CaCO3-Assisted Preparation of pH-Responsive Immune-Modulating Nanoparticles for Augmented Chemo-Immunotherapy
Corresponding Author: Liangzhu Feng
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 29
Abstract
Due to the negative roles of tumor microenvironment (TME) in compromising therapeutic responses of various cancer therapies, it is expected that modulation of TME may be able to enhance the therapeutic responses during cancer treatment. Herein, we develop a concise strategy to prepare pH-responsive nanoparticles via the CaCO3-assisted double emulsion method, thereby enabling effective co-encapsulation of both doxorubicin (DOX), an immunogenic cell death (ICD) inducer, and alkylated NLG919 (aNLG919), an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1). The obtained DOX/aNLG919-loaded CaCO3 nanoparticles (DNCaNPs) are able to cause effective ICD of cancer cells and at the same time restrict the production of immunosuppressive kynurenine by inhibiting IDO1. Upon intravenous injection, such DNCaNPs show efficient tumor accumulation, improved tumor penetration of therapeutics and neutralization of acidic TME. As a result, those DNCaNPs can elicit effective anti-tumor immune responses featured in increased density of tumor-infiltrating CD8+ cytotoxic T cells as well as depletion of immunosuppressive regulatory T cells (Tregs), thus effectively suppressing the growth of subcutaneous CT26 and orthotopic 4T1 tumors on the Balb/c mice through combined chemotherapy & immunotherapy. This study presents a compendious strategy for construction of pH-responsive nanoparticles, endowing significantly enhanced chemo-immunotherapy of cancer by overcoming the immunosuppressive TME.
Highlights:
1 CaCO3-assisted double emulsion method was developed to prepare pH-responsive nanoparticles enabling effective encapsulation of diverse molecules.
2 The introducing of CaCO3 could enable deep intratumoral penetration of therapeutic agents and effective neutralization of acidic tumor pH to favor the reverse of immunosuppressive tumor microenvironment (TME).
3 The reverse of immunosuppressive TME ascribing to NLG919-mediated IDO1 inhibition and CaCO3-mediated neutralization of acidic TME could collectively contribute to augmented chemo-immunotherapy of cancer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Vijayan, A. Young, M.W.L. Teng, M.J. Smyth, Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17, 709–724 (2017). https://doi.org/10.1038/nrc.2017.86
- L. Racioppi, E.R. Nelson, W. Huang, D. Mukherjee, S.A. Lawrence et al., CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nat. Commun. 10, 2450 (2019). https://doi.org/10.1038/s41467-019-10424-5
- T. Bohn, S. Rapp, N. Luther, M. Klein, T.-J. Bruehl et al., Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat. Immunol. 19, 1319 (2018). https://doi.org/10.1038/s41590-018-0226-8
- K. De Bock, M. Mazzone, P. Carmeliet, Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat. Rev. Clin. Oncol. 8, 393–404 (2011). https://doi.org/10.1038/nrclinonc.2011.83
- P. Carmeliet, R.K. Jain, Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011). https://doi.org/10.1038/nrd3455
- B.R. Loman, K.R. Jordan, B. Haynes, M.T. Bailey, L.M. Pyter, Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice. Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice. Sci. Rep. 9, 16490 (2019). https://doi.org/10.1038/s41598-019-52893-0
- R. Oun, Y.E. Moussa, N.J. Wheate, The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalt. Trans. 47, 6645 (2018). https://doi.org/10.1039/C8DT00838H
- N.P. Staff, A. Grisold, W. Grisold, A.J. Windebank, Chemotherapy-induced peripheral neuropathy: a current review. Ann. Neurol. 81, 772–781 (2017). https://doi.org/10.1002/ana.24951
- T.A. Ahles, A.J. Saykin, Candidate mechanisms for chemotherapy-induced cognitive changes. Nat. Rev. Cancer 7, 192–201 (2007). https://doi.org/10.1038/nrc2073
- Y. Yang, W. Zhu, L. Feng, Y. Chao, X. Yi et al., G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy. Nano Lett. 18, 6867 (2018). https://doi.org/10.1021/acs.nanolett.8b02732
- B. Yu, S. Goel, D. Ni, P.A. Ellison, C.M. Siamof et al., Reassembly of 89Zr-labeled cancer cell membranes into multicompartment membrane-derived liposomes for PET-trackable tumor-targeted theranostics. Adv. Mater. 30, 1704934 (2018). https://doi.org/10.1002/adma.201704934
- Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao et al., Synthesis of hollow biomineralized CaCO3–polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J. Am. Chem. Soc. 140, 2165–2178 (2018). https://doi.org/10.1021/jacs.7b11036
- G. Yang, L. Xu, J. Xu, R. Zhang, G. Song et al., Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 18, 2475–2484 (2018). https://doi.org/10.1021/acs.nanolett.8b00040
- M. Alibolandi, K. Abnous, M. Mohammadi, F. Hadizadeh, F. Sadeghi et al., Extensive preclinical investigation of polymersomal formulation of doxorubicin versus Doxil-mimic formulation. J. Control. Release 264, 228–236 (2017). https://doi.org/10.1016/j.jconrel.2017.08.030
- C.-H. Heldin, K. Rubin, K. Pietras, A. Östman, High interstitial fluid pressure—an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004). https://doi.org/10.1038/nrc1456
- E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015). https://doi.org/10.1038/nbt.3330
- R.K. Jain, T. Stylianopoulos, Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010). https://doi.org/10.1038/nrclinonc.2010.139
- A. Casazza, G. Di Conza, M. Wenes, V. Finisguerra, S. Deschoemaeker et al., Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 33, 1743–1754 (2014). https://doi.org/10.1038/onc.2013.121
- M. Sukumar, R. Roychoudhuri, N.P. Restifo, Nutrient competition: a new axis of tumor immunosuppression. Cell 162, 1206–1208 (2015). https://doi.org/10.1016/j.cell.2015.08.064
- J. Nam, S. Son, K.S. Park, W. Zou, L.D. Shea et al., Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4, 398–414 (2019). https://doi.org/10.1038/s41578-019-0108-1
- T. Maj, W. Wang, J. Crespo, H. Zhang, W. Wang et al., Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017). https://doi.org/10.1038/ni.3868
- Y. Chen, R. Xia, Y. Huang, W. Zhao, J. Li et al., An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat. Commun. 7, 13443 (2016). https://doi.org/10.1038/ncomms13443
- B. Feng, F. Zhou, B. Hou, D. Wang, T. Wang et al., Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv. Mater. 30, 1803001 (2018). https://doi.org/10.1002/adma.201803001
- S. Gebremeskel, B. Johnston, Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: impact on clinical studies and considerations for combined therapies. Oncotarget 6, 41600–41619 (2015). https://doi.org/10.18632/oncotarget.6113
- S. Löb, A. Königsrainer, H.-G. Rammensee, G. Opelz, P. Terness, Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat. Rev. Cancer 9, 445–452 (2009). https://doi.org/10.1038/nrc2639
- Y. Liu, X. Liang, X. Yin, J. Lv, K. Tang et al., Blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-γ-induced immunologic dormancy of tumor-repopulating cells. Nat. Commun. 8, 15207 (2017). https://doi.org/10.1038/ncomms15207
- C. Uyttenhove, L. Pilotte, I. Théate, V. Stroobant, D. Colau et al., Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9, 1269–1274 (2003). https://doi.org/10.1038/nm934
- X. Liu, N. Shin, H.K. Koblish, G. Yang, Q. Wang et al., Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115, 3520–3530 (2010). https://doi.org/10.1182/blood-2009-09-246124
- A.J. Muller, J.B. DuHadaway, P.S. Donover, E. Sutanto-Ward, G.C. Prendergast, Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. 11, 312–319 (2005). https://doi.org/10.1038/nm1196
- L. Zhai, S. Spranger, D.C. Binder, G. Gritsina, K.L. Lauing et al., Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin. Cancer Res. 21, 5427–5433 (2015). https://doi.org/10.1158/1078-0432.CCR-15-0420
- C.-F. Xu, H.-B. Zhang, C.-Y. Sun, Y. Liu, S. Shen et al., Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials 88, 48–59 (2016). https://doi.org/10.1016/j.biomaterials.2016.02.031
- L. Feng, K. Li, X. Shi, M. Gao, J. Liu et al., Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv. Healthc. Mater. 3, 1261–1271 (2014). https://doi.org/10.1002/adhm.201300549
- J. Friedrich, C. Seidel, R. Ebner, L.A. Kunz-Schughart, Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4, 309–324 (2009). https://doi.org/10.1038/nprot.2008.226
- R.K. Jain, L.L. Munn, D. Fukumura, Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer 2, 266–276 (2002). https://doi.org/10.1038/nrc778
- Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang et al., Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019). https://doi.org/10.1038/s41565-019-0485-z
- G.M. Palmer, A.N. Fontanella, S. Shan, G. Hanna, G. Zhang et al., In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters. Nat. Protoc. 6, 1355–1366 (2011). https://doi.org/10.1038/nprot.2011.349
- H.-J. Li, J.-Z. Du, X.-J. Du, C.-F. Xu, C.-Y. Sun et al., Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. 113, 4164–4169 (2016). https://doi.org/10.1073/pnas.1522080113
- Q. Chen, J. Chen, Z. Yang, J. Xu, L. Xu et al., Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 31, 1802228 (2019). https://doi.org/10.1002/adma.201802228
- F. Ramazani, W. Chen, C.F. van Nostrum, G. Storm, F. Kiessling et al., Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: state-of-the-art and challenges. Int. J. Pharm. 499, 358–367 (2016). https://doi.org/10.1016/j.ijpharm.2016.01.020
- C.-C. Xue, M.-H. Li, Y. Zhao, J. Zhou, Y. Hu et al., Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Sci. Adv. 6, eeax1346 (2020). https://doi.org/10.1126/sciadv.aax1346
- D.V. Krysko, A.D. Garg, A. Kaczmarek, O. Krysko, P. Agostinis et al., Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012). https://doi.org/10.1038/nrc3380
- W. Li, J. Yang, L. Luo, M. Jiang, B. Qin et al., Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 10, 3349 (2019). https://doi.org/10.1038/s41467-019-11269-8
- C. Corbet, O. Feron, Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017). https://doi.org/10.1038/nrc.2017.77
- K.M. Mahoney, G.J. Freeman, Acidity changes immunology: a new VISTA pathway. Nat. Immunol. 21, 13–16 (2020). https://doi.org/10.1038/s41590-019-0563-2
- D. Neri, C.T. Supuran, Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov. 10, 767–777 (2011). https://doi.org/10.1038/nrd3554
- Q. Chen, C. Wang, X. Zhang, G. Chen, Q. Hu et al., In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019). https://doi.org/10.1038/s41565-018-0319-4
- L. Chen, T.-G. Huang, M. Meseck, J. Mandeli, J. Fallon et al., Rejection of metastatic 4T1 breast cancer by attenuation of treg cells in combination with immune stimulation. Mol. Ther. 15, 2194–2202 (2007). https://doi.org/10.1038/sj.mt.6300310
- K. Kim, A.D. Skora, Z. Li, Q. Liu, A.J. Tam et al., Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl. Acad. Sci. 111, 11774–11779 (2014). https://doi.org/10.1073/pnas.1410626111
- X. Huang, M.K. Wong, H. Yi, S. Watkins, A.D. Laird et al., Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein. Cancer Res. 62, 5727–5735 (2002)
References
D. Vijayan, A. Young, M.W.L. Teng, M.J. Smyth, Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17, 709–724 (2017). https://doi.org/10.1038/nrc.2017.86
L. Racioppi, E.R. Nelson, W. Huang, D. Mukherjee, S.A. Lawrence et al., CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nat. Commun. 10, 2450 (2019). https://doi.org/10.1038/s41467-019-10424-5
T. Bohn, S. Rapp, N. Luther, M. Klein, T.-J. Bruehl et al., Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat. Immunol. 19, 1319 (2018). https://doi.org/10.1038/s41590-018-0226-8
K. De Bock, M. Mazzone, P. Carmeliet, Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat. Rev. Clin. Oncol. 8, 393–404 (2011). https://doi.org/10.1038/nrclinonc.2011.83
P. Carmeliet, R.K. Jain, Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011). https://doi.org/10.1038/nrd3455
B.R. Loman, K.R. Jordan, B. Haynes, M.T. Bailey, L.M. Pyter, Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice. Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice. Sci. Rep. 9, 16490 (2019). https://doi.org/10.1038/s41598-019-52893-0
R. Oun, Y.E. Moussa, N.J. Wheate, The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalt. Trans. 47, 6645 (2018). https://doi.org/10.1039/C8DT00838H
N.P. Staff, A. Grisold, W. Grisold, A.J. Windebank, Chemotherapy-induced peripheral neuropathy: a current review. Ann. Neurol. 81, 772–781 (2017). https://doi.org/10.1002/ana.24951
T.A. Ahles, A.J. Saykin, Candidate mechanisms for chemotherapy-induced cognitive changes. Nat. Rev. Cancer 7, 192–201 (2007). https://doi.org/10.1038/nrc2073
Y. Yang, W. Zhu, L. Feng, Y. Chao, X. Yi et al., G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy. Nano Lett. 18, 6867 (2018). https://doi.org/10.1021/acs.nanolett.8b02732
B. Yu, S. Goel, D. Ni, P.A. Ellison, C.M. Siamof et al., Reassembly of 89Zr-labeled cancer cell membranes into multicompartment membrane-derived liposomes for PET-trackable tumor-targeted theranostics. Adv. Mater. 30, 1704934 (2018). https://doi.org/10.1002/adma.201704934
Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao et al., Synthesis of hollow biomineralized CaCO3–polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J. Am. Chem. Soc. 140, 2165–2178 (2018). https://doi.org/10.1021/jacs.7b11036
G. Yang, L. Xu, J. Xu, R. Zhang, G. Song et al., Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 18, 2475–2484 (2018). https://doi.org/10.1021/acs.nanolett.8b00040
M. Alibolandi, K. Abnous, M. Mohammadi, F. Hadizadeh, F. Sadeghi et al., Extensive preclinical investigation of polymersomal formulation of doxorubicin versus Doxil-mimic formulation. J. Control. Release 264, 228–236 (2017). https://doi.org/10.1016/j.jconrel.2017.08.030
C.-H. Heldin, K. Rubin, K. Pietras, A. Östman, High interstitial fluid pressure—an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004). https://doi.org/10.1038/nrc1456
E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015). https://doi.org/10.1038/nbt.3330
R.K. Jain, T. Stylianopoulos, Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010). https://doi.org/10.1038/nrclinonc.2010.139
A. Casazza, G. Di Conza, M. Wenes, V. Finisguerra, S. Deschoemaeker et al., Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 33, 1743–1754 (2014). https://doi.org/10.1038/onc.2013.121
M. Sukumar, R. Roychoudhuri, N.P. Restifo, Nutrient competition: a new axis of tumor immunosuppression. Cell 162, 1206–1208 (2015). https://doi.org/10.1016/j.cell.2015.08.064
J. Nam, S. Son, K.S. Park, W. Zou, L.D. Shea et al., Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4, 398–414 (2019). https://doi.org/10.1038/s41578-019-0108-1
T. Maj, W. Wang, J. Crespo, H. Zhang, W. Wang et al., Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017). https://doi.org/10.1038/ni.3868
Y. Chen, R. Xia, Y. Huang, W. Zhao, J. Li et al., An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat. Commun. 7, 13443 (2016). https://doi.org/10.1038/ncomms13443
B. Feng, F. Zhou, B. Hou, D. Wang, T. Wang et al., Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv. Mater. 30, 1803001 (2018). https://doi.org/10.1002/adma.201803001
S. Gebremeskel, B. Johnston, Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: impact on clinical studies and considerations for combined therapies. Oncotarget 6, 41600–41619 (2015). https://doi.org/10.18632/oncotarget.6113
S. Löb, A. Königsrainer, H.-G. Rammensee, G. Opelz, P. Terness, Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat. Rev. Cancer 9, 445–452 (2009). https://doi.org/10.1038/nrc2639
Y. Liu, X. Liang, X. Yin, J. Lv, K. Tang et al., Blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-γ-induced immunologic dormancy of tumor-repopulating cells. Nat. Commun. 8, 15207 (2017). https://doi.org/10.1038/ncomms15207
C. Uyttenhove, L. Pilotte, I. Théate, V. Stroobant, D. Colau et al., Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9, 1269–1274 (2003). https://doi.org/10.1038/nm934
X. Liu, N. Shin, H.K. Koblish, G. Yang, Q. Wang et al., Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115, 3520–3530 (2010). https://doi.org/10.1182/blood-2009-09-246124
A.J. Muller, J.B. DuHadaway, P.S. Donover, E. Sutanto-Ward, G.C. Prendergast, Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. 11, 312–319 (2005). https://doi.org/10.1038/nm1196
L. Zhai, S. Spranger, D.C. Binder, G. Gritsina, K.L. Lauing et al., Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin. Cancer Res. 21, 5427–5433 (2015). https://doi.org/10.1158/1078-0432.CCR-15-0420
C.-F. Xu, H.-B. Zhang, C.-Y. Sun, Y. Liu, S. Shen et al., Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials 88, 48–59 (2016). https://doi.org/10.1016/j.biomaterials.2016.02.031
L. Feng, K. Li, X. Shi, M. Gao, J. Liu et al., Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv. Healthc. Mater. 3, 1261–1271 (2014). https://doi.org/10.1002/adhm.201300549
J. Friedrich, C. Seidel, R. Ebner, L.A. Kunz-Schughart, Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4, 309–324 (2009). https://doi.org/10.1038/nprot.2008.226
R.K. Jain, L.L. Munn, D. Fukumura, Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer 2, 266–276 (2002). https://doi.org/10.1038/nrc778
Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang et al., Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019). https://doi.org/10.1038/s41565-019-0485-z
G.M. Palmer, A.N. Fontanella, S. Shan, G. Hanna, G. Zhang et al., In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters. Nat. Protoc. 6, 1355–1366 (2011). https://doi.org/10.1038/nprot.2011.349
H.-J. Li, J.-Z. Du, X.-J. Du, C.-F. Xu, C.-Y. Sun et al., Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. 113, 4164–4169 (2016). https://doi.org/10.1073/pnas.1522080113
Q. Chen, J. Chen, Z. Yang, J. Xu, L. Xu et al., Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 31, 1802228 (2019). https://doi.org/10.1002/adma.201802228
F. Ramazani, W. Chen, C.F. van Nostrum, G. Storm, F. Kiessling et al., Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: state-of-the-art and challenges. Int. J. Pharm. 499, 358–367 (2016). https://doi.org/10.1016/j.ijpharm.2016.01.020
C.-C. Xue, M.-H. Li, Y. Zhao, J. Zhou, Y. Hu et al., Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Sci. Adv. 6, eeax1346 (2020). https://doi.org/10.1126/sciadv.aax1346
D.V. Krysko, A.D. Garg, A. Kaczmarek, O. Krysko, P. Agostinis et al., Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012). https://doi.org/10.1038/nrc3380
W. Li, J. Yang, L. Luo, M. Jiang, B. Qin et al., Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 10, 3349 (2019). https://doi.org/10.1038/s41467-019-11269-8
C. Corbet, O. Feron, Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017). https://doi.org/10.1038/nrc.2017.77
K.M. Mahoney, G.J. Freeman, Acidity changes immunology: a new VISTA pathway. Nat. Immunol. 21, 13–16 (2020). https://doi.org/10.1038/s41590-019-0563-2
D. Neri, C.T. Supuran, Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov. 10, 767–777 (2011). https://doi.org/10.1038/nrd3554
Q. Chen, C. Wang, X. Zhang, G. Chen, Q. Hu et al., In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019). https://doi.org/10.1038/s41565-018-0319-4
L. Chen, T.-G. Huang, M. Meseck, J. Mandeli, J. Fallon et al., Rejection of metastatic 4T1 breast cancer by attenuation of treg cells in combination with immune stimulation. Mol. Ther. 15, 2194–2202 (2007). https://doi.org/10.1038/sj.mt.6300310
K. Kim, A.D. Skora, Z. Li, Q. Liu, A.J. Tam et al., Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl. Acad. Sci. 111, 11774–11779 (2014). https://doi.org/10.1073/pnas.1410626111
X. Huang, M.K. Wong, H. Yi, S. Watkins, A.D. Laird et al., Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein. Cancer Res. 62, 5727–5735 (2002)