Nanoparticle-Mediated Lipid Metabolic Reprogramming of T Cells in Tumor Microenvironments for Immunometabolic Therapy
Corresponding Author: Yu‑Kyoung Oh
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 31
Abstract
We report the activation of anticancer effector functions of T cells through nanoparticle-induced lipid metabolic reprogramming. Fenofibrate was encapsulated in amphiphilic polygamma glutamic acid-based nanoparticles (F/ANs), and the surfaces of F/ANs were modified with an anti-CD3e f(ab′)2 fragment, yielding aCD3/F/ANs. An in vitro study reveals enhanced delivery of aCD3/F/ANs to T cells compared with plain F/ANs. aCD3/F/AN-treated T cells exhibited clear mitochondrial cristae, a higher membrane potential, and a greater mitochondrial oxygen consumption rate under glucose-deficient conditions compared with T cells treated with other nanoparticle preparations. Peroxisome proliferator-activated receptor-α and downstream fatty acid metabolism-related genes are expressed to a greater extent in aCD3/F/AN-treated T cells. Activation of fatty acid metabolism by aCD3/F/ANs supports the proliferation of T cells in a glucose-deficient environment mimicking the tumor microenvironment. Real-time video recordings show that aCD3/F/AN-treated T cells exerted an effector killing effect against B16F10 melanoma cells. In vivo administration of aCD3/F/ANs can increase infiltration of T cells into tumor tissues. The treatment of tumor-bearing mice with aCD3/F/ANs enhances production of various cytokines in tumor tissues and prevented tumor growth. Our findings suggest the potential of nanotechnology-enabled reprogramming of lipid metabolism in T cells as a new modality of immunometabolic therapy.
Highlights:
1 aCD3/F/AN, anti-CD3e f(ab′)2 fragment-modified and fenofibrate-encapsulated amphiphilic nanoparticle, reprogrammed mitochondrial lipid metabolism of T cells.
2 aCD3/F/AN specifically activated T cells in glucose-deficient conditions mimicking tumor microenvironment, and exerted an effector killing effect against tumor cells.
3 In vivo treatment with aCD3/F/AN increased T cell infiltration, cytokine production, and prevented tumor growth.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Li, J. Lin, P. Wang, Q. Luo, F. Zhu et al., Tumor microenvironment cascade-responsive nanodrug with self-targeting activation and ROS regeneration for synergistic oxidation-chemotherapy. Nano-Micro Lett. 12, 182 (2020). https://doi.org/10.1007/s40820-020-00492-4
- D.J. Irvine, E.L. Dane, Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020). https://doi.org/10.1038/s41577-019-0269-6
- J. Nam, S. Son, K. Park, W. Zou, L.D. Shea et al., Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4, 398–414 (2019). https://doi.org/10.1038/s41578-019-0108-1
- Y. Miao, Y. Qiu, M. Zhang, K. Yan, P. Zhang et al., Aqueous self-assembly of block copolymers to form manganese oxide-based polymeric vesicles for tumor microenvironment-activated drug delivery. Nano-Micro Lett. 12, 124 (2020). https://doi.org/10.1007/s40820-020-00447-9
- T.J. Anchordoquy, Y. Barenholz, D. Boraschi, M. Chorny, P. Decuzzi et al., Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions. ACS Nano 11, 12–18 (2017). https://doi.org/10.1021/acsnano.6b08244
- D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018). https://doi.org/10.1038/s41467-018-03705-y
- C.E. Meacham, S.J. Morrison, Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013). https://doi.org/10.1038/nature12624
- M. Fernandez, F. Javaid, V. Chudasama, Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. 9, 790–810 (2017). https://doi.org/10.1039/C7SC04004K
- M. Li, M. Li, Y. Yang, Y. Liu, H. Xie et al., Remodeling tumor immune microenvironment via targeted blockade of PI3K-γ and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy. J. Control. Release 321, 23–35 (2020). https://doi.org/10.1016/j.jconrel.2020.02.011
- N. Zhang, S. Liu, S. Shi, Y. Chen, F. Xu et al., Solubilization and delivery of Ursolic-acid for modulating tumor microenvironment and regulatory T cell activities in cancer immunotherapy. J. Control. Release 320, 168–178 (2020). https://doi.org/10.1016/j.jconrel.2020.01.015
- A. Trinh, K. Polyak, Tumor neoantigens: when too much of a good thing is bad. Cancer Cell 36, 466–467 (2019). https://doi.org/10.1016/j.ccell.2019.10.009
- W.N. Brennen, J.T. Isaacs, S.R. Denmeade, Rationale behind targeting fibroblast activation protein–expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 11, 257–266 (2012). https://doi.org/10.1158/1535-7163.MCT-11-0340
- S.K. Wculek, F.J. Cueto, A.M. Mujal, I. Melero, M.F. Krummel et al., Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020). https://doi.org/10.1038/s41577-019-0210-z
- T.D. Wu, S. Madireddi, P.E. de Almeida, R. Banchereau, Y.J.J. Chen et al., Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020). https://doi.org/10.1038/s41586-020-2056-8
- M. Kim, Y. Shon, J. Kim, Y. Oh, Selective activation of anticancer chemotherapy by cancer-associated fibroblasts in the tumor microenvironment. J. Natl. Cancer Inst. 109, 1–10 (2016). https://doi.org/10.1093/jnci/djw186
- Q. Le, J. Suh, J. Choi, G. Park, J. Lee et al., In situ nanoadjuvant-assembled tumor vaccine for preventing long-term recurrence. ACS Nano 13, 7442–7462 (2019). https://doi.org/10.1021/acsnano.9b02071
- W. Mu, Q. Chu, Y. Liu, N. Zhang, A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 12, 142 (2020). https://doi.org/10.1007/s40820-020-00482-6
- M. Binnewies, E.W. Roberts, K. Kersten, V. Chan, D.F. Fearon et al., Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018). https://doi.org/10.1038/s41591-018-0014-x
- D.S. Thommen, T.N. Schumacher, T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018). https://doi.org/10.1016/j.ccell.2018.03.012
- H. Li, K. Bullock, C. Gurjao, D. Braun, S.A. Shukla et al., Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nat. Commun. 10, 4346 (2019). https://doi.org/10.1038/s41467-019-12361-9
- Y. Zhang, R. Kurupati, L. Liu, X. Zhou, G. Zhang et al., Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391 (2017). https://doi.org/10.1016/j.ccell.2017.08.004
- D. Kim, Q. Le, Y. Kim, Y. Oh, Safety and photochemotherapeutic application of poly(γ-glutamicacid)-based biopolymeric nanoparticle. Acta Pharm. Sin. B 9, 565–574 (2019). https://doi.org/10.1016/j.apsb.2019.01.005
- C.B. Rodell, S.P. Arlauckas, M.F. Cuccarese, C.S. Garris, R. Li et al., TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018). https://doi.org/10.1038/s41551-018-0236-8
- J. Song, S.S. Ardakani, T. So, M. Croft, The kinases aurora B and mTOR regulate the G1–S cell cycle progression of T lymphocytes. Nat. Immunol. 8, 64–74 (2007). https://doi.org/10.1038/ni1413
- P.S. Chowdhury, K. Chamoto, A. Kumar, T. Honjo, PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T Cells and facilitates anti–PD-1 therapy. Cancer Immunol. Res. 6, 1375–1387 (2018). https://doi.org/10.1158/2326-6066.CIR-18-0095
- S.A. Livesey, J.G. Linner, Cryofixation taking on a new look. Nature 327, 255–256 (1987). https://doi.org/10.1038/327255a0
- Y. Ma, S. Adjemian, S.R. Mattarollo, T. Yamazaki, L. Aymeric et al., Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013). https://doi.org/10.1016/j.immuni.2013.03.003
- S.R. Bonam, C.D. Partidos, S.K.M. Halmuthur, S. Muller, An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol. Sci. 38, 771–793 (2017). https://doi.org/10.1016/j.tips.2017.06.002
- K. Pouliot, R.B. Corbett, R.M. Roix, S.M. Paquette, K. West et al., Contribution of TLR4 and MyD88 for adjuvant monophosphoryl lipid A (MPLA) activity in a DNA prime–protein boost HIV-1 vaccine. Vaccine 32, 5049–5056 (2014). https://doi.org/10.1016/j.vaccine.2014.07.010
- T.A. Ajayeoba, S. Dula, O.A. Ijabadeniyi, Properties of poly-γ-glutamic acid producing-bacillus species isolated from Ogi Liquor and Lemon-Ogi Liquor. Front Microbiol. 10, 771 (2019). https://doi.org/10.3389/fmicb.2019.00771
- S. Ko, J. Park, Y. Lee, D. Lee, R.B. Macgregor et al., Biochemical reprogramming of tumors for active modulation of receptor-mediated nanomaterial delivery. Biomaterials 262, 120343 (2020). https://doi.org/10.1016/j.biomaterials.2020.120343
- X. Du, L. Xiong, S. Dai, S. Qiao, γ-PGA-coated mesoporous silica nanoparticles with covalently attached prodrugs for enhanced cellular uptake and intracellular GSH-responsive release. Adv. Healthc. Mater. 4, 771–781 (2015). https://doi.org/10.1002/adhm.201400726
- T.T. Smith, S.B. Stephan, H.F. Moffettl, L.E. McKnight, W. Ji et al., In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017). https://doi.org/10.1038/nnano.2017.57
- D. Dong, L. Zheng, J. Lin, B. Zhang, Y. Zhu et al., Structural basis of assembly of the human T cell receptor–CD3 complex. Nature 573, 546–552 (2019). https://doi.org/10.1038/s41586-019-1537-0
- M. Pawlak, P. Lefebvre, B. Staels, Molecular mechanism of PPARa action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62, 720–733 (2015). https://doi.org/10.1016/j.jhep.2014.10.039
- G. Pascual, A. Avgustinova, S. Mejetta, M. Martín, A. Castellanos et al., Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017). https://doi.org/10.1038/nature20791
- A. L’Hortet, K. Takeishi, J. Lepe, K. Morita, A. Achreja et al., Generation of human fatty livers using custom-engineered induced pluripotent stem cells with modifiable SIRT1 metabolism. Cell Metab. 30, 385–401 (2019). https://doi.org/10.1016/j.cmet.2019.06.017
- T. Wang, Y. Cao, Q. Zheng, J. Tu, W. Zhou et al., SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism. Mol. Cell 75, 823–834 (2019). https://doi.org/10.1016/j.molcel.2019.06.008
- Z. Niu, Q. Shi, W. Zhang, Y. Shu, N. Yang et al., Caspase-1 cleaves PPARγ for potentiating the pro-tumor action of TAMs. Nat. Commun. 8, 766 (2017). https://doi.org/10.1038/s41467-017-00523-6
- H. Lee, X. Gao, M.I. Barrasa, H. Li, R.R. Elmes et al., PPAR-a and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature 22, 474–477 (2015). https://doi.org/10.1038/nature14326
- N. Xu, Q. Wang, S. Jiang, Q. Wang, W. Hu et al., Fenofibrate improves vascular endothelial function and contractility in diabetic mice. Redox Biol. 20, 87–97 (2019). https://doi.org/10.1016/j.redox.2018.09.024
- M. Nakamura, T. Liu, S. Husain, P. Zhai, J.S. Warren et al., Glycogen synthase kinase-3a promotes fatty acid uptake and lipotoxic cardiomyopathy. Cell Metab. 29, 1119–1134 (2019). https://doi.org/10.1016/j.cmet.2019.01.005
- Y. Shen, Y. Su, F.J. Silva, A.H. Weller, J.S. Colon et al., Shared PPARα/γ target genes regulate brown adipocyte thermogenic function. Cell Rep. 30, 3079–3091 (2020). https://doi.org/10.1016/j.celrep.2020.02.032
- P.J. Siska, K.E. Beckermann, F.M. Mason, G. Andrejeva, A.R. Greenplate et al., Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight. 2, 93411 (2017). https://doi.org/10.1172/jci.insight.93411
- H.G. Sprenger, T. Langer, The Good and the bad of mitochondrial breakups. Trends Cell Biol. 29, 888–900 (2019). https://doi.org/10.1016/j.tcb.2019.08.003
- G. Windt, D. O’Sullivan, B. Everts, S.C.-C. Huang, M.D. Buck et al., CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. USA 110, 14336–14341 (2013). https://doi.org/10.1073/pnas.1221740110
- M.L. Balmer, E.H. Ma, G.R. Bantug, J. Grahlert, S. Pfister et al., Memory CD8+ T Cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44, 1312–1324 (2016). https://doi.org/10.1016/j.immuni.2016.03.016
- A. Angelin, L. Gil-de-Gomez, S. Dahiya, J. Jiao, L. Guo et al., Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293 (2017). https://doi.org/10.1016/j.cmet.2016.12.018
- V.A. Gerriets, R.J. Kishton, M.O. Johnson, S. Cohen, P.J. Siska et al., Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016). https://doi.org/10.1038/ni.3577
- S.J. Patel, N.E. Sanjana, R.J. Kishton, A. Eidizadeh, S.K. Vodnala et al., Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017). https://doi.org/10.1038/nature23477
- S. Rafiq, C.S. Hackett, R.J. Brentjens, Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020). https://doi.org/10.1038/s41571-019-0297-y
References
Y. Li, J. Lin, P. Wang, Q. Luo, F. Zhu et al., Tumor microenvironment cascade-responsive nanodrug with self-targeting activation and ROS regeneration for synergistic oxidation-chemotherapy. Nano-Micro Lett. 12, 182 (2020). https://doi.org/10.1007/s40820-020-00492-4
D.J. Irvine, E.L. Dane, Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020). https://doi.org/10.1038/s41577-019-0269-6
J. Nam, S. Son, K. Park, W. Zou, L.D. Shea et al., Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4, 398–414 (2019). https://doi.org/10.1038/s41578-019-0108-1
Y. Miao, Y. Qiu, M. Zhang, K. Yan, P. Zhang et al., Aqueous self-assembly of block copolymers to form manganese oxide-based polymeric vesicles for tumor microenvironment-activated drug delivery. Nano-Micro Lett. 12, 124 (2020). https://doi.org/10.1007/s40820-020-00447-9
T.J. Anchordoquy, Y. Barenholz, D. Boraschi, M. Chorny, P. Decuzzi et al., Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions. ACS Nano 11, 12–18 (2017). https://doi.org/10.1021/acsnano.6b08244
D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018). https://doi.org/10.1038/s41467-018-03705-y
C.E. Meacham, S.J. Morrison, Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013). https://doi.org/10.1038/nature12624
M. Fernandez, F. Javaid, V. Chudasama, Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. 9, 790–810 (2017). https://doi.org/10.1039/C7SC04004K
M. Li, M. Li, Y. Yang, Y. Liu, H. Xie et al., Remodeling tumor immune microenvironment via targeted blockade of PI3K-γ and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy. J. Control. Release 321, 23–35 (2020). https://doi.org/10.1016/j.jconrel.2020.02.011
N. Zhang, S. Liu, S. Shi, Y. Chen, F. Xu et al., Solubilization and delivery of Ursolic-acid for modulating tumor microenvironment and regulatory T cell activities in cancer immunotherapy. J. Control. Release 320, 168–178 (2020). https://doi.org/10.1016/j.jconrel.2020.01.015
A. Trinh, K. Polyak, Tumor neoantigens: when too much of a good thing is bad. Cancer Cell 36, 466–467 (2019). https://doi.org/10.1016/j.ccell.2019.10.009
W.N. Brennen, J.T. Isaacs, S.R. Denmeade, Rationale behind targeting fibroblast activation protein–expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 11, 257–266 (2012). https://doi.org/10.1158/1535-7163.MCT-11-0340
S.K. Wculek, F.J. Cueto, A.M. Mujal, I. Melero, M.F. Krummel et al., Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020). https://doi.org/10.1038/s41577-019-0210-z
T.D. Wu, S. Madireddi, P.E. de Almeida, R. Banchereau, Y.J.J. Chen et al., Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020). https://doi.org/10.1038/s41586-020-2056-8
M. Kim, Y. Shon, J. Kim, Y. Oh, Selective activation of anticancer chemotherapy by cancer-associated fibroblasts in the tumor microenvironment. J. Natl. Cancer Inst. 109, 1–10 (2016). https://doi.org/10.1093/jnci/djw186
Q. Le, J. Suh, J. Choi, G. Park, J. Lee et al., In situ nanoadjuvant-assembled tumor vaccine for preventing long-term recurrence. ACS Nano 13, 7442–7462 (2019). https://doi.org/10.1021/acsnano.9b02071
W. Mu, Q. Chu, Y. Liu, N. Zhang, A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 12, 142 (2020). https://doi.org/10.1007/s40820-020-00482-6
M. Binnewies, E.W. Roberts, K. Kersten, V. Chan, D.F. Fearon et al., Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018). https://doi.org/10.1038/s41591-018-0014-x
D.S. Thommen, T.N. Schumacher, T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018). https://doi.org/10.1016/j.ccell.2018.03.012
H. Li, K. Bullock, C. Gurjao, D. Braun, S.A. Shukla et al., Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nat. Commun. 10, 4346 (2019). https://doi.org/10.1038/s41467-019-12361-9
Y. Zhang, R. Kurupati, L. Liu, X. Zhou, G. Zhang et al., Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391 (2017). https://doi.org/10.1016/j.ccell.2017.08.004
D. Kim, Q. Le, Y. Kim, Y. Oh, Safety and photochemotherapeutic application of poly(γ-glutamicacid)-based biopolymeric nanoparticle. Acta Pharm. Sin. B 9, 565–574 (2019). https://doi.org/10.1016/j.apsb.2019.01.005
C.B. Rodell, S.P. Arlauckas, M.F. Cuccarese, C.S. Garris, R. Li et al., TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018). https://doi.org/10.1038/s41551-018-0236-8
J. Song, S.S. Ardakani, T. So, M. Croft, The kinases aurora B and mTOR regulate the G1–S cell cycle progression of T lymphocytes. Nat. Immunol. 8, 64–74 (2007). https://doi.org/10.1038/ni1413
P.S. Chowdhury, K. Chamoto, A. Kumar, T. Honjo, PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T Cells and facilitates anti–PD-1 therapy. Cancer Immunol. Res. 6, 1375–1387 (2018). https://doi.org/10.1158/2326-6066.CIR-18-0095
S.A. Livesey, J.G. Linner, Cryofixation taking on a new look. Nature 327, 255–256 (1987). https://doi.org/10.1038/327255a0
Y. Ma, S. Adjemian, S.R. Mattarollo, T. Yamazaki, L. Aymeric et al., Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013). https://doi.org/10.1016/j.immuni.2013.03.003
S.R. Bonam, C.D. Partidos, S.K.M. Halmuthur, S. Muller, An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol. Sci. 38, 771–793 (2017). https://doi.org/10.1016/j.tips.2017.06.002
K. Pouliot, R.B. Corbett, R.M. Roix, S.M. Paquette, K. West et al., Contribution of TLR4 and MyD88 for adjuvant monophosphoryl lipid A (MPLA) activity in a DNA prime–protein boost HIV-1 vaccine. Vaccine 32, 5049–5056 (2014). https://doi.org/10.1016/j.vaccine.2014.07.010
T.A. Ajayeoba, S. Dula, O.A. Ijabadeniyi, Properties of poly-γ-glutamic acid producing-bacillus species isolated from Ogi Liquor and Lemon-Ogi Liquor. Front Microbiol. 10, 771 (2019). https://doi.org/10.3389/fmicb.2019.00771
S. Ko, J. Park, Y. Lee, D. Lee, R.B. Macgregor et al., Biochemical reprogramming of tumors for active modulation of receptor-mediated nanomaterial delivery. Biomaterials 262, 120343 (2020). https://doi.org/10.1016/j.biomaterials.2020.120343
X. Du, L. Xiong, S. Dai, S. Qiao, γ-PGA-coated mesoporous silica nanoparticles with covalently attached prodrugs for enhanced cellular uptake and intracellular GSH-responsive release. Adv. Healthc. Mater. 4, 771–781 (2015). https://doi.org/10.1002/adhm.201400726
T.T. Smith, S.B. Stephan, H.F. Moffettl, L.E. McKnight, W. Ji et al., In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017). https://doi.org/10.1038/nnano.2017.57
D. Dong, L. Zheng, J. Lin, B. Zhang, Y. Zhu et al., Structural basis of assembly of the human T cell receptor–CD3 complex. Nature 573, 546–552 (2019). https://doi.org/10.1038/s41586-019-1537-0
M. Pawlak, P. Lefebvre, B. Staels, Molecular mechanism of PPARa action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62, 720–733 (2015). https://doi.org/10.1016/j.jhep.2014.10.039
G. Pascual, A. Avgustinova, S. Mejetta, M. Martín, A. Castellanos et al., Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017). https://doi.org/10.1038/nature20791
A. L’Hortet, K. Takeishi, J. Lepe, K. Morita, A. Achreja et al., Generation of human fatty livers using custom-engineered induced pluripotent stem cells with modifiable SIRT1 metabolism. Cell Metab. 30, 385–401 (2019). https://doi.org/10.1016/j.cmet.2019.06.017
T. Wang, Y. Cao, Q. Zheng, J. Tu, W. Zhou et al., SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism. Mol. Cell 75, 823–834 (2019). https://doi.org/10.1016/j.molcel.2019.06.008
Z. Niu, Q. Shi, W. Zhang, Y. Shu, N. Yang et al., Caspase-1 cleaves PPARγ for potentiating the pro-tumor action of TAMs. Nat. Commun. 8, 766 (2017). https://doi.org/10.1038/s41467-017-00523-6
H. Lee, X. Gao, M.I. Barrasa, H. Li, R.R. Elmes et al., PPAR-a and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature 22, 474–477 (2015). https://doi.org/10.1038/nature14326
N. Xu, Q. Wang, S. Jiang, Q. Wang, W. Hu et al., Fenofibrate improves vascular endothelial function and contractility in diabetic mice. Redox Biol. 20, 87–97 (2019). https://doi.org/10.1016/j.redox.2018.09.024
M. Nakamura, T. Liu, S. Husain, P. Zhai, J.S. Warren et al., Glycogen synthase kinase-3a promotes fatty acid uptake and lipotoxic cardiomyopathy. Cell Metab. 29, 1119–1134 (2019). https://doi.org/10.1016/j.cmet.2019.01.005
Y. Shen, Y. Su, F.J. Silva, A.H. Weller, J.S. Colon et al., Shared PPARα/γ target genes regulate brown adipocyte thermogenic function. Cell Rep. 30, 3079–3091 (2020). https://doi.org/10.1016/j.celrep.2020.02.032
P.J. Siska, K.E. Beckermann, F.M. Mason, G. Andrejeva, A.R. Greenplate et al., Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight. 2, 93411 (2017). https://doi.org/10.1172/jci.insight.93411
H.G. Sprenger, T. Langer, The Good and the bad of mitochondrial breakups. Trends Cell Biol. 29, 888–900 (2019). https://doi.org/10.1016/j.tcb.2019.08.003
G. Windt, D. O’Sullivan, B. Everts, S.C.-C. Huang, M.D. Buck et al., CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. USA 110, 14336–14341 (2013). https://doi.org/10.1073/pnas.1221740110
M.L. Balmer, E.H. Ma, G.R. Bantug, J. Grahlert, S. Pfister et al., Memory CD8+ T Cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44, 1312–1324 (2016). https://doi.org/10.1016/j.immuni.2016.03.016
A. Angelin, L. Gil-de-Gomez, S. Dahiya, J. Jiao, L. Guo et al., Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293 (2017). https://doi.org/10.1016/j.cmet.2016.12.018
V.A. Gerriets, R.J. Kishton, M.O. Johnson, S. Cohen, P.J. Siska et al., Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016). https://doi.org/10.1038/ni.3577
S.J. Patel, N.E. Sanjana, R.J. Kishton, A. Eidizadeh, S.K. Vodnala et al., Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017). https://doi.org/10.1038/nature23477
S. Rafiq, C.S. Hackett, R.J. Brentjens, Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020). https://doi.org/10.1038/s41571-019-0297-y