org/10.1039/c8cs00618k
- R. Liu, L. Jing, D. Peng, Y. Li, J. Tian et al., Manganese (II) chelate functionalized copper sulfide nanoparticles for efficient magnetic resonance/photoacoustic dual-modal imaging guided photothermal therapy. Theranostics 5, 1144–1153 (2015). https://doi.org/10.7150/thno.11754
- R. Liu, J. Tang, Y. Xu, Y. Zhou, Z. Dai, Nano-sized indocyanine green j-aggregate as a one-component theranostic agent. Nanotheranostics 1, 430–439 (2017). https://doi.org/10.7150/ntno.19935
- J. Wang, X. Wu, P. Shen, J. Wang, Y. Shen et al., Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment. Int. J. Nanomed. 15, 1903–1914 (2020). https://doi.org/10.2147/IJN.S239751
- A.H. Odda, H. Li, N. Kumar, N. Ullah, M.I. Khan et al., Polydopamine coated PB-MnO2 nanoparticles as an oxygen generator nanosystem for imaging-guided single-NIR-laser triggered synergistic photodynamic/photothermal therapy. Bioconjug. Chem. 31, 1474–1485 (2020). https://doi.org/10.1021/acs.bioconjchem.0c00165
- H.S. Jung, P. Verwilst, A. Sharma, J. Shin, J.L. Sessler et al., Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 47, 2280–2297 (2018). https://doi.org/10.1039/c7cs00522a
- W. Shao, C. Yang, F. Li, J. Wu, N. Wang et al., Molecular design of conjugated small molecule nanoparticles for synergistically enhanced PTT/PDT. Nano-Micro Lett. 12, 147 (2020). https://doi.org/10.1007/s40820-020-00474-6
- M. Lan, S. Zhao, W. Liu, C.S. Lee, W. Zhang et al., Photosensitizers for photodynamic therapy. Adv. Healthc. Mater. 8, e1900132 (2019). https://doi.org/10.1002/adhm.201900132
- S. Liu, X. Pan, H. Liu, Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. 59, 5890–5900 (2020). https://doi.org/10.1002/anie.201911477
- Y. Li, Y. Wu, S. Zheng, X. Liang, X. Han et al., PEGylated cationic hybrid bicellar nanodisc for efficient siRNA delivery. RSC Adv. 6, 113745–113753 (2016). https://doi.org/10.1039/c6ra24268e
- W. Li, H. Zhang, X. Guo, Z. Wang, F. Kong et al., Gold nanospheres-stabilized indocyanine green as a synchronous photodynamic-photothermal therapy platform that inhibits tumor growth and metastasis. ACS Appl. Mater. Interfaces 9, 3354–3367 (2017). https://doi.org/10.1021/acsami.6b13351
- H. He, S. Ji, Y. He, A. Zhu, Y. Zou et al., Photoconversion-tunable fluorophore vesicles for wavelength-dependent photoinduced cancer therapy. Adv. Mater. 29, 1606690 (2017). https://doi.org/10.1002/adma.201606690
- X. Li, Y. Liu, F. Fu, M. Cheng, Y. Liu et al., Single NIR laser-activated multifunctional nanoparticles for cascaded photothermal and oxygen-independent photodynamic therapy. Nano-Micro Lett. 11, 68 (2019). https://doi.org/10.1007/s40820-019-0298-5
- W. Yin, T. Bao, X. Zhang, Q. Gao, J. Yu et al., Biodegradable MoOx nanoparticles with efficient near-infrared photothermal and photodynamic synergetic cancer therapy at the second biological window. Nanoscale 10, 1517–1531 (2018). https://doi.org/10.1039/c7nr07927c
- H. Li, P. Wang, Y. Deng, M. Zeng, Y. Tang et al., Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials 139, 30–38 (2017). https://doi.org/10.1016/j.biomaterials.2017.05.030
- K. Ni, T. Aung, S. Li, N. Fatuzzo, X. Liang et al., Nanoscale metal-organic framework mediates radical therapy to enhance cancer immunotherapy. Chem 5, 1892–1913 (2019). https://doi.org/10.1016/j.chempr.2019.05.013
- A. Yuan, J. Wu, X. Tang, L. Zhao, F. Xu et al., Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J. Pharm. Sci. 102, 6–28 (2013). https://doi.org/10.1002/jps.23356
- Y. Liu, W. Zhen, L. Jin, S. Zhang, G. Sun et al., All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 12, 4886–4893 (2018). https://doi.org/10.1021/acsnano.8b01893
- X. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, Innovative strategies for hypoxic-tumor photodynamic therapy. Angew. Chem. Int. Ed. 57, 11522–11531 (2018). https://doi.org/10.1002/anie.201805138
- H. Sun, Y. Zhang, S. Chen, R. Wang, Q. Chen et al., Photothermal fenton nanocatalysts for synergetic cancer therapy in the second near-infrared window. ACS Appl. Mater. Interfaces 12, 30145–30154 (2020). https://doi.org/10.1021/acsami.0c07013
- L. Yan, Y. Wang, T. Hu, X. Mei, X. Zhao et al., Layered double hydroxide nanosheets: towards ultrasensitive tumor microenvironment responsive synergistic therapy. J. Mater. Chem. B 8, 1445–1455 (2020). https://doi.org/10.1039/c9tb02591j
- Y. Han, S. Gao, Y. Zhang, Q. Ni, Z. Li et al., Metal-based nanocatalyst for combined cancer therapeutics. Bioconjug. Chem. 31, 1247–1258 (2020). https://doi.org/10.1021/acs.bioconjchem.0c00194
- P. Wang, C. Liang, J. Zhu, N. Yang, A. Jiao et al., Manganese-based nanoplatform as metal ion-enhanced ROS generator for combined chemodynamic/photodynamic therapy. ACS Appl. Mater. Interfaces 11, 41140–41147 (2019). https://doi.org/10.1021/acsami.9b16617
- Z. Huang, H. Moseley, S. Bown, Rationale of combined PDT and SDT modalities for treating cancer patients in terminal stage: the proper use of photosensitizer. Integr. Cancer Ther. 9, 317–319 (2010). https://doi.org/10.1177/1534735410376634
- J.N. Kenyon, Outcome measures following sonodynamic photodynamic therapy: a case series. Curr. Drug. Ther. 6, 12–16 (2011). https://doi.org/10.2174/157488511794079059
- Y. Zhou, M. Wang, Z. Dai, The molecular design of and challenges relating to sensitizers for cancer sonodynamic therapy. Mater. Chem. Front. 4, 2223–2234 (2020). https://doi.org/10.1039/d0qm00232a
- C. McEwan, H. Nesbitt, D. Nicholas, O.N. Kavanagh, K. McKenna et al., Comparing the efficacy of photodynamic and sonodynamic therapy in non-melanoma and melanoma skin cancer. Bioorg. Med. Chem. 24, 3023–3028 (2016). https://doi.org/10.1016/j.bmc.2016.05.015
- G.Y. Wan, Y. Liu, B.W. Chen, Y.Y. Liu, Y.S. Wang et al., Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol. Med. 13, 325–338 (2016). https://doi.org/10.20892/j.issn.2095-3941.2016.0068
- S. Binder, B. Hosikova, Z. Mala, L. Zarska, H. Kolarova, Effect of ClAlPcS(2) photodynamic and sonodynamic therapy on HeLa cells. Physiol. Res. 68, S467–S474 (2019). https://doi.org/10.33549/physiolres.934374
- M. Bakhshizadeh, T. Moshirian, H. Esmaily, O. Rajabi, H. Nassirli et al., Sonophotodynamic therapy mediated by liposomal zinc phthalocyanine in a colon carcinoma tumor model: role of irradiating arrangement. Iran. J. Basic Med. Sci. 20, 1088–1092 (2017). https://doi.org/10.22038/IJBMS.2017.9410
- P. Wang, C. Li, X. Wang, W. Xiong, X. Feng et al., Anti-metastatic and pro-apoptotic effects elicited by combination photodynamic therapy with sonodynamic therapy on breast cancer both in vitro and in vivo. Ultrason. Sonochem. 23, 116–127 (2015). https://doi.org/10.1016/j.ultsonch.2014.10.027
- Y. Liu, P. Wang, Q. Liu, X. Wang, Sinoporphyrin sodium triggered sono-photodynamic effects on breast cancer both in vitro and in vivo. Ultrason. Sonochem. 31, 437–448 (2016). https://doi.org/10.1016/j.ultsonch.2016.01.038
- J. Chen, H. Luo, Y. Liu, W. Zhang, H. Li et al., Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano 11, 12849–12862 (2017). https://doi.org/10.1021/acsnano.7b08225
- K. Wang, Y. Zhang, J. Wang, A. Yuan, M. Sun et al., Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 6, 27421 (2016). https://doi.org/10.1038/srep27421
- C. Hu, L. Cai, S. Liu, Y. Liu, Y. Zhou et al., Copper-doped nanoscale covalent organic polymer for augmented photo/chemodynamic synergistic therapy and immunotherapy. Bioconjug. Chem. 31, 1661–1670 (2020). https://doi.org/10.1021/acs.bioconjchem.0c00209
- C. Li, J. Wang, Y. Wang, H. Gao, G. Wei et al., Recent progress in drug delivery. Acta Pharm. Sin. B 9, 1145–1162 (2019). https://doi.org/10.1016/j.apsb.2019.08.003
- F. Zhang, Q. Wu, H. Liu, NIR light-triggered nanomaterials-based prodrug activation towards cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12, e1643 (2020). https://doi.org/10.1002/wnan.1643
- Y. Zhang, F. Huang, C. Ren, L. Yang, J. Liu et al., Targeted chemo-photodynamic combination platform based on the DOX prodrug nanoparticles for enhanced cancer therapy. ACS Appl. Mater. Interfaces 9, 13016–13028 (2017). https://doi.org/10.1021/acsami.7b00927
- T. Zhang, Z. Jiang, L. Chen, C. Pan, S. Sun et al., PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia. Nano Res. 13, 273–281 (2020). https://doi.org/10.1007/s12274-019-2610-6
- S. Liang, X. Deng, Y. Chang, C. Sun, S. Shao et al., Intelligent hollow Pt-CuS janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 19, 4134–4145 (2019). https://doi.org/10.1021/acs.nanolett.9b01595
- V.S. Madamsetty, K. Pal, S.K. Dutta, E. Wang, J.R. Thompson et al., Design and evaluation of PEGylated liposomal formulation of a novel multikinase inhibitor for enhanced chemosensitivity and inhibition of metastatic pancreatic ductal adenocarcinoma. Bioconjug. Chem. 30, 2703–2713 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00632
References
R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019). https://doi.org/10.3322/caac.21551
J.P. Neoptolemos, J. Kleeff, P. Michl, E. Costello, W. Greenhalf et al., Therapeutic developments in pancreatic cancer: current and future perspectives. Nat. Rev. Gastroenterol. Hepatol. 15, 333–348 (2018). https://doi.org/10.1038/s41575-018-0005-x
M.G. Keane, K. Bramis, S.P. Pereira, G.K. Fusai, Systematic review of novel ablative methods in locally advanced pancreatic cancer. World J. Gastroenterol. 20, 2267–2278 (2014). https://doi.org/10.3748/wjg.v20.i9.2267
T. Conroy, F. Desseigne, M. Ychou, O. Bouche, R. Guimbaud et al., FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New Engl. J. Med. 364, 1817–1825 (2011). https://doi.org/10.1056/NEJMoa1011923
S. Tangutoori, B.Q. Spring, Z. Mai, A. Palanisami, L.B. Mensah et al., Simultaneous delivery of cytotoxic and biologic therapeutics using nanophotoactivatable liposomes enhances treatment efficacy in a mouse model of pancreatic cancer. Nanomedicine 12, 223–234 (2016). https://doi.org/10.1016/j.nano.2015.08.007
H.C. Huang, S. Mallidi, J. Liu, C.T. Chiang, Z. Mai et al., Photodynamic therapy synergizes with irinotecan to overcome compensatory mechanisms and improve treatment outcomes in pancreatic cancer. Cancer Res. 76, 1066–1077 (2016). https://doi.org/10.1158/0008-5472.CAN-15-0391
M. Sivasubramanian, Y.C. Chuang, L.W. Lo, Evolution of nanoparticle-mediated photodynamic therapy: from superficial to deep-seated cancers. Molecules 24, 520 (2019). https://doi.org/10.3390/molecules24030520
P.N. Manghnani, W. Wu, S. Xu, F. Hu, C. The et al., Visualizing photodynamic therapy in transgenic zebrafish using organic nanoparticles with aggregation-induced emission. Nano-Micro Lett. 10, 61 (2018). https://doi.org/10.1007/s40820-018-0214-4
S.S. Jalde, A.K. Chauhan, J.H. Lee, P.K. Chaturvedi, J.S. Park et al., Synthesis of novel Chlorin e6-curcumin conjugates as photosensitizers for photodynamic therapy against pancreatic carcinoma. Eur. J. Med. Chem. 147, 66–76 (2018). https://doi.org/10.1016/j.ejmech.2018.01.099
S.W. Tait, D.R. Green, Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010). https://doi.org/10.1038/nrm2952
H. Su, Z. Li, L. Lazar, Y. Alhamoud, X. Song et al., In vitro evaluation of the toxicity and underlying molecular mechanisms of Janus Fe3O4–TiO2 nanoparticles in human liver cells. Environ. Toxicol. 33, 1078–1088 (2018). https://doi.org/10.1002/tox.22631
S.G. Bown, A.Z. Rogowska, D.E. Whitelaw, W.R. Lees, L.B. Lovat et al., Photodynamic therapy for cancer of the pancreas. Gut 50, 549–557 (2002). https://doi.org/10.1136/gut.50.4.549
S.K. Rajendrakumar, S. Uthaman, C.S. Cho, I.K. Park, Nanoparticle-based phototriggered cancer immunotherapy and its domino effect in the tumor microenvironment. Biomacromolecules 19, 1869–1887 (2018). https://doi.org/10.1021/acs.biomac.8b00460
M. Saeed, W. Ren, A. Wu, Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomater. Sci. 6, 708–725 (2018). https://doi.org/10.1039/c7bm00999b
M.T. Huggett, M. Jermyn, A. Gillams, R. Illing, S. Mosse et al., Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br. J. Cancer 110, 1698–1704 (2014). https://doi.org/10.1038/bjc.2014.95
J.-H. Choi, D. Oh, J. Lee, J.-H. Park, K.-P. Kim et al., Initial human experience of endoscopic ultrasound-guided photodynamic therapy with a novel photosensitizer and a flexible laser-light catheter. Endoscopy 47, 1035–1038 (2015). https://doi.org/10.1055/s-0034-1392150
J.M. DeWitt, K. Sandrasegaran, B. O’Neil, M.G. House, N.J. Zyromski et al., Phase 1 study of EUS-guided photodynamic therapy for locally advanced pancreatic cancer. Gastrointest. Endosc. 89, 390–398 (2019). https://doi.org/10.1016/j.gie.2018.09.007
L. Chambre, W.S. Saw, G. Ekineker, L.V. Kiew, W.Y. Chong et al., Surfactant-free direct access to porphyrin-cross-linked nanogels for photodynamic and photothermal therapy. Bioconjug. Chem. 29, 4149–4159 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00787
F. Hu, S. Xu, B. Liu, Photosensitizers with aggregation-induced emission: materials and biomedical applications. Adv. Mater. 30, e1801350 (2018). https://doi.org/10.1002/adma.201801350
Y. Wang, G. Wei, X. Zhang, F. Xu, X. Xiong et al., A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv. Mater. 29, 1605357 (2017). https://doi.org/10.1002/adma.201605357
K.A. Carter, D. Luo, A. Razi, J. Geng, S. Shao et al., Sphingomyelin liposomes containing porphyrin-phospholipid for irinotecan chemophototherapy. Theranostics 6, 2329–2336 (2016). https://doi.org/10.7150/thno.15701
D. Luo, K.A. Carter, A. Razi, J. Geng, S. Shao et al., Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 75, 193–202 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.027
R. Liu, J. Tang, Y. Xu, Z. Dai, Bioluminescence imaging of inflammation in vivo based on bioluminescence and fluorescence resonance energy transfer using nanobubble ultrasound contrast agent. ACS Nano 13, 5124–5132 (2019). https://doi.org/10.1021/acsnano.8b08359
C. Gao, P. Bhattarai, M. Chen, N. Zhang, S. Hameed et al., Amphiphilic drug conjugates as nanomedicines for combined cancer therapy. Bioconjug. Chem. 29, 3967–3981 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00692
C. Gao, X. Liang, S. Mo, N. Zhang, D. Sun et al., Near-infrared cyanine-loaded liposome-like nanocapsules of camptothecin-floxuridine conjugate for enhanced chemophotothermal combination cancer therapy. ACS Appl. Mater. Interfaces 10, 3219–3228 (2018). https://doi.org/10.1021/acsami.7b14125
R.A. Day, D.A. Estabrook, J.K. Logan, E.M. Sletten, Fluorous photosensitizers enhance photodynamic therapy with perfluorocarbon nanoemulsions. Chem. Commun. 53, 13043–13046 (2017). https://doi.org/10.1039/c7cc07038a
H. Hu, X. Yan, H. Wang, J. Tanaka, M. Wang et al., Perfluorocarbon-based O2 nanocarrier for efficient photodynamic therapy. J. Mater. Chem. B 7, 1116–1123 (2019). https://doi.org/10.1039/c8tb01844h
N. Yang, W. Xiao, X. Song, W. Wang, X. Dong, Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nano-Micro Lett. 12, 15 (2020). https://doi.org/10.1007/s40820-019-0347-0
S.K. Golombek, J.N. May, B. Theek, L. Appold, N. Drude et al., Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018). https://doi.org/10.1016/j.addr.2018.07.007
J. Yoo, C. Park, G. Yi, D. Lee, H. Koo, Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 11, 640 (2019). https://doi.org/10.3390/cancers11050640
S. Hameed, P. Bhattarai, X. Liang, N. Zhang, Y. Xu et al., Self-assembly of porphyrin-grafted lipid into nanoparticles encapsulating doxorubicin for synergistic chemo-photodynamic therapy and fluorescence imaging. Theranostics 8, 5501–5518 (2018). https://doi.org/10.7150/thno.27721
X. Liang, X. Li, L. Jing, X. Yue, Z. Dai, Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy. Biomaterials 35, 6379–6388 (2014). https://doi.org/10.1016/j.biomaterials.2014.04.094
Y. You, X. Liang, T. Yin, M. Chen, C. Qiu et al., Porphyrin-grafted lipid microbubbles for the enhanced efficacy of photodynamic therapy in prostate cancer through ultrasound-controlled in situ accumulation. Theranostics 8, 1665–1677 (2018). https://doi.org/10.7150/thno.22469
X. Liang, X. Li, X. Yue, Z. Dai, Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer. Angew. Chem. Int. Ed. 50, 11622–11627 (2011). https://doi.org/10.1002/anie.201103557
X. Liang, M. Chen, P. Bhattarai, S. Hameed, Z. Dai, Perfluorocarbon@porphyrin nanoparticles for tumor hypoxia relief to enhance photodynamic therapy against liver metastasis of colon cancer. ACS Nano (2020). https://doi.org/10.1021/acsnano.0c05617
F. Ding, H.J. Li, J.X. Wang, W. Tao, Y.H. Zhu et al., Chlorin e6-encapsulated polyphosphoester based nanocarriers with viscous flow core for effective treatment of pancreatic cancer. ACS Appl. Mater. Interfaces 7, 18856–18865 (2015). https://doi.org/10.1021/acsami.5b05724
D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014). https://doi.org/10.1056/NEJMra1404198
Y. Cheng, H. Cheng, C. Jiang, X. Qiu, K. Wang et al., Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 6, 8785 (2015). https://doi.org/10.1038/ncomms9785
Y. Shi, J. Zhang, H. Huang, C. Cao, J. Yin et al., Fe-doped polyoxometalate as acid-aggregated nanoplatform for NIR-II photothermal-enhanced chemodynamic therapy. Adv. Healthc. Mater. 9, e2000005 (2020). https://doi.org/10.1002/adhm.202000005
D. Hu, Z. Chen, Z. Sheng, D. Gao, F. Yan et al., A catalase-loaded hierarchical zeolite as an implantable nanocapsule for ultrasound-guided oxygen self-sufficient photodynamic therapy against pancreatic cancer. Nanoscale 10, 17283–17292 (2018). https://doi.org/10.1039/c8nr05548c
S. Kang, Y.G. Gil, D.H. Min, H. Jang, Nonrecurring circuit nanozymatic enhancement of hypoxic pancreatic cancer phototherapy using speckled Ru–Te hollow nanorods. ACS Nano 14, 4383–4394 (2020). https://doi.org/10.1021/acsnano.9b09974
J. Li, K. Wei, S. Zuo, Y. Xu, Z. Zha et al., Light-triggered clustered vesicles with self-supplied oxygen and tissue penetrability for photodynamic therapy against hypoxic tumor. Adv. Funct. Mater. 27, 1702108 (2017). https://doi.org/10.1002/adfm.201702108
V.P. Chauhan, J.D. Martin, H. Liu, D.A. Lacorre, S.R. Jain et al., Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 2516 (2013). https://doi.org/10.1038/ncomms3516
L. Li, Z. Yang, W. Fan, L. He, C. Cui et al., In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS-mediated anticancer therapy. Adv. Funct. Mater. 30, 1907716 (2019). https://doi.org/10.1002/adfm.201907716
Y. Liu, H. Miyoshi, M. Nakamura, Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007). https://doi.org/10.1002/ijc.22709
P.P. Adiseshaiah, R.M. Crist, S.S. Hook, S.E. McNeil, Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat. Rev. Clin. Oncol. 13, 750–765 (2016). https://doi.org/10.1038/nrclinonc.2016.119
Z. Gong, M. Chen, Q. Ren, X. Yue, Z. Dai, Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct. Target Ther. 5, 12 (2020). https://doi.org/10.1038/s41392-019-0104-3
R.K. Jain, T. Stylianopoulos, Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010). https://doi.org/10.1038/nrclinonc.2010.139
H.C. Manning, N.B. Merchant, A.C. Foutch, J.M. Virostko, S.K. Wyatt et al., Molecular imaging of therapeutic response to epidermal growth factor receptor blockade in colorectal cancer. Clin. Cancer Res. 14, 7413–7422 (2008). https://doi.org/10.1158/1078-0432.CCR-08-0239
A.V. Salnikov, A. Groth, A. Apel, G. Kallifatidis, B.M. Beckermann et al., Targeting of cancer stem cell marker EpCAM by bispecific antibody EpCAMxCD3 inhibits pancreatic carcinoma. J. Cell Mol. Med. 13, 4023–4033 (2009). https://doi.org/10.1111/j.1582-4934.2009.00723.x
S. Liu, T.H. Bugge, S.H. Leppla, Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J. Biol. Chem. 276, 17976–17984 (2001). https://doi.org/10.1074/jbc.M011085200
T. Lin, Q. Ren, W. Zuo, R. Jia, L. Xie et al., Valproic acid exhibits anti-tumor activity selectively against EGFR/ErbB2/ErbB3-coexpressing pancreatic cancer via induction of ErbB family members-targeting microRNAs. J. Exp. Clin. Cancer Res. 38, 150 (2019). https://doi.org/10.1186/s13046-019-1160-9
O. Er, S.G. Colak, K. Ocakoglu, M. Ince, R. Bresoli-Obach et al., Selective photokilling of human pancreatic cancer cells using cetuximab-targeted mesoporous silica nanoparticles for delivery of zinc phthalocyanine. Molecules 23, 2749 (2018). https://doi.org/10.3390/molecules23112749
G. Obaid, S. Bano, S. Mallidi, M. Broekgaarden, J. Kuriakose et al., Impacting pancreatic cancer therapy in heterotypic in vitro organoids and in vivo tumors with specificity-tuned, NIR-activable photoimmunonanoconjugates: towards conquering desmoplasia? Nano Lett. 19, 7573–7587 (2019). https://doi.org/10.1021/acs.nanolett.9b00859
B.Q. Spring, R. Bryan Sears, L.Z. Zheng, Z. Mai, R. Watanabe et al., A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat. Nanotechnol. 11, 378–387 (2016). https://doi.org/10.1038/nnano.2015.311
Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48, 2053–2108 (2019). https://doi.org/10.1039/c8cs00618k
R. Liu, L. Jing, D. Peng, Y. Li, J. Tian et al., Manganese (II) chelate functionalized copper sulfide nanoparticles for efficient magnetic resonance/photoacoustic dual-modal imaging guided photothermal therapy. Theranostics 5, 1144–1153 (2015). https://doi.org/10.7150/thno.11754
R. Liu, J. Tang, Y. Xu, Y. Zhou, Z. Dai, Nano-sized indocyanine green j-aggregate as a one-component theranostic agent. Nanotheranostics 1, 430–439 (2017). https://doi.org/10.7150/ntno.19935
J. Wang, X. Wu, P. Shen, J. Wang, Y. Shen et al., Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment. Int. J. Nanomed. 15, 1903–1914 (2020). https://doi.org/10.2147/IJN.S239751
A.H. Odda, H. Li, N. Kumar, N. Ullah, M.I. Khan et al., Polydopamine coated PB-MnO2 nanoparticles as an oxygen generator nanosystem for imaging-guided single-NIR-laser triggered synergistic photodynamic/photothermal therapy. Bioconjug. Chem. 31, 1474–1485 (2020). https://doi.org/10.1021/acs.bioconjchem.0c00165
H.S. Jung, P. Verwilst, A. Sharma, J. Shin, J.L. Sessler et al., Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 47, 2280–2297 (2018). https://doi.org/10.1039/c7cs00522a
W. Shao, C. Yang, F. Li, J. Wu, N. Wang et al., Molecular design of conjugated small molecule nanoparticles for synergistically enhanced PTT/PDT. Nano-Micro Lett. 12, 147 (2020). https://doi.org/10.1007/s40820-020-00474-6
M. Lan, S. Zhao, W. Liu, C.S. Lee, W. Zhang et al., Photosensitizers for photodynamic therapy. Adv. Healthc. Mater. 8, e1900132 (2019). https://doi.org/10.1002/adhm.201900132
S. Liu, X. Pan, H. Liu, Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. 59, 5890–5900 (2020). https://doi.org/10.1002/anie.201911477
Y. Li, Y. Wu, S. Zheng, X. Liang, X. Han et al., PEGylated cationic hybrid bicellar nanodisc for efficient siRNA delivery. RSC Adv. 6, 113745–113753 (2016). https://doi.org/10.1039/c6ra24268e
W. Li, H. Zhang, X. Guo, Z. Wang, F. Kong et al., Gold nanospheres-stabilized indocyanine green as a synchronous photodynamic-photothermal therapy platform that inhibits tumor growth and metastasis. ACS Appl. Mater. Interfaces 9, 3354–3367 (2017). https://doi.org/10.1021/acsami.6b13351
H. He, S. Ji, Y. He, A. Zhu, Y. Zou et al., Photoconversion-tunable fluorophore vesicles for wavelength-dependent photoinduced cancer therapy. Adv. Mater. 29, 1606690 (2017). https://doi.org/10.1002/adma.201606690
X. Li, Y. Liu, F. Fu, M. Cheng, Y. Liu et al., Single NIR laser-activated multifunctional nanoparticles for cascaded photothermal and oxygen-independent photodynamic therapy. Nano-Micro Lett. 11, 68 (2019). https://doi.org/10.1007/s40820-019-0298-5
W. Yin, T. Bao, X. Zhang, Q. Gao, J. Yu et al., Biodegradable MoOx nanoparticles with efficient near-infrared photothermal and photodynamic synergetic cancer therapy at the second biological window. Nanoscale 10, 1517–1531 (2018). https://doi.org/10.1039/c7nr07927c
H. Li, P. Wang, Y. Deng, M. Zeng, Y. Tang et al., Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials 139, 30–38 (2017). https://doi.org/10.1016/j.biomaterials.2017.05.030
K. Ni, T. Aung, S. Li, N. Fatuzzo, X. Liang et al., Nanoscale metal-organic framework mediates radical therapy to enhance cancer immunotherapy. Chem 5, 1892–1913 (2019). https://doi.org/10.1016/j.chempr.2019.05.013
A. Yuan, J. Wu, X. Tang, L. Zhao, F. Xu et al., Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J. Pharm. Sci. 102, 6–28 (2013). https://doi.org/10.1002/jps.23356
Y. Liu, W. Zhen, L. Jin, S. Zhang, G. Sun et al., All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 12, 4886–4893 (2018). https://doi.org/10.1021/acsnano.8b01893
X. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, Innovative strategies for hypoxic-tumor photodynamic therapy. Angew. Chem. Int. Ed. 57, 11522–11531 (2018). https://doi.org/10.1002/anie.201805138
H. Sun, Y. Zhang, S. Chen, R. Wang, Q. Chen et al., Photothermal fenton nanocatalysts for synergetic cancer therapy in the second near-infrared window. ACS Appl. Mater. Interfaces 12, 30145–30154 (2020). https://doi.org/10.1021/acsami.0c07013
L. Yan, Y. Wang, T. Hu, X. Mei, X. Zhao et al., Layered double hydroxide nanosheets: towards ultrasensitive tumor microenvironment responsive synergistic therapy. J. Mater. Chem. B 8, 1445–1455 (2020). https://doi.org/10.1039/c9tb02591j
Y. Han, S. Gao, Y. Zhang, Q. Ni, Z. Li et al., Metal-based nanocatalyst for combined cancer therapeutics. Bioconjug. Chem. 31, 1247–1258 (2020). https://doi.org/10.1021/acs.bioconjchem.0c00194
P. Wang, C. Liang, J. Zhu, N. Yang, A. Jiao et al., Manganese-based nanoplatform as metal ion-enhanced ROS generator for combined chemodynamic/photodynamic therapy. ACS Appl. Mater. Interfaces 11, 41140–41147 (2019). https://doi.org/10.1021/acsami.9b16617
Z. Huang, H. Moseley, S. Bown, Rationale of combined PDT and SDT modalities for treating cancer patients in terminal stage: the proper use of photosensitizer. Integr. Cancer Ther. 9, 317–319 (2010). https://doi.org/10.1177/1534735410376634
J.N. Kenyon, Outcome measures following sonodynamic photodynamic therapy: a case series. Curr. Drug. Ther. 6, 12–16 (2011). https://doi.org/10.2174/157488511794079059
Y. Zhou, M. Wang, Z. Dai, The molecular design of and challenges relating to sensitizers for cancer sonodynamic therapy. Mater. Chem. Front. 4, 2223–2234 (2020). https://doi.org/10.1039/d0qm00232a
C. McEwan, H. Nesbitt, D. Nicholas, O.N. Kavanagh, K. McKenna et al., Comparing the efficacy of photodynamic and sonodynamic therapy in non-melanoma and melanoma skin cancer. Bioorg. Med. Chem. 24, 3023–3028 (2016). https://doi.org/10.1016/j.bmc.2016.05.015
G.Y. Wan, Y. Liu, B.W. Chen, Y.Y. Liu, Y.S. Wang et al., Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol. Med. 13, 325–338 (2016). https://doi.org/10.20892/j.issn.2095-3941.2016.0068
S. Binder, B. Hosikova, Z. Mala, L. Zarska, H. Kolarova, Effect of ClAlPcS(2) photodynamic and sonodynamic therapy on HeLa cells. Physiol. Res. 68, S467–S474 (2019). https://doi.org/10.33549/physiolres.934374
M. Bakhshizadeh, T. Moshirian, H. Esmaily, O. Rajabi, H. Nassirli et al., Sonophotodynamic therapy mediated by liposomal zinc phthalocyanine in a colon carcinoma tumor model: role of irradiating arrangement. Iran. J. Basic Med. Sci. 20, 1088–1092 (2017). https://doi.org/10.22038/IJBMS.2017.9410
P. Wang, C. Li, X. Wang, W. Xiong, X. Feng et al., Anti-metastatic and pro-apoptotic effects elicited by combination photodynamic therapy with sonodynamic therapy on breast cancer both in vitro and in vivo. Ultrason. Sonochem. 23, 116–127 (2015). https://doi.org/10.1016/j.ultsonch.2014.10.027
Y. Liu, P. Wang, Q. Liu, X. Wang, Sinoporphyrin sodium triggered sono-photodynamic effects on breast cancer both in vitro and in vivo. Ultrason. Sonochem. 31, 437–448 (2016). https://doi.org/10.1016/j.ultsonch.2016.01.038
J. Chen, H. Luo, Y. Liu, W. Zhang, H. Li et al., Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano 11, 12849–12862 (2017). https://doi.org/10.1021/acsnano.7b08225
K. Wang, Y. Zhang, J. Wang, A. Yuan, M. Sun et al., Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 6, 27421 (2016). https://doi.org/10.1038/srep27421
C. Hu, L. Cai, S. Liu, Y. Liu, Y. Zhou et al., Copper-doped nanoscale covalent organic polymer for augmented photo/chemodynamic synergistic therapy and immunotherapy. Bioconjug. Chem. 31, 1661–1670 (2020). https://doi.org/10.1021/acs.bioconjchem.0c00209
C. Li, J. Wang, Y. Wang, H. Gao, G. Wei et al., Recent progress in drug delivery. Acta Pharm. Sin. B 9, 1145–1162 (2019). https://doi.org/10.1016/j.apsb.2019.08.003
F. Zhang, Q. Wu, H. Liu, NIR light-triggered nanomaterials-based prodrug activation towards cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12, e1643 (2020). https://doi.org/10.1002/wnan.1643
Y. Zhang, F. Huang, C. Ren, L. Yang, J. Liu et al., Targeted chemo-photodynamic combination platform based on the DOX prodrug nanoparticles for enhanced cancer therapy. ACS Appl. Mater. Interfaces 9, 13016–13028 (2017). https://doi.org/10.1021/acsami.7b00927
T. Zhang, Z. Jiang, L. Chen, C. Pan, S. Sun et al., PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia. Nano Res. 13, 273–281 (2020). https://doi.org/10.1007/s12274-019-2610-6
S. Liang, X. Deng, Y. Chang, C. Sun, S. Shao et al., Intelligent hollow Pt-CuS janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 19, 4134–4145 (2019). https://doi.org/10.1021/acs.nanolett.9b01595
V.S. Madamsetty, K. Pal, S.K. Dutta, E. Wang, J.R. Thompson et al., Design and evaluation of PEGylated liposomal formulation of a novel multikinase inhibitor for enhanced chemosensitivity and inhibition of metastatic pancreatic ductal adenocarcinoma. Bioconjug. Chem. 30, 2703–2713 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00632