Dual-Wavelength Photosensitive Nano-in-Micro Scaffold Regulates Innate and Adaptive Immune Responses for Osteogenesis
Corresponding Author: Yufeng Zhang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 28
Abstract
The immune response of a biomaterial determines its osteoinductive effect. Although the mechanisms by which some immune cells promote regeneration have been revealed, the biomaterial-induced immune response is a dynamic process involving multiple cells. Currently, it is challenging to accurately regulate the innate and adaptive immune responses to promote osteoinduction in biomaterials. Herein, we investigated the roles of macrophages and dendritic cells (DCs) during the osteoinduction of biphasic calcium phosphate (BCP) scaffolds. We found that osteoinductive BCP directed M2 macrophage polarization and inhibited DC maturation, resulting in low T cell response and efficient osteogenesis. Accordingly, a dual-targeting nano-in-micro scaffold (BCP loaded with gold nanocage, BCP-GNC) was designed to regulate the immune responses of macrophages and DCs. Through a dual-wavelength photosensitive switch, BCP-GNC releases interleukin-4 in the early stage of osteoinduction to target M2 macrophages and then releases dexamethasone in the later stage to target immature DCs, creating a desirable inflammatory environment for osteogenesis. This study demonstrates that biomaterials developed to have specific regulatory capacities for immune cells can be used to control the early inflammatory responses of implanted materials and induce osteogenesis.
Highlights:
1 The controlled release of IL-4 and dexamethasone by a dual-wavelength photosensitive nano-in-micro scaffold (biphasic calcium phosphate loaded with goad nanocage, BCP-GNC) enables the regulation of specific immune cells and immune responses.
2 BCP-GNC regulates innate and adaptive immune responses in two stages (directing the M2 polarization of macrophages and inhibiting the maturation of dendritic cells) to promote osteoinduction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Liu, J. Li, M. Cheng, Q. Wang, K.W.K. Yeung et al., Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration. Adv. Sci. 5(10), 1800749 (2018). https://doi.org/10.1002/advs.201800749
- L. Bai, Z. Du, J. Du, W. Yao, J. Zhang et al., A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration. Biomaterials 162, 154–169 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.010
- J.M. Sadowska, F. Wei, J. Guo, J. Guillem-Marti, M.P. Ginebra et al., Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation. Biomaterials 181, 318–332 (2018). https://doi.org/10.1016/j.biomaterials.2018.07.058
- K. Okamoto, T. Nakashima, M. Shinohara, T. Negishi-Koga, N. Komatsu et al., Osteoimmunology: The conceptual framework unifying the immune and skeletal systems. Physiol. Rev. 97(4), 1295–1349 (2017). https://doi.org/10.1152/physrev.00036.2016
- H. Li, S. Hong, J. Qian, Y. Zheng, J. Yang et al., Cross talk between the bone and immune systems: Osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood 116(2), 210–217 (2010). https://doi.org/10.1182/blood-2009-11-255026
- A.J. Ashcroft, S.M. Cruickshank, P.I. Croucher, M.J. Perry, S. Rollinson et al., Colonic dendritic cells, intestinal inflammation and t cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 19(6), 849–861 (2003). https://doi.org/10.1016/s1074-7613(03)00326-1
- A.M. Tyagi, M. Yu, T.M. Darby, C. Vaccaro, J.Y. Li et al., The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10b expression. Immunity 49(6), 1116–1131 (2018). https://doi.org/10.1016/j.immuni.2018.10.013
- P.J. Murray, Macrophage polarization. Annu. Rev. Physiol. 79, 541–566 (2017). https://doi.org/10.1146/annurev-physiol-022516-034339
- M.M. Alvarez, J.C. Liu, G. Trujillo-de Santiago, B.H. Cha, A. Vishwakarma et al., Delivery strategies to control inflammatory response Modulating M1–M2 polarization in tissue engineering applications. J Control Release. 240, 349–363 (2016). https://doi.org/10.1016/j.jconrel.2016.01.026
- K.L. Spiller, R.R. Anfang, K.J. Spiller, J. Ng, K.R. Nakazawa et al., The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15), 4477–4488 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.012
- Z. Chen, A. Bachhuka, S. Han, F. Wei, S. Lu et al., Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications. ACS Nano 11(5), 4494–4506 (2017). https://doi.org/10.1021/acsnano.6b07808
- M. Tavakolian, S.M. Jafari, T.G.M.van de Ven, , A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett. 12, 73 (2020). https://doi.org/10.1007/s40820-020-0408-4
- L. Bai, Y. Liu, Z. Du, Z. Weng, W. Yao et al., Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater. 76, 344–358 (2018). https://doi.org/10.1016/j.actbio.2018.06.023
- D. Kwon, B.G. Cha, Y. Cho, J. Min, E.B. Park et al., Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering Il-4. Nano Lett. 17(5), 2747–2756 (2017). https://doi.org/10.1021/acs.nanolett.6b04130
- D. Esterhazy, J. Loschko, M. London, V. Jove, T.Y. Oliveira et al., Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(REG) cells and tolerance. Nat. Immunol. 17(5), 545–555 (2016). https://doi.org/10.1038/ni.3408
- B. Pulendran, H. Tang, S. Manicassamy, Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat. Immunol. 11(8), 647–655 (2010). https://doi.org/10.1038/ni.1894
- J. Park, J.E. Babensee, Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater. 8(10), 3606–3617 (2012). https://doi.org/10.1016/j.actbio.2012.06.006
- J. He, G. Chen, M. Liu, Z. Xu, H. Chen et al., Scaffold strategies for modulating immune microenvironment during bone regeneration. Mater Sci Eng C Mater Biol Appl. 108, 110411 (2020). https://doi.org/10.1016/j.msec.2019.110411
- S. Maher, A. Mazinani, M.R. Barati, D. Losic, Engineered titanium implants for localized drug delivery: Recent advances and perspectives of titania nanotubes arrays. Expert Opin. Drug Deliv. 15(10), 1021–1037 (2018). https://doi.org/10.1080/17425247.2018.1517743
- S. Behzadi, G.A. Luther, M.B. Harris, O.C. Farokhzad, M. Mahmoudi, Nanomedicine for safe healing of bone trauma: Opportunities and challenges. Biomaterials 146, 168–182 (2017). https://doi.org/10.1016/j.biomaterials.2017.09.005
- C. Xu, L. Xiao, Y. Cao, Y. He, C. Lei et al., Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Res. 13(9), 2323–2331 (2020). https://doi.org/10.1007/s12274-020-2783-z
- S. Hosseinpour, R. Fekrazad, P.R. Arany, Q. Ye, Molecular impacts of photobiomodulation on bone regeneration: A systematic review. Prog. Biophys. Mol. Biol. 149, 147–159 (2019). https://doi.org/10.1016/j.pbiomolbio.2019.04.005
- B. Byambaa, N. Annabi, K. Yue, G. Trujillo-de Santiago, M.M. Alvarez et al., Bioprinted osteogenic and vasculogenic patterns for engineering 3d bone tissue. Adv Healthc Mater (2017). https://doi.org/10.1002/adhm.201700015
- A.L. Vahrmeijer, M. Hutteman, J.R. van der Vorst, C.J. van de Velde, J.V. Frangioni, Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013). https://doi.org/10.1038/nrclinonc.2013.123
- Y.A. Nakamura, S. Okuyama, A. Furusawa, T. Nagaya, D. Fujimura et al., Near-infrared photoimmunotherapy through bone. Cancer Sci. 110(12), 3689–3694 (2019). https://doi.org/10.1111/cas.14203
- Y. Sun, H. Tu, S. You, C. Zhang, Y.Z. Liu et al., Detection of weak near-infrared optical imaging signals under ambient light by optical parametric amplification. Opt. Lett. 44(17), 4391–4394 (2019). https://doi.org/10.1364/OL.44.004391
- J. Hao, T. Han, M. Wang, Q. Zhuang, X. Wang et al., Temporary suppression the sequestrated function of host macrophages for better nanoparticles tumor delivery. Drug Deliv. 25(1), 1289–1301 (2018). https://doi.org/10.1080/10717544.2018.1474965
- C. Wang, Y. Wang, L. Zhang, R.J. Miron, J. Liang et al., Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections. Adv. Mater. 30(46), e1804023 (2018). https://doi.org/10.1002/adma.201804023
- Q. Zhao, J. Wang, C. Yin, P. Zhang, J. Zhang et al., Near-infrared light-sensitive nano neuro-immune blocker capsule relieves pain and enhances the innate immune response for necrotizing infection. Nano Lett. 19(9), 5904–5914 (2019). https://doi.org/10.1021/acs.nanolett.9b01459
- B. Pang, X. Yang, Y. Xia, Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics. Nanomedicine 11(13), 1715–1728 (2016). https://doi.org/10.2217/nnm-2016-0109
- G.D. Moon, S.W. Choi, X. Cai, W. Li, E.C. Cho et al., A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc. 133(13), 4762–4765 (2011). https://doi.org/10.1021/ja200894u
- D. Xidaki, P. Agrafioti, D. Diomatari, A. Kaminari, E. Tsalavoutas-Psarras et al., Synthesis of hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate particles to act as local delivery carriers of curcumin: Loading, release and in vitro studies. Materials (2018). https://doi.org/10.3390/ma11040595
- M. Ebrahimi, M.G. Botelho, S.V. Dorozhkin, Biphasic calcium phosphates bioceramics (ha/tcp): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater Sci Eng C Mater Biol Appl. 71, 1293–1312 (2017). https://doi.org/10.1016/j.msec.2016.11.039
- Y. Cai, X. Wang, C.K. Poh, H.C. Tan, M.T. Soe et al., Accelerated bone growth in vitro by the conjugation of BMP2 peptide with hydroxyapatite on titanium alloy. Colloids Surf. B Biointerfaces 116, 681–686 (2014). https://doi.org/10.1016/j.colsurfb.2013.11.004
- M. Shi, R. Yang, Q. Li, K. Lv, R.J. Miron et al., Inorganic self-assembled bioactive artificial proto-osteocells inducing bone regeneration. ACS Appl. Mater. Interfaces 10(13), 10718–10728 (2018). https://doi.org/10.1021/acsami.8b00385
- Y.M. Kong, H.E. Kim, H.W. Kim, Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics. J Biomed Mater Res B Appl Biomater. 84(2), 334–339 (2008). https://doi.org/10.1002/jbm.b.30876
- A. Fatimi, J.F. Tassin, M.A. Axelos, P. Weiss, The stability mechanisms of an injectable calcium phosphate ceramic suspension. J. Mater. Sci. Mater. Med. 21(6), 1799–1809 (2010). https://doi.org/10.1007/s10856-010-4047-z
- M. Bohner, R.J. Miron, A proposed mechanism for material-induced heterotopic ossification. Mater. Today 22, 132–141 (2019). https://doi.org/10.1016/j.mattod.2018.10.036
- M. Ebrahimi, P. Pripatnanont, N. Monmaturapoj, S. Suttapreyasri, Fabrication and characterization of novel nano hydroxyapatite/beta-tricalcium phosphate scaffolds in three different composition ratios. J. Biomed. Mater. Res. A 100(9), 2260–2268 (2012). https://doi.org/10.1002/jbm.a.34160
- Y. Cai, L. Guo, H. Shen, X. An, H. Jiang et al., Degradability, bioactivity and osteogenesis of biocomposite scaffolds of lithium-containing mesoporous bioglass and MPEG-PLGA-b-PLL copolymer. Int. J. Nanomedicine 10, 4125–4136 (2015). https://doi.org/10.2147/ijn.S82945
- R.J. Miron, Y.F. Zhang, Osteoinduction: A review of old concepts with new standards. J. Dent. Res. 91(8), 736–744 (2012). https://doi.org/10.1177/0022034511435260
- X. Chen, M. Wang, F. Chen, J. Wang, X. Li et al., Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Acta Biomater. 103, 318–332 (2020). https://doi.org/10.1016/j.actbio.2019.12.019
- X. Jia, H. Xu, R.J. Miron, C. Yin, X. Zhang et al., EZH1 is associated with TCP-induced bone regeneration through macrophage polarization. Stem. Cells Int. 2018, 6310560 (2018). https://doi.org/10.1155/2018/6310560
- Z. Chen, R.M. Visalakshan, J. Guo, F. Wei, L. Zhang et al., Plasma deposited poly-oxazoline nanotextured surfaces dictate osteoimmunomodulation towards ameliorative osteogenesis. Acta Biomater. 96, 568–581 (2019). https://doi.org/10.1016/j.actbio.2019.06.058
- J. Pajarinen, T. Lin, E. Gibon, Y. Kohno, M. Maruyama et al., Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196, 80–89 (2019). https://doi.org/10.1016/j.biomaterials.2017.12.025
- S.S. Jin, D.Q. He, D. Luo, Y. Wang, M. Yu et al., A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration. ACS Nano 13(6), 6581–6595 (2019). https://doi.org/10.1021/acsnano.9b00489
- S. Reinke, S. Geissler, W.R. Taylor, K. Schmidt-Bleek, K. Juelke et al., Terminally differentiated CD8(+) T cells negatively affect bone regeneration in humans. Sci Transl Med. 5(177), 177–136 (2013). https://doi.org/10.1126/scitranslmed.3004754
- Y. Liu, L. Wang, T. Kikuiri, K. Akiyama, C. Chen et al., Mesenchymal stem cell-based tissue regeneration is governed by recipient t lymphocytes via IFN-gamma and TNF-alpha. Nat. Med. 17(12), 1594–1601 (2011). https://doi.org/10.1038/nm.2542
- D. Toben, I. Schroeder, T. El Khassawna, M. Mehta, J.E. Hoffmann et al., Fracture healing is accelerated in the absence of the adaptive immune system. J. Bone Miner. Res. 26(1), 113–124 (2011). https://doi.org/10.1002/jbmr.185
- L. Chung, D.R. Maestas Jr., F. Housseau, J.H. Elisseeff, Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 114, 184–192 (2017). https://doi.org/10.1016/j.addr.2017.07.006
- K.A. Daly, S. Liu, V. Agrawal, B.N. Brown, S.A. Johnson et al., Damage associated molecular patterns within xenogeneic biologic scaffolds and their effects on host remodeling. Biomaterials 33(1), 91–101 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.040
- B. Shokouhi, C. Coban, V. Hasirci, E. Aydin, A. Dhanasingh et al., The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells. Biomaterials 31(22), 5759–5771 (2010). https://doi.org/10.1016/j.biomaterials.2010.04.015
- K. Lynch, O. Treacy, J.Q. Gerlach, H. Annuk, P. Lohan et al., Regulating immunogenicity and tolerogenicity of bone marrow-derived dendritic cells through modulation of cell surface glycosylation by dexamethasone treatment. Front. Immunol. 8, 1427 (2017). https://doi.org/10.3389/fimmu.2017.01427
- S.E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au et al., Gold nanocages: Synthesis, properties and applications. Acc. Chem. Res. 41(12), 1587–1595 (2008). https://doi.org/10.1021/ar800018v
- X. Zhu, W. Feng, J. Chang, Y.W. Tan, J. Li et al., Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 7, 10437 (2016). https://doi.org/10.1038/ncomms10437
- L.K. Kozicky, L.M. Sly, Depletion and reconstitution of macrophages in mice. Methods Mol. Biol. 1960, 101–112 (2019). https://doi.org/10.1007/978-1-4939-9167-9_9
- L. Tang, T.A. Jennings, J.W. Eaton, Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc. Natl. Acad. Sci. USA 95(15), 8841–8846 (1998). https://doi.org/10.1073/pnas.95.15.8841
- M.N. Michalski, L.E. Zweifler, B.P. Sinder, A.J. Koh, J. Yamashita et al., Clodronate-loaded liposome treatment has site-specific skeletal effects. J. Dent. Res. 98(4), 459–467 (2019). https://doi.org/10.1177/0022034518821685
- A. Hotblack, S. Seshadri, L. Zhang, S. Hamrang-Yousefi, R. Chakraverty et al., Dendritic cells cross-present immunogenic lentivector-encoded antigen from transduced cells to prime functional T cell immunity. Mol. Ther. 25(2), 504–511 (2017). https://doi.org/10.1016/j.ymthe.2016.11.001
- J. Li, J. Tan, M.M. Martino, K.O. Lui, Regulatory t-cells: Potential regulator of tissue repair and regeneration. Front. Immunol. 9, 585 (2018). https://doi.org/10.3389/fimmu.2018.00585
- S. Chen, L. Fang, W. Guo, Y. Zhou, G. Yu, W. Li et al., Control of treg cell homeostasis and immune equilibrium by lkb1 in dendritic cells. Nat. Commun. 9(1), 5298 (2018). https://doi.org/10.1038/s41467-018-07545-8
- G.S. Selders, A.E. Fetz, M.Z. Radic, G.L. Bowlin, An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater. 4(1), 55–68 (2017). https://doi.org/10.1093/rb/rbw041
References
W. Liu, J. Li, M. Cheng, Q. Wang, K.W.K. Yeung et al., Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration. Adv. Sci. 5(10), 1800749 (2018). https://doi.org/10.1002/advs.201800749
L. Bai, Z. Du, J. Du, W. Yao, J. Zhang et al., A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration. Biomaterials 162, 154–169 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.010
J.M. Sadowska, F. Wei, J. Guo, J. Guillem-Marti, M.P. Ginebra et al., Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation. Biomaterials 181, 318–332 (2018). https://doi.org/10.1016/j.biomaterials.2018.07.058
K. Okamoto, T. Nakashima, M. Shinohara, T. Negishi-Koga, N. Komatsu et al., Osteoimmunology: The conceptual framework unifying the immune and skeletal systems. Physiol. Rev. 97(4), 1295–1349 (2017). https://doi.org/10.1152/physrev.00036.2016
H. Li, S. Hong, J. Qian, Y. Zheng, J. Yang et al., Cross talk between the bone and immune systems: Osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood 116(2), 210–217 (2010). https://doi.org/10.1182/blood-2009-11-255026
A.J. Ashcroft, S.M. Cruickshank, P.I. Croucher, M.J. Perry, S. Rollinson et al., Colonic dendritic cells, intestinal inflammation and t cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 19(6), 849–861 (2003). https://doi.org/10.1016/s1074-7613(03)00326-1
A.M. Tyagi, M. Yu, T.M. Darby, C. Vaccaro, J.Y. Li et al., The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10b expression. Immunity 49(6), 1116–1131 (2018). https://doi.org/10.1016/j.immuni.2018.10.013
P.J. Murray, Macrophage polarization. Annu. Rev. Physiol. 79, 541–566 (2017). https://doi.org/10.1146/annurev-physiol-022516-034339
M.M. Alvarez, J.C. Liu, G. Trujillo-de Santiago, B.H. Cha, A. Vishwakarma et al., Delivery strategies to control inflammatory response Modulating M1–M2 polarization in tissue engineering applications. J Control Release. 240, 349–363 (2016). https://doi.org/10.1016/j.jconrel.2016.01.026
K.L. Spiller, R.R. Anfang, K.J. Spiller, J. Ng, K.R. Nakazawa et al., The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15), 4477–4488 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.012
Z. Chen, A. Bachhuka, S. Han, F. Wei, S. Lu et al., Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications. ACS Nano 11(5), 4494–4506 (2017). https://doi.org/10.1021/acsnano.6b07808
M. Tavakolian, S.M. Jafari, T.G.M.van de Ven, , A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett. 12, 73 (2020). https://doi.org/10.1007/s40820-020-0408-4
L. Bai, Y. Liu, Z. Du, Z. Weng, W. Yao et al., Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater. 76, 344–358 (2018). https://doi.org/10.1016/j.actbio.2018.06.023
D. Kwon, B.G. Cha, Y. Cho, J. Min, E.B. Park et al., Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering Il-4. Nano Lett. 17(5), 2747–2756 (2017). https://doi.org/10.1021/acs.nanolett.6b04130
D. Esterhazy, J. Loschko, M. London, V. Jove, T.Y. Oliveira et al., Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(REG) cells and tolerance. Nat. Immunol. 17(5), 545–555 (2016). https://doi.org/10.1038/ni.3408
B. Pulendran, H. Tang, S. Manicassamy, Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat. Immunol. 11(8), 647–655 (2010). https://doi.org/10.1038/ni.1894
J. Park, J.E. Babensee, Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater. 8(10), 3606–3617 (2012). https://doi.org/10.1016/j.actbio.2012.06.006
J. He, G. Chen, M. Liu, Z. Xu, H. Chen et al., Scaffold strategies for modulating immune microenvironment during bone regeneration. Mater Sci Eng C Mater Biol Appl. 108, 110411 (2020). https://doi.org/10.1016/j.msec.2019.110411
S. Maher, A. Mazinani, M.R. Barati, D. Losic, Engineered titanium implants for localized drug delivery: Recent advances and perspectives of titania nanotubes arrays. Expert Opin. Drug Deliv. 15(10), 1021–1037 (2018). https://doi.org/10.1080/17425247.2018.1517743
S. Behzadi, G.A. Luther, M.B. Harris, O.C. Farokhzad, M. Mahmoudi, Nanomedicine for safe healing of bone trauma: Opportunities and challenges. Biomaterials 146, 168–182 (2017). https://doi.org/10.1016/j.biomaterials.2017.09.005
C. Xu, L. Xiao, Y. Cao, Y. He, C. Lei et al., Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Res. 13(9), 2323–2331 (2020). https://doi.org/10.1007/s12274-020-2783-z
S. Hosseinpour, R. Fekrazad, P.R. Arany, Q. Ye, Molecular impacts of photobiomodulation on bone regeneration: A systematic review. Prog. Biophys. Mol. Biol. 149, 147–159 (2019). https://doi.org/10.1016/j.pbiomolbio.2019.04.005
B. Byambaa, N. Annabi, K. Yue, G. Trujillo-de Santiago, M.M. Alvarez et al., Bioprinted osteogenic and vasculogenic patterns for engineering 3d bone tissue. Adv Healthc Mater (2017). https://doi.org/10.1002/adhm.201700015
A.L. Vahrmeijer, M. Hutteman, J.R. van der Vorst, C.J. van de Velde, J.V. Frangioni, Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013). https://doi.org/10.1038/nrclinonc.2013.123
Y.A. Nakamura, S. Okuyama, A. Furusawa, T. Nagaya, D. Fujimura et al., Near-infrared photoimmunotherapy through bone. Cancer Sci. 110(12), 3689–3694 (2019). https://doi.org/10.1111/cas.14203
Y. Sun, H. Tu, S. You, C. Zhang, Y.Z. Liu et al., Detection of weak near-infrared optical imaging signals under ambient light by optical parametric amplification. Opt. Lett. 44(17), 4391–4394 (2019). https://doi.org/10.1364/OL.44.004391
J. Hao, T. Han, M. Wang, Q. Zhuang, X. Wang et al., Temporary suppression the sequestrated function of host macrophages for better nanoparticles tumor delivery. Drug Deliv. 25(1), 1289–1301 (2018). https://doi.org/10.1080/10717544.2018.1474965
C. Wang, Y. Wang, L. Zhang, R.J. Miron, J. Liang et al., Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections. Adv. Mater. 30(46), e1804023 (2018). https://doi.org/10.1002/adma.201804023
Q. Zhao, J. Wang, C. Yin, P. Zhang, J. Zhang et al., Near-infrared light-sensitive nano neuro-immune blocker capsule relieves pain and enhances the innate immune response for necrotizing infection. Nano Lett. 19(9), 5904–5914 (2019). https://doi.org/10.1021/acs.nanolett.9b01459
B. Pang, X. Yang, Y. Xia, Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics. Nanomedicine 11(13), 1715–1728 (2016). https://doi.org/10.2217/nnm-2016-0109
G.D. Moon, S.W. Choi, X. Cai, W. Li, E.C. Cho et al., A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc. 133(13), 4762–4765 (2011). https://doi.org/10.1021/ja200894u
D. Xidaki, P. Agrafioti, D. Diomatari, A. Kaminari, E. Tsalavoutas-Psarras et al., Synthesis of hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate particles to act as local delivery carriers of curcumin: Loading, release and in vitro studies. Materials (2018). https://doi.org/10.3390/ma11040595
M. Ebrahimi, M.G. Botelho, S.V. Dorozhkin, Biphasic calcium phosphates bioceramics (ha/tcp): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater Sci Eng C Mater Biol Appl. 71, 1293–1312 (2017). https://doi.org/10.1016/j.msec.2016.11.039
Y. Cai, X. Wang, C.K. Poh, H.C. Tan, M.T. Soe et al., Accelerated bone growth in vitro by the conjugation of BMP2 peptide with hydroxyapatite on titanium alloy. Colloids Surf. B Biointerfaces 116, 681–686 (2014). https://doi.org/10.1016/j.colsurfb.2013.11.004
M. Shi, R. Yang, Q. Li, K. Lv, R.J. Miron et al., Inorganic self-assembled bioactive artificial proto-osteocells inducing bone regeneration. ACS Appl. Mater. Interfaces 10(13), 10718–10728 (2018). https://doi.org/10.1021/acsami.8b00385
Y.M. Kong, H.E. Kim, H.W. Kim, Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics. J Biomed Mater Res B Appl Biomater. 84(2), 334–339 (2008). https://doi.org/10.1002/jbm.b.30876
A. Fatimi, J.F. Tassin, M.A. Axelos, P. Weiss, The stability mechanisms of an injectable calcium phosphate ceramic suspension. J. Mater. Sci. Mater. Med. 21(6), 1799–1809 (2010). https://doi.org/10.1007/s10856-010-4047-z
M. Bohner, R.J. Miron, A proposed mechanism for material-induced heterotopic ossification. Mater. Today 22, 132–141 (2019). https://doi.org/10.1016/j.mattod.2018.10.036
M. Ebrahimi, P. Pripatnanont, N. Monmaturapoj, S. Suttapreyasri, Fabrication and characterization of novel nano hydroxyapatite/beta-tricalcium phosphate scaffolds in three different composition ratios. J. Biomed. Mater. Res. A 100(9), 2260–2268 (2012). https://doi.org/10.1002/jbm.a.34160
Y. Cai, L. Guo, H. Shen, X. An, H. Jiang et al., Degradability, bioactivity and osteogenesis of biocomposite scaffolds of lithium-containing mesoporous bioglass and MPEG-PLGA-b-PLL copolymer. Int. J. Nanomedicine 10, 4125–4136 (2015). https://doi.org/10.2147/ijn.S82945
R.J. Miron, Y.F. Zhang, Osteoinduction: A review of old concepts with new standards. J. Dent. Res. 91(8), 736–744 (2012). https://doi.org/10.1177/0022034511435260
X. Chen, M. Wang, F. Chen, J. Wang, X. Li et al., Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Acta Biomater. 103, 318–332 (2020). https://doi.org/10.1016/j.actbio.2019.12.019
X. Jia, H. Xu, R.J. Miron, C. Yin, X. Zhang et al., EZH1 is associated with TCP-induced bone regeneration through macrophage polarization. Stem. Cells Int. 2018, 6310560 (2018). https://doi.org/10.1155/2018/6310560
Z. Chen, R.M. Visalakshan, J. Guo, F. Wei, L. Zhang et al., Plasma deposited poly-oxazoline nanotextured surfaces dictate osteoimmunomodulation towards ameliorative osteogenesis. Acta Biomater. 96, 568–581 (2019). https://doi.org/10.1016/j.actbio.2019.06.058
J. Pajarinen, T. Lin, E. Gibon, Y. Kohno, M. Maruyama et al., Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196, 80–89 (2019). https://doi.org/10.1016/j.biomaterials.2017.12.025
S.S. Jin, D.Q. He, D. Luo, Y. Wang, M. Yu et al., A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration. ACS Nano 13(6), 6581–6595 (2019). https://doi.org/10.1021/acsnano.9b00489
S. Reinke, S. Geissler, W.R. Taylor, K. Schmidt-Bleek, K. Juelke et al., Terminally differentiated CD8(+) T cells negatively affect bone regeneration in humans. Sci Transl Med. 5(177), 177–136 (2013). https://doi.org/10.1126/scitranslmed.3004754
Y. Liu, L. Wang, T. Kikuiri, K. Akiyama, C. Chen et al., Mesenchymal stem cell-based tissue regeneration is governed by recipient t lymphocytes via IFN-gamma and TNF-alpha. Nat. Med. 17(12), 1594–1601 (2011). https://doi.org/10.1038/nm.2542
D. Toben, I. Schroeder, T. El Khassawna, M. Mehta, J.E. Hoffmann et al., Fracture healing is accelerated in the absence of the adaptive immune system. J. Bone Miner. Res. 26(1), 113–124 (2011). https://doi.org/10.1002/jbmr.185
L. Chung, D.R. Maestas Jr., F. Housseau, J.H. Elisseeff, Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 114, 184–192 (2017). https://doi.org/10.1016/j.addr.2017.07.006
K.A. Daly, S. Liu, V. Agrawal, B.N. Brown, S.A. Johnson et al., Damage associated molecular patterns within xenogeneic biologic scaffolds and their effects on host remodeling. Biomaterials 33(1), 91–101 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.040
B. Shokouhi, C. Coban, V. Hasirci, E. Aydin, A. Dhanasingh et al., The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells. Biomaterials 31(22), 5759–5771 (2010). https://doi.org/10.1016/j.biomaterials.2010.04.015
K. Lynch, O. Treacy, J.Q. Gerlach, H. Annuk, P. Lohan et al., Regulating immunogenicity and tolerogenicity of bone marrow-derived dendritic cells through modulation of cell surface glycosylation by dexamethasone treatment. Front. Immunol. 8, 1427 (2017). https://doi.org/10.3389/fimmu.2017.01427
S.E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au et al., Gold nanocages: Synthesis, properties and applications. Acc. Chem. Res. 41(12), 1587–1595 (2008). https://doi.org/10.1021/ar800018v
X. Zhu, W. Feng, J. Chang, Y.W. Tan, J. Li et al., Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 7, 10437 (2016). https://doi.org/10.1038/ncomms10437
L.K. Kozicky, L.M. Sly, Depletion and reconstitution of macrophages in mice. Methods Mol. Biol. 1960, 101–112 (2019). https://doi.org/10.1007/978-1-4939-9167-9_9
L. Tang, T.A. Jennings, J.W. Eaton, Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc. Natl. Acad. Sci. USA 95(15), 8841–8846 (1998). https://doi.org/10.1073/pnas.95.15.8841
M.N. Michalski, L.E. Zweifler, B.P. Sinder, A.J. Koh, J. Yamashita et al., Clodronate-loaded liposome treatment has site-specific skeletal effects. J. Dent. Res. 98(4), 459–467 (2019). https://doi.org/10.1177/0022034518821685
A. Hotblack, S. Seshadri, L. Zhang, S. Hamrang-Yousefi, R. Chakraverty et al., Dendritic cells cross-present immunogenic lentivector-encoded antigen from transduced cells to prime functional T cell immunity. Mol. Ther. 25(2), 504–511 (2017). https://doi.org/10.1016/j.ymthe.2016.11.001
J. Li, J. Tan, M.M. Martino, K.O. Lui, Regulatory t-cells: Potential regulator of tissue repair and regeneration. Front. Immunol. 9, 585 (2018). https://doi.org/10.3389/fimmu.2018.00585
S. Chen, L. Fang, W. Guo, Y. Zhou, G. Yu, W. Li et al., Control of treg cell homeostasis and immune equilibrium by lkb1 in dendritic cells. Nat. Commun. 9(1), 5298 (2018). https://doi.org/10.1038/s41467-018-07545-8
G.S. Selders, A.E. Fetz, M.Z. Radic, G.L. Bowlin, An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater. 4(1), 55–68 (2017). https://doi.org/10.1093/rb/rbw041