Applications of Nanobiomaterials in the Therapy and Imaging of Acute Liver Failure
Corresponding Author: Mingqiang Li
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 25
Abstract
Acute liver failure (ALF), a fatal clinical disease featured with overwhelming hepatocyte necrosis, is a grand challenge in global health. However, a satisfactory therapeutic option for curing ALF is still absent, other than liver transplantation. Nanobiomaterials are currently being developed for the diagnosis and treatment of ALF. The liver can sequester most of nanoparticles from blood circulation, which becomes an intrinsic superiority for nanobiomaterials targeting hepatic diseases. Nanobiomaterials can enhance the bioavailability of free drugs, thereby significantly improving the therapeutic effects in ALF. Nanobiomaterials can also increase the liver accumulation of therapeutic agents and enable more effective targeting of the liver or specific liver cells. In addition, stimuli-responsive, optical, or magnetic nanomaterials exhibit great potential in the therapeutical, diagnostic, and imaging applications in ALF. Therefore, therapeutic agents in combination with nanobiomaterials increase the specificity of ALF therapy, diminish adverse systemic effects, and offer a multifunctional theranostic platform. Nanobiomaterial holds excellent significance and prospects in ALF theranostics. In this review, we summarize the therapeutic mechanisms and targeting strategies of various nanobiomaterials in ALF. We highlight recent developments of diverse nanomedicines for ALF therapy, diagnosis, and imaging. Furthermore, the challenges and future perspectives in the theranostics of ALF are also discussed.
Highlights:
1 This review focuses on the therapeutic mechanisms, targeting strategies of various nanomaterials in acute liver failure, and recent advances of diverse nanomaterials for acute liver failure therapy, diagnosis, and imaging.
2 This review provides an outlook on the applications of nanomaterials, especially on the new horizons in acute liver failure therapy, and inspires broader interests across various disciplines.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Bernal, W.M. Lee, J. Wendon, F.S. Larsen, R. Williams, Acute liver failure: a curable disease by 2024? J. Hepatol. 62, S112–120 (2015). https://doi.org/10.1016/j.jhep.2014.12.016
- K.P. Patel, Drug-related hepatotoxicity. N. Engl. J. Med. 354(20), 2191–2192 (2006). https://doi.org/10.1056/NEJMra052270
- M.C. Londono, A. Rimola, J. O’Grady, A. Sanchez-Fueyo, Immunosuppression minimization versus complete drug withdrawal in liver transplantation. J. Hepatol. 59(4), 872–879 (2013). https://doi.org/10.1016/j.jhep.2013.04.003
- K. Poelstra, J. Prakash, L. Beljaars, Drug targeting to the diseased liver. J. Control Release 161(2), 188–197 (2012). https://doi.org/10.1016/j.jconrel.2012.02.011
- L.H. Reddy, P. Couvreur, Nanotechnology for therapy and imaging of liver diseases. J. Hepatol. 55(6), 1461–1466 (2011). https://doi.org/10.1016/j.jhep.2011.05.039
- C.W. Lee, Y.F. Chen, H.H. Wu, O.K. Lee, Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases. Gastroenterology 154(1), 46–56 (2018). https://doi.org/10.1053/j.gastro.2017.09.049
- B.L. Lin, J.F. Chen, W.H. Qiu, K.W. Wang, D.Y. Xie et al., Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis b virus-related acute-on-chronic liver failure: a randomized controlled trial. Hepatology 66(1), 209–219 (2017). https://doi.org/10.1002/hep.29189
- D. Shi, J. Zhang, Q. Zhou, J. Xin, J. Jiang et al., Quantitative evaluation of human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs. Gut 66(5), 955–964 (2017). https://doi.org/10.1136/gutjnl-2015-311146
- D.K. Yi, S.S. Nanda, K. Kim, S. Tamil Selvan, Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J. Mater. Chem. B 5(48), 9429–9451 (2017). https://doi.org/10.1039/C7TB02532G
- M.Y. Wang, X.M. Yang, P. Zhang, L. Cai, X.B. Yang et al., Sustained delivery growth factors with polyethyleneimine-modified nanoparticles promote embryonic stem cells differentiation and liver regeneration. Adv. Sci. 3(8), 13 (2016). https://doi.org/10.1002/advs.201500393
- N.S. Hwang, S. Varghese, J. Elisseeff, Controlled differentiation of stem cells. Adv. Drug Deliv. Rev. 60(2), 199–214 (2008). https://doi.org/10.1016/j.addr.2007.08.036
- E. Ko, D. Jeong, J. Kim, S. Park, G. Khang et al., Antioxidant polymeric prodrug microparticles as a therapeutic system for acute liver failure. Biomaterials 35(12), 3895–3902 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.048
- Z. Liu, Y. Li, W. Li, C. Xiao, D. Liu et al., Multifunctional nanohybrid based on porous silicon nanoparticles, gold nanoparticles, and acetalated dextran for liver regeneration and acute liver failure theranostics. Adv. Mater. 30(24), e1703393 (2018). https://doi.org/10.1002/adma.201703393
- S.V. BerwinSingh, E. Jung, J. Noh, D. Yoo, C. Kang et al., Hydrogen peroxide-activatable polymeric prodrug of curcumin for ultrasound imaging and therapy of acute liver failure. Nanomedicine NBM 16, 45–55 (2019). https://doi.org/10.1016/j.nano.2018.11.003
- S.M. Opal, E. Patrozou, Translational research in the development of novel sepsis therapeutics: logical deductive reasoning or mission impossible? Crit. Care Med. 37, S10–15 (2009). https://doi.org/10.1097/CCM.0b013e3181921497
- P. Shukla, G.M. Rao, G. Pandey, S. Sharma, N. Mittapelly et al., Therapeutic interventions in sepsis: current and anticipated pharmacological agents. Br. J. Pharmacol. 171(22), 5011–5031 (2014). https://doi.org/10.1111/bph.12829
- M.M. Berger, R.L. Chioléro, Antioxidant supplementation in sepsis and systemic inflammatory response syndrome. Crit. Care Med. 35, S584–590 (2007). https://doi.org/10.1097/01.Ccm.0000279189.81529.C4
- S. Feng, Y. Hu, S. Peng, S. Han, H. Tao et al., Nanoparticles responsive to the inflammatory microenvironment for targeted treatment of arterial restenosis. Biomaterials 105, 167–184 (2016). https://doi.org/10.1016/j.biomaterials.2016.08.003
- R.K. Singh, J.C. Knowles, H.W. Kim, Advances in nanoparticle development for improved therapeutics delivery: nanoscale topographical aspect. J. Tissue Eng. 10, 2041731419877528 (2019). https://doi.org/10.1177/2041731419877528
- J. Ding, J. Chen, L. Gao, Z. Jiang, Y. Zhang et al., Engineered nanomedicines with enhanced tumor penetration. Nano Today 29, 100800 (2019). https://doi.org/10.1016/j.nantod.2019.100800
- S. Wilhelm, A.J. Tavares, D. Oin, S. Ohta, J. Audet et al., Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1(5), 16014 (2016). https://doi.org/10.1038/natrevmats.2016.14
- C.N. Jenne, P. Kubes, Immune surveillance by the liver. Nat. Immunol. 14(10), 996–1006 (2013). https://doi.org/10.1038/ni.2691
- K. Sheth, P. Bankey, The liver as an immune organ. Curr. Opin. Crit. Care 7(2), 99–104 (2001). https://doi.org/10.1097/00075198-200104000-00008
- M. Hu, L. Huang, Nanomaterial manipulation of immune microenvironment in the diseased liver. Adv. Funct. Mater. 29(7), 1805760 (2019). https://doi.org/10.1002/adfm.201805760
- P.C.N. Rensen, L. Sliedregt, A. Ferns, E. Kieviet, S.M.W. van Rossenberg et al., Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J. Biol. Chem. 276(40), 37577–37584 (2001). https://doi.org/10.1074/jbc.M101786200
- R. Martin-Mateos, M. Alvarez-Mon, A. Albillos, Dysfunctional immune response in acute-on-chronic liver failure: it takes two to tango. Front. Immunol. 10, 973 (2019). https://doi.org/10.3389/fimmu.2019.00973
- E. Triantafyllou, K.J. Woollard, M.J.W. McPhail, C.G. Antoniades, L.A. Possamai, The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front. Immunol. 9, 2948 (2018). https://doi.org/10.3389/fimmu.2018.02948
- M.J. Tuñón, M. Alvarez, J.M. Culebras, J. González-Gallego, An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World J. Gastroenterol. 15(25), 3086–3098 (2009). https://doi.org/10.3748/wjg.15.3086
- H. Makino, S. Togo, T. Kubota, D. Morioka, T. Morita et al., A good model of hepatic failure after excessive hepatectomy in mice. J. Surg. Res. 127(2), 171–176 (2005). https://doi.org/10.1016/j.jss.2005.04.029
- S. Eguchi, H. Lilja, W.R. Hewitt, Y. Middleton, A.A. Demetriou et al., Loss and recovery of liver regeneration in rats with fulminant hepatic failure. J. Surg. Res. 72(2), 112–122 (1997). https://doi.org/10.1006/jsre.1997.5175
- T.E. Fick, S.W. Schalm, M. de Vlieger, A surgical model of fulminant hepatic failure in the rabbit: different effects of end-to-side versus small-diameter side-to-side portacaval shunt. Eur. Surg. Res. 19(5), 276–282 (1987). https://doi.org/10.1159/000128710
- H. Joyeux, A. Joyeux, P. Raoux, C. Brissac, M. Yakoun et al., Hepatic assistance after subtotal or total hepatectomy in the dog: a new concept. Trans. Am. Soc. Artif. Intern. Organs 23(1), 683–690 (1977). https://doi.org/10.1097/00002480-197700230-00186
- M.N. Sosef, T.M. van Gulik, Total hepatectomy model in pigs: revised method for vascular reconstruction using a rigid vascular prosthesis. Eur. Surg. Res. 36(1), 8–12 (2004). https://doi.org/10.1159/000075068
- F. Filipponi, U. Boggi, L. Meacci, S. Burchielli, F. Vistoli et al., A new technique for total hepatectomy in the pig for testing liver support devices. Surgery 125(4), 448–455 (1999). https://doi.org/10.1016/S0039-6060(99)70013-9
- K. Knubben, C. Thiel, M. Schenk, A. Etspüler, T. Schenk et al., A new surgical model for hepatectomy in pigs. Eur. Surg. Res. 40(1), 41–46 (2008). https://doi.org/10.1159/000108765
- Z. Machaidze, H. Yeh, L. Wei, C. Schuetz, M. Carvello et al., Testing of microencapsulated porcine hepatocytes in a new model of fulminant liver failure in baboons. Xenotransplantation 24(3), e12297 (2017). https://doi.org/10.1111/xen.12297
- Y. He, J. Zhou, K.F. Dou, Y. Chen, A rat model for acute hepatic failure. Hepatobiliary Pancreat Dis. Int. 2(3), 423–425 (2003)
- R. Hickman, M. Bracher, M. Tyler, Z. Lotz, J. Fourie, Effect of total hepatectomy on coagulation and glucose homeostasis in the pig. Dig. Dis. Sci. 37(3), 328–334 (1992). https://doi.org/10.1007/bf01307723
- L.M. Ytrebø, G.I. Nedredal, B. Langbakk, A. Revhaug, An experimental large animal model for the assessment of bioartificial liver support systems in fulminant hepatic failure. Scand. J. Gastroenterol. 37(9), 1077–1088 (2002). https://doi.org/10.1080/003655202320378293
- K. Nakazawa, H. Ijima, J. Fukuda, R. Sakiyama, Y. Yamashita et al., Development of a hybrid artificial liver using polyurethane foam/hepatocyte spheroid culture in a preclinical pig experiment. Int. J. Artif. Organs 25(1), 51–60 (2002). https://doi.org/10.1177/039139880202500109
- Y. Gao, N. Mu, X.P. Xu, Y. Wang, Porcine acute liver failure model established by two-phase surgery and treated with hollow fiber bioartificial liver support system. World J. Gastroenterol. 11(35), 5468–5474 (2005). https://doi.org/10.3748/wjg.v11.i35.5468
- S. Sen, C. Rose, L.M. Ytrebø, N.A. Davies, G.I. Nedredal et al., Effect of albumin dialysis on intracranial pressure increase in pigs with acute liver failure: a randomized study. Crit. Care Med. 34(1), 158–164 (2006). https://doi.org/10.1097/01.ccm.0000196203.39832.3c
- L.M. Ytrebø, C. Korvald, G.I. Nedredal, O.P. Elvenes, O.J. Nielsen Grymyr et al., N-acetylcysteine increases cerebral perfusion pressure in pigs with fulminant hepatic failure. Crit. Care Med. 29(10), 1989–1995 (2001). https://doi.org/10.1097/00003246-200110000-00023
- C. Rose, L.M. Ytrebø, N.A. Davies, S. Sen, G.I. Nedredal et al., Association of reduced extracellular brain ammonia, lactate, and intracranial pressure in pigs with acute liver failure. Hepatology 46(6), 1883–1892 (2007). https://doi.org/10.1002/hep.21877
- K. Tonnesen, Total and partial anoxia of the liver. An attempt to create protracted liver failure in the pit. Scand J. Gastroenterol. Suppl. 37, 27–31 (1976)
- K. Tonnesen, Experimental liver failure. A comparison between hepatectomy and hepatic devascularization in the pig. Acta Chir. Scand. 143(5), 271–277 (1977)
- M.R. McGill, H. Jaeschke, Animal models of drug-induced liver injury. Biochim. Biophys. Acta Mol. Basis. Dis. 1865(5), 1031–1039 (2019). https://doi.org/10.1016/j.bbadis.2018.08.037
- M. Maes, M. Vinken, H. Jaeschke, Experimental models of hepatotoxicity related to acute liver failure. Toxicol. Appl. Pharmacol. 290, 86–97 (2016). https://doi.org/10.1016/j.taap.2015.11.016
- M.R. McGill, C.D. Williams, Y. Xie, A. Ramachandran, H. Jaeschke, Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol. Appl. Pharmacol. 264(3), 387–394 (2012). https://doi.org/10.1016/j.taap.2012.08.015
- R. Silverstein, D-galactosamine lethality model: scope and limitations. J. Endotoxin Res. 10(3), 147–162 (2004). https://doi.org/10.1179/096805104225004879
- W. Zhang, Y. Zhou, X. Li, X. Xu, Y. Chen et al., Macrophage-targeting and reactive oxygen species (ROS)-responsive nanopolyplexes mediate anti-inflammatory sirna delivery against acute liver failure (ALF). Biomater. Sci. 6(7), 1986–1993 (2018). https://doi.org/10.1039/C8BM00389K
- X. Lin, S.J. Zhang, R.B. Huang, L. Wei, C.H. Liang et al., Protective effect of genistein on lipopolysaccharide/D-galactosamine-induced hepatic failure in mice. Biol. Pharm. Bull. 37(4), 625–632 (2014). https://doi.org/10.1248/bpb.b13-00908
- A.R. Ahmadi, M. Chicco, R.N. Wesson, R.A. Anders, F. Dor et al., Stem cell mobilization is lifesaving in a large animal preclinical model of acute liver failure. Ann. Surg. 268(4), 620–631 (2018). https://doi.org/10.1097/sla.0000000000002958
- J. Wang, Z. Sun, J. Jiang, D. Wu, X. Liu et al., Proteomic signature of acute liver failure: from discovery and verification in a pig model to confirmation in humans. Mol. Cell. Proteomics 16(7), 1188–1199 (2017). https://doi.org/10.1074/mcp.M117.067397
- L. Feng, L. Cai, G.L. He, J. Weng, Y. Li et al., Novel d-galactosamine-induced cynomolgus monkey model of acute liver failure. World J. Gastroenterol. 23(42), 7572–7583 (2017). https://doi.org/10.3748/wjg.v23.i42.7572
- Z. Zhang, Y.C. Zhao, Y. Cheng, G.D. Jian, M.X. Pan et al., Hybrid bioartificial liver support in cynomolgus monkeys with d-galactosamine-induced acute liver failure. World J. Gastroenterol. 20(46), 17399–17406 (2014). https://doi.org/10.3748/wjg.v20.i46.17399
- M. Bélanger, R.F. Butterworth, Acute liver failure: a critical appraisal of available animal models. Metab. Brain Dis. 20(4), 409–423 (2005). https://doi.org/10.1007/s11011-005-7927-z
- J.S. Kang, H. Wanibuchi, K. Morimura, R. Wongpoomchai, Y. Chusiri et al., Role of CYP2E1 in thioacetamide-induced mouse hepatotoxicity. Toxicol. Appl. Pharmacol. 228(3), 295–300 (2008). https://doi.org/10.1016/j.taap.2007.11.010
- H.X. Wang, M. Liu, S.Y. Weng, J.J. Li, C. Xie et al., Immune mechanisms of concanavalin a model of autoimmune hepatitis. World J. Gastroenterol. 18(2), 119–125 (2012). https://doi.org/10.3748/wjg.v18.i2.119
- H. Tsutsui, S. Nishiguchi, Importance of kupffer cells in the development of acute liver injuries in mice. Int. J. Mol. Sci. 15(5), 7711–7730 (2014). https://doi.org/10.3390/ijms15057711
- G. Tiegs, J. Hentschel, A. Wendel, At cell-dependent experimental liver injury in mice inducible by concanavalin a. J. Clin. Invest. 90(1), 196–203 (1992). https://doi.org/10.1172/jci115836
- F.J. Cubero, M.E. Zoubek, W. Hu, J. Peng, G. Zhao et al., Combined activities of JNK1 and JNK2 in hepatocytes protect against toxic liver injury. Gastroenterology 150(4), 968–981 (2016). https://doi.org/10.1053/j.gastro.2015.12.019
- B.L. Woolbright, H. Jaeschke, The impact of sterile inflammation in acute liver injury. J. Clin. Transl. Res. 3(Suppl 1), 170–188 (2017). https://doi.org/10.18053/jctres.03.2017S1.003
- P. Kubes, W.Z. Mehal, Sterile inflammation in the liver. Gastroenterology 143(5), 1158–1172 (2012). https://doi.org/10.1053/j.gastro.2012.09.008
- F. Heymann, F. Tacke, Immunology in the liver-from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 13(2), 88–110 (2016). https://doi.org/10.1038/nrgastro.2015.200
- L.E. Schmidt, F.S. Larsen, Prognostic implications of hyperlactatemia, multiple organ failure, and systemic inflammatory response syndrome in patients with acetaminophen-induced acute liver failure. Crit. Care Med. 34(2), 337–343 (2006). https://doi.org/10.1097/01.ccm.0000194724.70031.b6
- D.M. Mosser, J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969 (2008). https://doi.org/10.1038/nri2448
- C.G. Antoniades, A. Quaglia, L.S. Taams, R.R. Mitry, M. Hussain et al., Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans. Hepatology 56(2), 735–746 (2012). https://doi.org/10.1002/hep.25657
- C.G. Antoniades, W. Khamri, R.D. Abeles, L.S. Taams, E. Triantafyllou et al., Secretory leukocyte protease inhibitor: a pivotal mediator of anti-inflammatory responses in acetaminophen-induced acute liver failure. Hepatology 59(4), 1564–1576 (2014). https://doi.org/10.1002/hep.26933
- C. Bernsmeier, O.T. Pop, A. Singanayagam, E. Triantafyllou, V.C. Patel et al., Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase mertk. Gastroenterology 148(3), 603–615 (2015). https://doi.org/10.1053/j.gastro.2014.11.045
- W. Khamri, R.D. Abeles, T.Z. Hou, A.E. Anderson, A. El-Masry et al., Increased expression of cytotoxic T-lymphocyte-associated protein 4 by T cells, induced by B7 in sera, reduces adaptive immunity in patients with acute liver failure. Gastroenterology 153(1), 263–276.e268 (2017). https://doi.org/10.1053/j.gastro.2017.03.023
- K.R. Karlmark, R. Weiskirchen, H.W. Zimmermann, N. Gassler, F. Ginhoux et al., Hepatic recruitment of the inflammatory GR1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50(1), 261–274 (2009). https://doi.org/10.1002/hep.22950
- D. Dal-Secco, J. Wang, Z. Zeng, E. Kolaczkowska, C.H. Wong et al., A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J. Exp. Med. 212(4), 447–456 (2015). https://doi.org/10.1084/jem.20141539
- G. Chen, H.Z. Deng, X. Song, M.Z. Lu, L. Zhao et al., Reactive oxygen species-responsive polymeric nanoparticles for alleviating sepsis-induced acute liver injury in mice. Biomaterials 144, 30–41 (2017). https://doi.org/10.1016/j.biomaterials.2017.08.008
- H. Kim, Y. Kim, K. Guk, D. Yoo, H. Lim et al., Fully biodegradable and cationic poly(amino oxalate) particles for the treatment of acetaminophen-induced acute liver failure. Int. J. Pharm. 434(1), 243–250 (2012). https://doi.org/10.1016/j.ijpharm.2012.05.067
- F.L. Yen, T.H. Wu, L.T. Lin, T.M. Cham, C.C. Lin, Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCL(4)-induced acute liver failure. Pharm. Res. 26(4), 893–902 (2009). https://doi.org/10.1007/s11095-008-9791-0
- C. Akao, T. Tanaka, R. Onodera, A. Ohyama, N. Sato et al., Potential use of fucose-appended dendrimer/alpha-cyclodextrin conjugates as NF-kappab decoy carriers for the treatment of lipopolysaccharide-induced fulminant hepatitis in mice. J. Control Release 193, 35–41 (2014). https://doi.org/10.1016/j.jconrel.2014.07.004
- H. He, N. Zheng, Z. Song, K.H. Kim, C. Yao et al., Suppression of hepatic inflammation via systemic sirna delivery by membrane-disruptive and endosomolytic helical polypeptide hybrid nanoparticles. ACS Nano 10(2), 1859–1870 (2016). https://doi.org/10.1021/acsnano.5b05470
- Y. Higuchi, S. Kawakami, M. Oka, Y. Yabe, F. Yamashita et al., Intravenous administration of mannosylated cationic liposome/NF kappa B decoy complexes effectively prevent LPS-induced cytokine production in a murine liver failure model. FEBS Lett. 580(15), 3706–3714 (2006). https://doi.org/10.1016/j.febslet.2006.05.059
- W. Chen, J. Luan, G. Wei, X. Zhang, J. Fan et al., In vivo hepatocellular expression of interleukin-22 using penetratin-based hybrid nanoparticles as potential anti-hepatitis therapeutics. Biomaterials 187, 66–80 (2018). https://doi.org/10.1016/j.biomaterials.2018.09.046
- P. Roy, S. Das, R.G. Auddy, A. Saha, A. Mukherjee, Engineered andrographolide nanoparticles mitigate paracetamol hepatotoxicity in mice. Pharm. Res. 30(5), 1252–1262 (2013). https://doi.org/10.1007/s11095-012-0964-5
- J.Q. Xiao, X.L. Shi, H.C. Ma, J.J. Tan, Z. Lin et al., Administration of IL-1Ra chitosan nanoparticles enhances the therapeutic efficacy of mesenchymal stem cell transplantation in acute liver failure. Arch. Med. Res. 44(5), 370–379 (2013). https://doi.org/10.1016/j.arcmed.2013.06.004
- N. Jiang, X. Zhang, X. Zheng, D. Chen, K. Siu et al., A novel in vivo sirna delivery system specifically targeting liver cells for protection of cona-induced fulminant hepatitis. PLoS ONE 7(9), e44138 (2012). https://doi.org/10.1371/journal.pone.0044138
- Y. Chien, Y.L. Chang, H.Y. Li, M. Larsson, W.W. Wu et al., Synergistic effects of carboxymethyl-hexanoyl chitosan, cationic polyurethane-short branch PEI in miR122 gene delivery: accelerated differentiation of iPSCs into mature hepatocyte-like cells and improved stem cell therapy in a hepatic failure model. Acta Biomater. 13, 228–244 (2015). https://doi.org/10.1016/j.actbio.2014.11.018
- H. Liang, K. Huang, T. Su, Z. Li, S. Hu et al., Mesenchymal stem cell/red blood cell-inspired nanoparticle therapy in mice with carbon tetrachloride-induced acute liver failure. ACS Nano 12(7), 6536–6544 (2018). https://doi.org/10.1021/acsnano.8b00553
- D. Lee, S. Bae, D. Hong, H. Lim, J.H. Yoon et al., H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents. Sci. Rep. 3, 2233 (2013). https://doi.org/10.1038/srep02233
- A. Lamprecht, Nanomedicines in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 12, 195–204 (2015). https://doi.org/10.1038/nrgastro.2015.37
- Z. Chen, L. Xiao, W. Liu, D. Liu, Y.-Y. Xiao et al., Novel materials which possess the ability to target liver cells. Expert Opin. Drug Deliv. 9(6), 649–656 (2012). https://doi.org/10.1517/17425247.2012.679261
- S.C. Shen, C.H. Ko, S.W. Tseng, S.H. Tsai et al., Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production. Toxicol. Appl. Pharmacol. 197(2), 84–95 (2004). https://doi.org/10.1016/j.taap.2004.02.002
- H.J. Heo, D.O. Kim, S.C. Shin, M.J. Kim, B.G. Kim et al., Effect of antioxidant flavanone, naringenin, from citrus junoson neuroprotection. J. Agric. Food Chem. 52(6), 1520–1525 (2004). https://doi.org/10.1021/jf035079g
- S.L. Wang, S.Y. Lin, T.F. Chen, W.T. Cheng, Eudragit e accelerated the diketopiperazine formation of enalapril maleate determined by thermal FTIR microspectroscopic technique. Pharm. Res. 21(11), 2127–2132 (2004). https://doi.org/10.1023/b:pham.0000048206.62093.4e
- T. Hanawa, S. Asayama, T. Watanabe, S. Owada, H. Kawakami, Protective effects of the complex between manganese porphyrins and catalase-poly(ethylene glycol) conjugates against hepatic ischemia/reperfusion injury in vivo. J. Control Release 135(1), 60–64 (2009). https://doi.org/10.1016/j.jconrel.2008.12.012
- J. Pihlajamaki, T. Kuulasmaa, D. Kaminska, M. Simonen, V. Karja et al., Serum interleukin 1 receptor antagonist as an independent marker of non-alcoholic steatohepatitis in humans. J. Hepatol. 56(3), 663–670 (2012). https://doi.org/10.1016/j.jhep.2011.10.005
- S. Girard, H. Kadhim, A. Larouche, M. Roy, F. Gobeil et al., Pro-inflammatory disequilibrium of the IL-1 beta/IL-1ra ratio in an experimental model of perinatal brain damages induced by lipopolysaccharide and hypoxia-ischemia. Cytokine 43(1), 54–62 (2008). https://doi.org/10.1016/j.cyto.2008.04.007
- N.P. Trivedi, U.M. Rawal, B.P. Patel, Hepatoprotective effect of andrographolide against hexachlorocyclohexane-induced oxidative injury. Integr. Cancer Ther. 6(3), 271–280 (2007). https://doi.org/10.1177/1534735407305985
- I.C. Sun, D.K. Eun, J.H. Na, S. Lee, I.J. Kim et al., Heparin-coated gold nanoparticles for liver-specific CT imaging. Chem. Eur J. 15(48), 13341–13347 (2009). https://doi.org/10.1002/chem.200902344
- C. Nathan, A. Cunningham-Bussel, Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 13(5), 349–361 (2013). https://doi.org/10.1038/nri3423
- R. Haas, F. Marelli-Berg, C. Mauro, In the eye of the storm: T cell behavior in the inflammatory microenvironment. Am. J. Clin. Exp. Immunol. 2(2), 146–155 (2013)
- Y.L. Colson, M.W. Grinstaff, Biologically responsive polymeric nanoparticles for drug delivery. Adv. Mater. 24(28), 3878–3886 (2012). https://doi.org/10.1002/adma.201200420
- J.-W. Kang, E.-J. Koh, S.-M. Lee, Melatonin protects liver against ischemia and reperfusion injury through inhibition of toll-like receptor signaling pathway. J. Pineal Res. 50(4), 403–411 (2011). https://doi.org/10.1111/j.1600-079X.2011.00858.x
- Y. Zhang, X. Li, J.J. Grailer, N. Wang, M. Wang et al., Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J. Pineal Res. 60(4), 405–414 (2016). https://doi.org/10.1111/jpi.12322
- H. Volt, J.A. Garcia, C. Doerrier, M.E. Diaz-Casado, A. Guerra-Librero et al., Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J. Pineal Res. 60(2), 193–205 (2016). https://doi.org/10.1111/jpi.12303
- V. Dubey, D. Mishra, A. Asthana, N.K. Jain, Transdermal delivery of a pineal hormone: melatonin via elastic liposomes. Biomaterials 27(18), 3491–3496 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.060
- C. Tapeinos, A. Pandit, Physical, chemical, and biological structures based on ROS-sensitive moieties that are able to respond to oxidative microenvironments. Adv. Mater. 28(27), 5553–5585 (2016). https://doi.org/10.1002/adma.201505376
- A. Napoli, M. Valentini, N. Tirelli, M. Muller, J.A. Hubbell, Oxidation-responsive polymeric vesicles. Nat. Mater. 3(3), 183–189 (2004). https://doi.org/10.1038/nmat1081
- G. Li Volti, T. Musumeci, R. Pignatello, P. Murabito, I. Barbagallo et al., Antioxidant potential of different melatonin-loaded nanomedicines in an experimental model of sepsis. Exp. Biol. Med. (Maywood) 237(6), 670–677 (2012). https://doi.org/10.1258/ebm.2012.011425
- S.D. Khaja, S. Lee, N. Murthy, Acid-degradable protein delivery vehicles based on metathesis chemistry. Biomacromol 8(5), 1391–1395 (2007). https://doi.org/10.1021/bm061234z
- S.C. Yang, M. Bhide, I.N. Crispe, R.H. Pierce, N. Murthy, Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjug. Chem. 19(6), 1164–1169 (2008). https://doi.org/10.1021/bc700442g
- H. Park, S. Kim, S. Kim, Y. Song, K. Seung et al., Antioxidant and anti-inflammatory activities of hydroxybenzyl alcohol releasing biodegradable polyoxalate nanoparticles. Biomacromol 11(8), 2103–2108 (2010). https://doi.org/10.1021/bm100474w
- M. Otsuka, Y. Matsuda, Controlled drug release of highly water-soluble pentoxifylline from time-limit disintegration-type wax matrix tablets. Pharm. Res. 11(3), 351–354 (1994). https://doi.org/10.1023/a:1018944516678
- W. Poon, Y.N. Zhang, B. Ouyang, B.R. Kingston, J.L.Y. Wu et al., Elimination pathways of nanoparticles. ACS Nano 13(5), 5785–5798 (2019). https://doi.org/10.1021/acsnano.9b01383
- Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control Release 240, 332–348 (2016). https://doi.org/10.1016/j.jconrel.2016.01.020
- N. Rolando, J. Wade, M. Davalos, J. Wendon, J. Philpott-Howard et al., The systemic inflammatory response syndrome in acute liver failure. Hepatology 32(4), 734–739 (2000). https://doi.org/10.1053/jhep.2000.17687
- B. Oh, M. Lee, Combined delivery of HMGB-1 box a peptide and S1plyase siRNA in animal models of acute lung injury. J. Control Release 175, 25–35 (2014). https://doi.org/10.1016/j.jconrel.2013.12.008
- O.F. Khan, E.W. Zaia, S. Jhunjhunwala, W. Xue, W.X. Cai et al., Dendrimer-inspired nanomaterials for the in vivo delivery of siRNA to lung vasculature. Nano Lett. 15(5), 3008–3016 (2015). https://doi.org/10.1021/nl5048972
- J. Nam, S. Son, K.S. Park, W.P. Zou, L.D. Shea et al., Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4(6), 398–414 (2019). https://doi.org/10.1038/s41578-019-0108-1
- K.A. Whitehead, R. Langer, D.G. Anderson, Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8(2), 129–138 (2009). https://doi.org/10.1038/nrd2742
- C.-K. Chen, W.-C. Law, R. Aalinkeel, B. Nair, A. Kopwitthaya et al., Well-defined degradable cationic polylactide as nanocarrier for the delivery of siRNA to silence angiogenesis in prostate cancer. Adv. Healthcare Mater. 1(6), 751–761 (2012). https://doi.org/10.1002/adhm.201200094
- S. An, D. He, E. Wagner, C. Jiang, Peptide-like polymers exerting effective glioma-targeted sirna delivery and release for therapeutic application. Small 11(38), 5142–5150 (2015). https://doi.org/10.1002/smll.201501167
- S. Liang, X.-Z. Yang, X.-J. Du, H.-X. Wang, H.-J. Li et al., Optimizing the size of micellar nanoparticles for efficient siRNA delivery. Adv. Funct. Mater. 25(30), 4778–4787 (2015). https://doi.org/10.1002/adfm.201501548
- Y. Dong, T. Yu, L. Ding, E. Laurini, Y. Huang et al., A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J. Am. Chem. Soc. 140(47), 16264–16274 (2018). https://doi.org/10.1021/jacs.8b10021
- R. Medzhitov, Origin and physiological roles of inflammation. Nature 454(7203), 428–435 (2008). https://doi.org/10.1038/nature07201
- A. Tagami, H. Ohnishi, H. Moriwaki, M. Phillips, R.D. Hughes, Fas-mediated apoptosis in acute alcoholic hepatitis. Hepatogastroenterology 50(50), 443–448 (2003)
- O. Cheung, P. Puri, C. Eicken, M.J. Contos, F. Mirshahi et al., Nonalcoholic steatohepatitis is associated with altered hepatic microrna expression. Hepatology 48(6), 1810–1820 (2008). https://doi.org/10.1002/hep.22569
- X.G. Deng, R.L. Qiu, Y.H. Wu, Z.X. Li, P. Xie et al., Overexpression of miR-122 promotes the hepatic differentiation and maturation of mouse ESCs through a miR-122/FoxA1/HNF4a-positive feedback loop. Liver Int. 34(2), 281–295 (2014). https://doi.org/10.1111/liv.12239
- N. Davoodian, A.S. Lotfi, M. Soleimani, S.J. Mowla, MicroRNA-122 overexpression promotes hepatic differentiation of human adipose tissue-derived stem cells. J. Cell. Biochem. 115(9), 1582–1593 (2014). https://doi.org/10.1002/jcb.24822
- R. Doddapaneni, Y.K. Chawla, A. Das, J.K. Kalra, S. Ghosh et al., Overexpression of microRNA-122 enhances in vitro hepatic differentiation of fetal liver-derived stem/progenitor cells. J. Cell. Biochem. 114(7), 1575–1583 (2013). https://doi.org/10.1002/jcb.24499
- A. Bielinska, R.A. Shivdasani, L.Q. Zhang, G.J. Nabel, Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science 250(4983), 997–1000 (1990). https://doi.org/10.1126/science.2237444
- R. Morishita, J. Higaki, N. Tomita, T. Ogihara, Application of transcription factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ. Res. 82(10), 1023–1028 (1998). https://doi.org/10.1161/01.res.82.10.1023
- R. Morishita, T. Sugimoto, M. Aoki, I. Kida, N. Tomita et al., In vivo transfection of cis element “decoy” against nuclear factor-kappab binding site prevents myocardial infarction. Nat. Med. 3(8), 894–899 (1997). https://doi.org/10.1038/nm0897-894
- I. Ogushi, Y. Iimuro, E. Seki, G. Son, T. Hirano et al., Nuclear factor kappa b decoy oligodeoxynucleotides prevent endotoxin-induced fatal liver failure in a murine model. Hepatology 38(2), 335–344 (2003). https://doi.org/10.1053/jhep.2003.50298
- F. Hoffmann, G. Sass, J. Zillies, S. Zahler, G. Tiegs et al., A novel technique for selective NF-kappab inhibition in kupffer cells: contrary effects in fulminant hepatitis and ischaemia-reperfusion. Gut 58(12), 1670–1678 (2009). https://doi.org/10.1136/gut.2008.165647
- T. Hirano, J. Fujimoto, T. Ueki, H. Yamamoto, T. Iwasaki et al., Persistent gene expression in rat liver in vivo by repetitive transfections using HVJ-liposome. Gene Ther. 5(4), 459–464 (1998). https://doi.org/10.1038/sj.gt.3300617
- M. Yoshida, N. Yamamoto, T. Uehara, R. Terao, T. Nitta et al., Kupffer cell targeting by intraportal injection of the HVJ cationic liposome. Eur. Surg. Res. 34(3), 251–259 (2002). https://doi.org/10.1159/000063397
- L.A. Zenewicz, R.A. Flavell, Recent advances in IL-22 biology. Int. Immunol. 23(3), 159–163 (2011). https://doi.org/10.1093/intimm/dxr001
- J.A. Dudakov, A.M. Hanash, M.R. van den Brink, Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015). https://doi.org/10.1146/annurev-immunol-032414-112123
- S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet et al., Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). https://doi.org/10.1038/natrevmats.2016.14
- W.R. Jo, H.J. Park, Antiallergic effect of fisetin on ige-mediated mast cell activation in vitro and on passive cutaneous anaphylaxis (PCA). J. Nutr. Biochem. 48, 103–111 (2017). https://doi.org/10.1016/j.jnutbio.2017.06.010
- L.B. Jeng, B. KumarVelmurugan, M.C. Chen, H.H. Hsu, T.J. Ho et al., Fisetin mediated apoptotic cell death in parental and oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo. J. Cell Physiol. 233(9), 7134–7142 (2018). https://doi.org/10.1002/jcp.26532
- M.X. Xu, C.X. Ge, Y.T. Qin, T.T. Gu, D.S. Lou et al., Multicombination approach suppresses listeria monocytogenes-induced septicemia-associated acute hepatic failure: the role of iRhom2 signaling. Adv. Healthcare Mater. 7(17), 22 (2018). https://doi.org/10.1002/adhm.201800427
- Z. Zhou, X. Liu, D. Zhu, Y. Wang, Z. Zhang et al., Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv. Drug Deliv. Rev. 115, 115–154 (2017). https://doi.org/10.1016/j.addr.2017.07.021
- M.E. Davis, J.E. Zuckerman, C.H. Choi, D. Seligson, A. Tolcher et al., Evidence of rnai in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291), 1067–1070 (2010). https://doi.org/10.1038/nature08956
- K.L. Kozielski, S.Y. Tzeng, B.A. De Mendoza, J.J. Green, Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic sirna delivery to primary human brain cancer cells. ACS Nano 8(4), 3232–3241 (2014). https://doi.org/10.1021/nn500704t
- C.E. Nelson, A.J. Kim, E.J. Adolph, M.K. Gupta, F. Yu et al., Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo. Adv. Mater. 26(4), 607–614 (2014). https://doi.org/10.1002/adma.201303520
- S. Shen, L. Zhang, M. Li, Z. Feng, H. Li et al., Collaborative assembly-mediated siRNA delivery for relieving inflammation-induced insulin resistance. Nano Res. 13(11), 2958–2966 (2020). https://doi.org/10.1007/s12274-020-2954-y
- M.S. Shim, S. Wong, Y. Jik Kwon, siRNA as a conventional drug in the clinic? Challenges and current technologies. Drug Disc. Today Technol. 9(2), e167–e173 (2012). https://doi.org/10.1016/j.ddtec.2012.01.003
- Y. Liu, L.C. Mounkes, H.D. Liggitt, C.S. Brown, I. Solodin et al., Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat. Biotechnol. 15(2), 167–173 (1997). https://doi.org/10.1038/nbt0297-167
- C.Y. Tan, R.C. Lai, W. Wong, Y.Y. Dan, S.K. Lim et al., Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res. Ther. 5(3), 76 (2014). https://doi.org/10.1186/scrt465
- B. Huang, X. Cheng, H. Wang, W. Huang, Z. la Ga Hu et al., Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J. Transl. Med. 14, 45 (2016). https://doi.org/10.1186/s12967-016-0792-1
- M. Lotfinia, M. Kadivar, A. Piryaei, B. Pournasr, S. Sardari et al., Effect of secreted molecules of human embryonic stem cell-derived mesenchymal stem cells on acute hepatic failure model. Stem Cells Dev. 25(24), 1898–1908 (2016). https://doi.org/10.1089/scd.2016.0244
- L. Chen, B. Xiang, X. Wang, C. Xiang, Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure. Stem Cell Res Ther. 8(1), 9 (2017). https://doi.org/10.1186/s13287-016-0453-6
- H.H. Wu, O.K. Lee, Exosomes from mesenchymal stem cells induce the conversion of hepatocytes into progenitor oval cells. Stem Cell Res. Ther. 8(1), 117 (2017). https://doi.org/10.1186/s13287-017-0560-z
- Y.H. Wang, D.B. Wu, B. Chen, E.Q. Chen, H. Tang, Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res. Ther. 9(1), 227 (2018). https://doi.org/10.1186/s13287-018-0972-4
- I. Aurich, L.P. Mueller, H. Aurich, J. Luetzkendorf, K. Tisljar et al., Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 56(3), 405–415 (2007). https://doi.org/10.1136/gut.2005.090050
- D.S. Zagoura, M.G. Roubelakis, V. Bitsika, O. Trohatou, K.I. Pappa et al., Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut 61(6), 894–906 (2012). https://doi.org/10.1136/gutjnl-2011-300908
- A. Banas, T. Teratani, Y. Yamamoto, M. Tokuhara, F. Takeshita et al., Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46(1), 219–228 (2007). https://doi.org/10.1002/hep.21704
- K.D. Lee, T.K. Kuo, J. Whang-Peng, Y.F. Chung, C.T. Lin et al., In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40(6), 1275–1284 (2004). https://doi.org/10.1002/hep.20469
- Z. Wang, Z. Wang, W.W. Lu, W. Zhen, D. Yang et al., Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 9(10), e435–e435 (2017). https://doi.org/10.1038/am.2017.171
- A.B. Fajardo-Puerta, M. Mato Prado, A.E. Frampton, L.R. Jiao, Gene of the month: Hgf. J. Clin. Pathol. 69(7), 575–579 (2016). https://doi.org/10.1136/jclinpath-2015-203575
- T. Nakamura, K. Sakai, T. Nakamura, K. Matsumoto, Hepatocyte growth factor twenty years on: much more than a growth factor. J. Gastroenterol. Hepatol. 26(Suppl 1), 188–202 (2011). https://doi.org/10.1111/j.1440-1746.2010.06549.x
- C.X. Lin, X.E. Wang, N.Y. Liu, Q. Peng, Y. Li et al., Characterization and evaluation of hgf-loaded plga nanoparticles in a ccl4-induced acute liver injury mouse model. J. Nanomater. 2019, 7936143 (2019). https://doi.org/10.1155/2019/7936143
- J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (ii). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/c8cs00457a
- M. Li, Y.H. Lao, R.L. Mintz, Z. Chen, D. Shao et al., A multifunctional mesoporous silica-gold nanocluster hybrid platform for selective breast cancer cell detection using a catalytic amplification-based colorimetric assay. Nanoscale 11(6), 2631–2636 (2019). https://doi.org/10.1039/c8nr08337a
- R. Kubota, S. Imamura, T. Shimizu, S. Asayama, H. Kawakami, Synthesis of water-soluble dinuclear Mn-porphyrin with multiple antioxidative activities. ACS Med. Chem. Lett. 5(6), 639–643 (2014). https://doi.org/10.1021/ml400493f
- L.P. Liang, J. Huang, R. Fulton, J.N. Pearson-Smith, B.J. Day et al., Pre-clinical therapeutic development of a series of metalloporphyrins for parkinson’s disease. Toxicol. Appl. Pharmacol. 326, 34–42 (2017). https://doi.org/10.1016/j.taap.2017.04.004
- I. Batinic-Haberle, A. Tovmasyan, I. Spasojevic, An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins–from superoxide dismutation to H2O2-driven pathways. Redox Biol. 5, 43–65 (2015). https://doi.org/10.1016/j.redox.2015.01.017
- I. Batinic-Haberle, I. Spasojevic, H.M. Tse, A. Tovmasyan, Z. Rajic et al., Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities. Amino Acids 42(1), 95–113 (2012). https://doi.org/10.1007/s00726-010-0603-6
- T. Zhang, J. Fang, H. Tsutsuki, K. Ono, W. Islam et al., Synthesis of PEGylated manganese protoporphyrin as a catalase mimic and its therapeutic application to acetaminophen-induced acute liver failure. Biol. Pharm. Bull. 42(7), 1199–1206 (2019). https://doi.org/10.1248/bpb.b19-00152
- P. Boonruamkaew, P. Chonpathompikunlert, Y. Nagasaki, Redox nanoparticle therapeutics for acetaminophen-induced hepatotoxicity in mice. Oxid. Med. Cell Longev. 2016, 4984597 (2016). https://doi.org/10.1155/2016/4984597
- L. Li, H. Wang, Z.Y. Ong, K. Xu, P.L.R. Ee et al., Polymer- and lipid-based nanoparticle therapeutics for the treatment of liver diseases. Nano Today 5(4), 296–312 (2010). https://doi.org/10.1016/j.nantod.2010.06.007
- H.L. Wang, C.A. Thorling, X.W. Liang, K.R. Bridle, J.E. Grice et al., Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J. Mater. Chem. B 3(6), 939–958 (2015). https://doi.org/10.1039/c4tb01611d
- G.-Z. Jin, A. Chakraborty, J.-H. Lee, J.C. Knowles, H.-W. Kim, Targeting with nanoparticles for the therapeutic treatment of brain diseases. J. Tissue Eng. 11, 1–13 (2020). https://doi.org/10.1177/2041731419897460
- Z. Liu, Y. Li, W. Li, C. Xiao, D. Liu et al., Multifunctional nanohybrid based on porous silicon nanoparticles, gold nanoparticles, and acetalated dextran for liver regeneration and acute liver failure theranostics. Adv. Mater. 30(24), 1703393 (2018). https://doi.org/10.1002/adma.201703393
- V.C. Cogger, G.P. McNerney, T. Nyunt, L.D. DeLeve, P. McCourt et al., Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations. J. Struct. Biol. 171(3), 382–388 (2010). https://doi.org/10.1016/j.jsb.2010.06.001
- V. Moenkemoeller, M. Schuettpelz, P. McCourt, K. Sorensen, B. Smedsrod et al., Imaging fenestrations in liver sinusoidal endothelial cells by optical localization microscopy. Phys. Chem. Chem. Phys. 16(24), 12576–12581 (2014). https://doi.org/10.1039/c4cp01574f
- Y. Liu, Y. Hu, L. Huang, Influence of polyethylene glycol density and surface lipid on pharmacokinetics and biodistribution of lipid-calcium-phosphate nanoparticles. Biomaterials 35(9), 3027–3034 (2014). https://doi.org/10.1016/j.biomaterials.2013.12.022
- E.L. Romero, M.J. Morilla, J. Regts, G.A. Koning, G.L. Scherphof, On the mechanism of hepatic transendothelial passage of large liposomes. FEBS Lett. 448(1), 193–196 (1999). https://doi.org/10.1016/s0014-5793(99)00364-6
- C. Ergen, F. Heymann, W. Al Rawashdeh, F. Gremse, M. Bartneck et al., Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles. Biomaterials 114, 106–120 (2017). https://doi.org/10.1016/j.biomaterials.2016.11.009
- A. Pietrzak-Nguyen, M. Fichter, M. Dedters, L. Pretsch, S.H. Gregory et al., Enhanced in vivo targeting of murine nonparenchymal liver cells with monophosphoryl lipid a functionalized microcapsules. Biomacromol 15(7), 2378–2388 (2014). https://doi.org/10.1021/bm5006728
- K. Yanagisawa, F. Moriyasu, T. Miyahara, M. Yuki, H. Iijima, Phagocytosis of ultrasound contrast agent microbubbles by kupffer cells. Ultrasound Med. Biol. 33(2), 318–325 (2007). https://doi.org/10.1016/j.ultrasmedbio.2006.08.008
- S.M. Moghimi, A.C. Hunter, Capture of stealth nanoparticles by the body’s defences. Crit. Rev. Ther. Drug Carrier Syst. 18(6), 527–550 (2001)
- S.-H. Cheng, F.-C. Li, J.S. Souris, C.-S. Yang, F.-G. Tseng et al., Visualizing dynamics of sub-hepatic distribution of nanoparticles using intravital multiphoton fluorescence microscopy. ACS Nano 6(5), 4122–4131 (2012). https://doi.org/10.1021/nn300558p
- K. Xiao, Y. Li, J. Luo, J.S. Lee, W. Xiao et al., The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32(13), 3435–3446 (2011). https://doi.org/10.1016/j.biomaterials.2011.01.021
- L. Brannon-Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 64, 206–212 (2012). https://doi.org/10.1016/j.addr.2012.09.033
- R.A. Petros, J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9(8), 615–627 (2010). https://doi.org/10.1038/nrd2591
- L. Kong, J. Qiu, W. Sun, J. Yang, M. Shen et al., Multifunctional PEI-entrapped gold nanoparticles enable efficient delivery of therapeutic siRNA into glioblastoma cells. Biomater. Sci. 5(2), 258–266 (2017). https://doi.org/10.1039/c6bm00708b
- Y.C. Li, X.H. Xu, Nanomedicine solutions to intricate physiological -pathological barriers and molecular mechanisms of tumor multidrug resistance. J. Control Release 323, 483–501 (2020). https://doi.org/10.1016/j.jconrel.2020.05.007
- M.A. Dobrovolskaia, S.E. McNeil, Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2(8), 469–478 (2007). https://doi.org/10.1038/nnano.2007.223
- B. Smedsrød, Clearance function of scavenger endothelial cells. Comp. Hepatol. 3(Suppl 1), S22 (2004). https://doi.org/10.1186/1476-5926-2-s1-s22
- P.H. Weigel, J.H.N. Yik, Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochima. Biophys. Acta Gen Subj. 1572(2–3), 341–363 (2002). https://doi.org/10.1016/s0304-4165(02)00318-5
- N. Mishra, N.P. Yadav, V.K. Rai, P. Sinha, K.S. Yadav et al., Efficient hepatic delivery of drugs: novel strategies and their significance. Biomed. Res. Int. 2013, 382184 (2013). https://doi.org/10.1155/2013/382184
- J.U. Baenziger, D. Fiete, Galactose and n-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell 22, 611–620 (1980). https://doi.org/10.1016/0092-8674(80)90371-2
- K.M. Kamruzzaman Selim, Y.S. Ha, S.J. Kim, Y. Chang, T.J. Kim et al., Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials 28(4), 710–716 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.014
- F. Suriano, R. Pratt, J.P. Tan, N. Wiradharma, A. Nelson et al., Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery. Biomaterials 31(9), 2637–2645 (2010). https://doi.org/10.1016/j.biomaterials.2009.12.022
- T. Terada, M. Iwai, S. Kawakami, F. Yamashita, M. Hashida, Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J. Control Release 111(3), 333–342 (2006). https://doi.org/10.1016/j.jconrel.2005.12.023
- Y. Cao, Y. Gu, H. Ma, J. Bai, L. Liu et al., Self-assembled nanoparticle drug delivery systems from galactosylated polysaccharide-doxorubicin conjugate loaded doxorubicin. Int. J. Biol. Macromol. 46(2), 245–249 (2010). https://doi.org/10.1016/j.ijbiomac.2009.11.008
- H.F. Liang, C.T. Chen, S.C. Chen, A.R. Kulkarni, Y.L. Chiu et al., Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 27(9), 2051–2059 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.027
- S. Diez, G. Navarro, C.T. de Ilarduya, In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma. J. Gene Med. 11(1), 38–45 (2009). https://doi.org/10.1002/jgm.1273
- X.R. Qi, W.W. Yan, J. Shi, Hepatocytes targeting of cationic liposomes modified with soybean sterylglucoside and polyethylene glycol. World J. Gastroenterol. 11(32), 4947–4952 (2005). https://doi.org/10.3748/wjg.v11.i32.4947
- W.I. Weis, M.E. Taylor, K. Drickamer, The c-type lectin superfamily in the immune system. Immunol. Rev. 163(1), 19–34 (1998). https://doi.org/10.1111/j.1600-065X.1998.tb01185.x
- P. Opanasopit, M. Nishikawa, F. Yamashita, Y. Takakura, M. Hashida, Pharmacokinetic analysis of lectin-dependent biodistribution of fucosylated bovine serum albumin: a possible carrier for kupffer cells. J. Drug Target. 9(5), 341–351 (2001). https://doi.org/10.3109/10611860108998770
- Y. Higuchi, M. Nishikawa, S. Kawakami, F. Yamashita, M. Hashida, Uptake characteristics of mannosylated and fucosylated bovine serum albumin in primary cultured rat sinusoidal endothelial cells and kupffer cells. Int. J. Pharm. 287(1–2), 147–154 (2004). https://doi.org/10.1016/j.ijpharm.2004.08.021
- H. Yukawa, M. Watanabe, N. Kaji, Y. Okamoto, M. Tokeshi et al., Monitoring transplanted adipose tissue-derived stem cells combined with heparin in the liver by fluorescence imaging using quantum dots. Biomaterials 33(7), 2177–2186 (2012). https://doi.org/10.1016/j.biomaterials.2011.12.009
- G.C. Chen, S.Y. Lin, D.H. Huang, Y.J. Zhang, C.Y. Li et al., Revealing the fate of transplanted stem cells in vivo with a novel optical imaging strategy. Small 14(3), 10 (2018). https://doi.org/10.1002/smll.201702679
- J.W. Bulte, D.L. Kraitchman, Iron oxide mr contrast agents for molecular and cellular imaging. NMR Biomed. 17(7), 484–499 (2004). https://doi.org/10.1002/nbm.924
- J. Puppi, M. Modo, A. Dhawan, S.C. Lehec, R.R. Mitry et al., Ex vivo magnetic resonance imaging of transplanted hepatocytes in a rat model of acute liver failure. Cell Transplant. 23(3), 329–343 (2014). https://doi.org/10.3727/096368913x663596
- Y.J. Xu, L. Dong, Y. Lu, L.C. Zhang, D. An et al., Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. Nanoscale 8(3), 1684–1690 (2016). https://doi.org/10.1039/c5nr07023f
- F.Q. Fan, Z.X. He, L.L. Kong, Q.H. Chen, Q. Yuan et al., Pharmacological targeting of kinases mst1 and mst2 augments tissue repair and regeneration. Sci. Transl. Med. 8(352), 352ra108 (2016). https://doi.org/10.1126/scitranslmed.aaf2304
- K.H. Min, H.S. Min, H.J. Lee, D.J. Park, J.Y. Yhee et al., Ph-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 9(1), 134–145 (2015). https://doi.org/10.1021/nn506210a
- C. Kang, W. Cho, M. Park, J. Kim, S. Park et al., H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics. Biomaterials 85, 195–203 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.070
- G.-W. Kim, C. Kang, Y.-B. Oh, M.-H. Ko, J.-H. Seo et al., Ultrasonographic imaging and anti-inflammatory therapy of muscle and tendon injuries using polymer nanoparticles. Theranostics 7(9), 2463–2476 (2017). https://doi.org/10.7150/thno.18922
- S. Son, H.S. Min, D.G. You, B.S. Kim, I.C. Kwon, Echogenic nanoparticles for ultrasound technologies: evolution from diagnostic imaging modality to multimodal theranostic agent. Nano Today 9(4), 525–540 (2014). https://doi.org/10.1016/j.nantod.2014.06.002
- S. Wei, N. Fu, Y. Sun, Z. Yang, L. Lei et al., Targeted contrast-enhanced ultrasound imaging of angiogenesis in an orthotopic mouse tumor model of renal carcinoma. Ultrasound Med. Biol. 40(6), 1250–1259 (2014). https://doi.org/10.1016/j.ultrasmedbio.2013.12.001
- Y. Go, H. Lee, L. Jeong, S. Sun, E. Hong et al., Acid-triggered echogenic nanoparticles for contrast-enhanced ultrasound imaging and therapy of acute liver failure. Biomaterials 186, 22–30 (2018). https://doi.org/10.1016/j.biomaterials.2018.09.034
- B. Kim, E. Lee, Y. Kim, S. Park, G. Khang et al., Dual acid-responsive micelle-forming anticancer polymers as new anticancer therapeutics. Adv. Funct. Mater. 23(40), 5091–5097 (2013). https://doi.org/10.1002/adfm201300871
- D. Yoo, K. Guk, H. Kim, G. Khang, D. Wu, D. Lee, Antioxidant polymeric nanoparticles as novel therapeutics for airway inflammatory diseases. Int. J. Pharm. 450(1–2), 87–94 (2013). https://doi.org/10.1016/j.ijpharm.2013.04.028
- S. Fujisawa, T. Atsumi, M. Ishihara, Y. Kadoma, Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res. 24(2b), 563–569 (2004)
- M. Baker, Deceptive curcumin offers cautionary tale for chemists. Nature 541(7636), 144–145 (2017). https://doi.org/10.1038/541144a
- K.M. Nelson, J.L. Dahlin, J. Bisson, J. Graham, G.F. Pauli et al., The essential medicinal chemistry of curcumin. J. Med. Chem. 60(5), 1620–1637 (2017). https://doi.org/10.1021/acs.jmedchem.6b00975
- S.K. Libutti, G.F. Paciotti, A.A. Byrnes, H.R. Alexander Jr., W.E. Gannon et al., Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res. 16(24), 6139–6149 (2010). https://doi.org/10.1158/1078-0432.Ccr-10-0978
- Y.X. Wang, Superparamagnetic iron oxide based mri contrast agents: current status of clinical application. Quant. Imaging Med. Surg. 1(1), 35–40 (2011). https://doi.org/10.3978/j.issn.2223-4292.2011.08.03
- Y.X. Wang, S.M. Hussain, G.P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11(11), 2319–2331 (2001). https://doi.org/10.1007/s003300100908
- M.R.A. Abdollah, T.J. Carter, C. Jones, T.L. Kalber, V. Rajkumar et al., Fucoidan prolongs the circulation time of dextran-coated iron oxide nanoparticles. ACS Nano 12(2), 1156–1169 (2018). https://doi.org/10.1021/acsnano.7b06734
- T.K. Jain, M.K. Reddy, M.A. Morales, D.L. Leslie-Pelecky, V. Labhasetwar, Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 5(2), 316–327 (2008). https://doi.org/10.1021/mp7001285
- M. Levy, N. Luciani, D. Alloyeau, D. Elgrabli, V. Deveaux et al., Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 32(16), 3988–3999 (2011). https://doi.org/10.1016/j.biomaterials.2011.02.031
- M.R. Ali, M.A. Rahman, Y. Wu, T. Han, X. Peng et al., Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl. Acad. Sci. U.S.A. 114(15), e3110–e3118 (2017). https://doi.org/10.1073/pnas.1619302114
- S.K. Balasubramanian, J. Jittiwat, J. Manikandan, C.N. Ong, L.E. Yu et al., Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31(8), 2034–2042 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.079
- L.L. Estevanato, L.M. Lacava, L.C. Carvalho, R.B. Azevedo, O. Silva et al., Long-term biodistribution and biocompatibility investigation of dextran-coated magnetite nanoparticle using mice as the animal model. J. Biomed. Nanotechnol. 8(2), 301–308 (2012). https://doi.org/10.1166/jbn.2012.1376
- J. Kolosnjaj-Tabi, Y. Javed, L. Lartigue, J. Volatron, D. Elgrabli et al., The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano 9(8), 7925–7939 (2015). https://doi.org/10.1021/acsnano.5b00042
- X. Yang, M. Yang, B. Pang, M. Vara, Y. Xia, Gold nanomaterials at work in biomedicine. Chem. Rev. 115(19), 10410–10488 (2015). https://doi.org/10.1021/acs.chemrev.5b00193
- J. Wendon, J. Cordoba, A. Dhawan, F.S. Larsen, M. Manns et al., Easl clinical practical guidelines on the management of acute (fulminant) liver failure. J. Hepatol. 66(5), 1047–1081 (2017). https://doi.org/10.1016/j.jhep.2016.12.003
- M. Schuldiner, O. Yanuka, J. Itskovitz-Eldor, D.A. Melton, N. Benvenisty, Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 97(21), 11307–11312 (2000). https://doi.org/10.1073/pnas.97.21.11307
- H.C. Cho, E. Marbán, Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circ. Res. 106(4), 674–685 (2010). https://doi.org/10.1161/circresaha.109.212936
- S. Snykers, J. De Kock, V. Rogiers, T. Vanhaecke, In vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art. Stem Cells 27(3), 577–605 (2009). https://doi.org/10.1634/stemcells.2008-0963
- J. Fan, Y. Sun, S. Wang, Y. Li, X. Zeng et al., Inhibition of autophagy overcomes the nanotoxicity elicited by cadmium-based quantum dots. Biomaterials 78, 102–114 (2016). https://doi.org/10.1016/j.biomaterials.2015.11.029
- Y. Li, H. Zhu, S. Wang, X. Qian, J. Fan et al., Interplay of oxidative stress and autophagy in PAMAM dendrimers-induced neuronal cell death. Theranostics 5(12), 1363–1377 (2015). https://doi.org/10.7150/thno.13181
- S. Wang, Y. Li, J. Fan, Z. Wang, X. Zeng et al., The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials 35(26), 7588–7597 (2014). https://doi.org/10.1016/j.biomaterials.2014.05.029
- C.F. Jones, R.A. Campbell, A.E. Brooks, S. Assemi, S. Tadjiki et al., Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano 6(11), 9900–9910 (2012). https://doi.org/10.1021/nn303472r
- Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/c8cs00618k
- Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control Release 240(28), 332–348 (2016). https://doi.org/10.1016/j.jconrel.2016.01.020
- R. Cheng, F. Meng, C. Deng, H.A. Klok, Z. Zhong, Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14), 3647–3657 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.084
- Y. Jiang, R. Tang, B. Duncan, Z. Jiang, B. Yan et al., Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules. Angew. Chem. Int. Ed. 54(2), 506–510 (2015). https://doi.org/10.1002/anie.201409161
- A. El-Sayed, H. Harashima, Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol. Ther. 21(6), 1118–1130 (2013). https://doi.org/10.1038/mt.2013.54
- J. Kurreck, Rna interference: from basic research to therapeutic applications. Angew. Chem. Int. Ed. 48(8), 1378–1398 (2009). https://doi.org/10.1002/anie.200802092
- Y.J. Kwon, Before and after endosomal escape: roles of stimuli-converting siRNA/polymer interactions in determining gene silencing efficiency. Acc. Chem. Res. 45(7), 1077–1088 (2012). https://doi.org/10.1021/ar200241v
- A. Higuchi, Q.D. Ling, Y. Chang, S.T. Hsu, A. Umezawa, Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 113(5), 3297–3328 (2013). https://doi.org/10.1021/cr300426x
- A. Higuchi, S.S. Kumar, G. Benelli, A.A. Alarfaj, M.A. Munusamy et al., Stem cell therapies for reversing vision loss. Trends Biotechnol. 35(11), 1102–1117 (2017). https://doi.org/10.1016/j.tibtech.2017.06.016
- A. Higuchi, N.J. Ku, Y.C. Tseng, C.H. Pan, H.F. Li et al., Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab. Invest. 97(10), 1167–1179 (2017). https://doi.org/10.1038/labinvest.2017.100
- J.N. Tiwari, Y.K. Seo, T. Yoon, W.G. Lee, W.J. Cho et al., Accelerated bone regeneration by two-photon photoactivated carbon nitride nanosheets. ACS Nano 11(1), 742–751 (2017). https://doi.org/10.1021/acsnano.6b07138
References
W. Bernal, W.M. Lee, J. Wendon, F.S. Larsen, R. Williams, Acute liver failure: a curable disease by 2024? J. Hepatol. 62, S112–120 (2015). https://doi.org/10.1016/j.jhep.2014.12.016
K.P. Patel, Drug-related hepatotoxicity. N. Engl. J. Med. 354(20), 2191–2192 (2006). https://doi.org/10.1056/NEJMra052270
M.C. Londono, A. Rimola, J. O’Grady, A. Sanchez-Fueyo, Immunosuppression minimization versus complete drug withdrawal in liver transplantation. J. Hepatol. 59(4), 872–879 (2013). https://doi.org/10.1016/j.jhep.2013.04.003
K. Poelstra, J. Prakash, L. Beljaars, Drug targeting to the diseased liver. J. Control Release 161(2), 188–197 (2012). https://doi.org/10.1016/j.jconrel.2012.02.011
L.H. Reddy, P. Couvreur, Nanotechnology for therapy and imaging of liver diseases. J. Hepatol. 55(6), 1461–1466 (2011). https://doi.org/10.1016/j.jhep.2011.05.039
C.W. Lee, Y.F. Chen, H.H. Wu, O.K. Lee, Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases. Gastroenterology 154(1), 46–56 (2018). https://doi.org/10.1053/j.gastro.2017.09.049
B.L. Lin, J.F. Chen, W.H. Qiu, K.W. Wang, D.Y. Xie et al., Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis b virus-related acute-on-chronic liver failure: a randomized controlled trial. Hepatology 66(1), 209–219 (2017). https://doi.org/10.1002/hep.29189
D. Shi, J. Zhang, Q. Zhou, J. Xin, J. Jiang et al., Quantitative evaluation of human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs. Gut 66(5), 955–964 (2017). https://doi.org/10.1136/gutjnl-2015-311146
D.K. Yi, S.S. Nanda, K. Kim, S. Tamil Selvan, Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J. Mater. Chem. B 5(48), 9429–9451 (2017). https://doi.org/10.1039/C7TB02532G
M.Y. Wang, X.M. Yang, P. Zhang, L. Cai, X.B. Yang et al., Sustained delivery growth factors with polyethyleneimine-modified nanoparticles promote embryonic stem cells differentiation and liver regeneration. Adv. Sci. 3(8), 13 (2016). https://doi.org/10.1002/advs.201500393
N.S. Hwang, S. Varghese, J. Elisseeff, Controlled differentiation of stem cells. Adv. Drug Deliv. Rev. 60(2), 199–214 (2008). https://doi.org/10.1016/j.addr.2007.08.036
E. Ko, D. Jeong, J. Kim, S. Park, G. Khang et al., Antioxidant polymeric prodrug microparticles as a therapeutic system for acute liver failure. Biomaterials 35(12), 3895–3902 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.048
Z. Liu, Y. Li, W. Li, C. Xiao, D. Liu et al., Multifunctional nanohybrid based on porous silicon nanoparticles, gold nanoparticles, and acetalated dextran for liver regeneration and acute liver failure theranostics. Adv. Mater. 30(24), e1703393 (2018). https://doi.org/10.1002/adma.201703393
S.V. BerwinSingh, E. Jung, J. Noh, D. Yoo, C. Kang et al., Hydrogen peroxide-activatable polymeric prodrug of curcumin for ultrasound imaging and therapy of acute liver failure. Nanomedicine NBM 16, 45–55 (2019). https://doi.org/10.1016/j.nano.2018.11.003
S.M. Opal, E. Patrozou, Translational research in the development of novel sepsis therapeutics: logical deductive reasoning or mission impossible? Crit. Care Med. 37, S10–15 (2009). https://doi.org/10.1097/CCM.0b013e3181921497
P. Shukla, G.M. Rao, G. Pandey, S. Sharma, N. Mittapelly et al., Therapeutic interventions in sepsis: current and anticipated pharmacological agents. Br. J. Pharmacol. 171(22), 5011–5031 (2014). https://doi.org/10.1111/bph.12829
M.M. Berger, R.L. Chioléro, Antioxidant supplementation in sepsis and systemic inflammatory response syndrome. Crit. Care Med. 35, S584–590 (2007). https://doi.org/10.1097/01.Ccm.0000279189.81529.C4
S. Feng, Y. Hu, S. Peng, S. Han, H. Tao et al., Nanoparticles responsive to the inflammatory microenvironment for targeted treatment of arterial restenosis. Biomaterials 105, 167–184 (2016). https://doi.org/10.1016/j.biomaterials.2016.08.003
R.K. Singh, J.C. Knowles, H.W. Kim, Advances in nanoparticle development for improved therapeutics delivery: nanoscale topographical aspect. J. Tissue Eng. 10, 2041731419877528 (2019). https://doi.org/10.1177/2041731419877528
J. Ding, J. Chen, L. Gao, Z. Jiang, Y. Zhang et al., Engineered nanomedicines with enhanced tumor penetration. Nano Today 29, 100800 (2019). https://doi.org/10.1016/j.nantod.2019.100800
S. Wilhelm, A.J. Tavares, D. Oin, S. Ohta, J. Audet et al., Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1(5), 16014 (2016). https://doi.org/10.1038/natrevmats.2016.14
C.N. Jenne, P. Kubes, Immune surveillance by the liver. Nat. Immunol. 14(10), 996–1006 (2013). https://doi.org/10.1038/ni.2691
K. Sheth, P. Bankey, The liver as an immune organ. Curr. Opin. Crit. Care 7(2), 99–104 (2001). https://doi.org/10.1097/00075198-200104000-00008
M. Hu, L. Huang, Nanomaterial manipulation of immune microenvironment in the diseased liver. Adv. Funct. Mater. 29(7), 1805760 (2019). https://doi.org/10.1002/adfm.201805760
P.C.N. Rensen, L. Sliedregt, A. Ferns, E. Kieviet, S.M.W. van Rossenberg et al., Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J. Biol. Chem. 276(40), 37577–37584 (2001). https://doi.org/10.1074/jbc.M101786200
R. Martin-Mateos, M. Alvarez-Mon, A. Albillos, Dysfunctional immune response in acute-on-chronic liver failure: it takes two to tango. Front. Immunol. 10, 973 (2019). https://doi.org/10.3389/fimmu.2019.00973
E. Triantafyllou, K.J. Woollard, M.J.W. McPhail, C.G. Antoniades, L.A. Possamai, The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front. Immunol. 9, 2948 (2018). https://doi.org/10.3389/fimmu.2018.02948
M.J. Tuñón, M. Alvarez, J.M. Culebras, J. González-Gallego, An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World J. Gastroenterol. 15(25), 3086–3098 (2009). https://doi.org/10.3748/wjg.15.3086
H. Makino, S. Togo, T. Kubota, D. Morioka, T. Morita et al., A good model of hepatic failure after excessive hepatectomy in mice. J. Surg. Res. 127(2), 171–176 (2005). https://doi.org/10.1016/j.jss.2005.04.029
S. Eguchi, H. Lilja, W.R. Hewitt, Y. Middleton, A.A. Demetriou et al., Loss and recovery of liver regeneration in rats with fulminant hepatic failure. J. Surg. Res. 72(2), 112–122 (1997). https://doi.org/10.1006/jsre.1997.5175
T.E. Fick, S.W. Schalm, M. de Vlieger, A surgical model of fulminant hepatic failure in the rabbit: different effects of end-to-side versus small-diameter side-to-side portacaval shunt. Eur. Surg. Res. 19(5), 276–282 (1987). https://doi.org/10.1159/000128710
H. Joyeux, A. Joyeux, P. Raoux, C. Brissac, M. Yakoun et al., Hepatic assistance after subtotal or total hepatectomy in the dog: a new concept. Trans. Am. Soc. Artif. Intern. Organs 23(1), 683–690 (1977). https://doi.org/10.1097/00002480-197700230-00186
M.N. Sosef, T.M. van Gulik, Total hepatectomy model in pigs: revised method for vascular reconstruction using a rigid vascular prosthesis. Eur. Surg. Res. 36(1), 8–12 (2004). https://doi.org/10.1159/000075068
F. Filipponi, U. Boggi, L. Meacci, S. Burchielli, F. Vistoli et al., A new technique for total hepatectomy in the pig for testing liver support devices. Surgery 125(4), 448–455 (1999). https://doi.org/10.1016/S0039-6060(99)70013-9
K. Knubben, C. Thiel, M. Schenk, A. Etspüler, T. Schenk et al., A new surgical model for hepatectomy in pigs. Eur. Surg. Res. 40(1), 41–46 (2008). https://doi.org/10.1159/000108765
Z. Machaidze, H. Yeh, L. Wei, C. Schuetz, M. Carvello et al., Testing of microencapsulated porcine hepatocytes in a new model of fulminant liver failure in baboons. Xenotransplantation 24(3), e12297 (2017). https://doi.org/10.1111/xen.12297
Y. He, J. Zhou, K.F. Dou, Y. Chen, A rat model for acute hepatic failure. Hepatobiliary Pancreat Dis. Int. 2(3), 423–425 (2003)
R. Hickman, M. Bracher, M. Tyler, Z. Lotz, J. Fourie, Effect of total hepatectomy on coagulation and glucose homeostasis in the pig. Dig. Dis. Sci. 37(3), 328–334 (1992). https://doi.org/10.1007/bf01307723
L.M. Ytrebø, G.I. Nedredal, B. Langbakk, A. Revhaug, An experimental large animal model for the assessment of bioartificial liver support systems in fulminant hepatic failure. Scand. J. Gastroenterol. 37(9), 1077–1088 (2002). https://doi.org/10.1080/003655202320378293
K. Nakazawa, H. Ijima, J. Fukuda, R. Sakiyama, Y. Yamashita et al., Development of a hybrid artificial liver using polyurethane foam/hepatocyte spheroid culture in a preclinical pig experiment. Int. J. Artif. Organs 25(1), 51–60 (2002). https://doi.org/10.1177/039139880202500109
Y. Gao, N. Mu, X.P. Xu, Y. Wang, Porcine acute liver failure model established by two-phase surgery and treated with hollow fiber bioartificial liver support system. World J. Gastroenterol. 11(35), 5468–5474 (2005). https://doi.org/10.3748/wjg.v11.i35.5468
S. Sen, C. Rose, L.M. Ytrebø, N.A. Davies, G.I. Nedredal et al., Effect of albumin dialysis on intracranial pressure increase in pigs with acute liver failure: a randomized study. Crit. Care Med. 34(1), 158–164 (2006). https://doi.org/10.1097/01.ccm.0000196203.39832.3c
L.M. Ytrebø, C. Korvald, G.I. Nedredal, O.P. Elvenes, O.J. Nielsen Grymyr et al., N-acetylcysteine increases cerebral perfusion pressure in pigs with fulminant hepatic failure. Crit. Care Med. 29(10), 1989–1995 (2001). https://doi.org/10.1097/00003246-200110000-00023
C. Rose, L.M. Ytrebø, N.A. Davies, S. Sen, G.I. Nedredal et al., Association of reduced extracellular brain ammonia, lactate, and intracranial pressure in pigs with acute liver failure. Hepatology 46(6), 1883–1892 (2007). https://doi.org/10.1002/hep.21877
K. Tonnesen, Total and partial anoxia of the liver. An attempt to create protracted liver failure in the pit. Scand J. Gastroenterol. Suppl. 37, 27–31 (1976)
K. Tonnesen, Experimental liver failure. A comparison between hepatectomy and hepatic devascularization in the pig. Acta Chir. Scand. 143(5), 271–277 (1977)
M.R. McGill, H. Jaeschke, Animal models of drug-induced liver injury. Biochim. Biophys. Acta Mol. Basis. Dis. 1865(5), 1031–1039 (2019). https://doi.org/10.1016/j.bbadis.2018.08.037
M. Maes, M. Vinken, H. Jaeschke, Experimental models of hepatotoxicity related to acute liver failure. Toxicol. Appl. Pharmacol. 290, 86–97 (2016). https://doi.org/10.1016/j.taap.2015.11.016
M.R. McGill, C.D. Williams, Y. Xie, A. Ramachandran, H. Jaeschke, Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol. Appl. Pharmacol. 264(3), 387–394 (2012). https://doi.org/10.1016/j.taap.2012.08.015
R. Silverstein, D-galactosamine lethality model: scope and limitations. J. Endotoxin Res. 10(3), 147–162 (2004). https://doi.org/10.1179/096805104225004879
W. Zhang, Y. Zhou, X. Li, X. Xu, Y. Chen et al., Macrophage-targeting and reactive oxygen species (ROS)-responsive nanopolyplexes mediate anti-inflammatory sirna delivery against acute liver failure (ALF). Biomater. Sci. 6(7), 1986–1993 (2018). https://doi.org/10.1039/C8BM00389K
X. Lin, S.J. Zhang, R.B. Huang, L. Wei, C.H. Liang et al., Protective effect of genistein on lipopolysaccharide/D-galactosamine-induced hepatic failure in mice. Biol. Pharm. Bull. 37(4), 625–632 (2014). https://doi.org/10.1248/bpb.b13-00908
A.R. Ahmadi, M. Chicco, R.N. Wesson, R.A. Anders, F. Dor et al., Stem cell mobilization is lifesaving in a large animal preclinical model of acute liver failure. Ann. Surg. 268(4), 620–631 (2018). https://doi.org/10.1097/sla.0000000000002958
J. Wang, Z. Sun, J. Jiang, D. Wu, X. Liu et al., Proteomic signature of acute liver failure: from discovery and verification in a pig model to confirmation in humans. Mol. Cell. Proteomics 16(7), 1188–1199 (2017). https://doi.org/10.1074/mcp.M117.067397
L. Feng, L. Cai, G.L. He, J. Weng, Y. Li et al., Novel d-galactosamine-induced cynomolgus monkey model of acute liver failure. World J. Gastroenterol. 23(42), 7572–7583 (2017). https://doi.org/10.3748/wjg.v23.i42.7572
Z. Zhang, Y.C. Zhao, Y. Cheng, G.D. Jian, M.X. Pan et al., Hybrid bioartificial liver support in cynomolgus monkeys with d-galactosamine-induced acute liver failure. World J. Gastroenterol. 20(46), 17399–17406 (2014). https://doi.org/10.3748/wjg.v20.i46.17399
M. Bélanger, R.F. Butterworth, Acute liver failure: a critical appraisal of available animal models. Metab. Brain Dis. 20(4), 409–423 (2005). https://doi.org/10.1007/s11011-005-7927-z
J.S. Kang, H. Wanibuchi, K. Morimura, R. Wongpoomchai, Y. Chusiri et al., Role of CYP2E1 in thioacetamide-induced mouse hepatotoxicity. Toxicol. Appl. Pharmacol. 228(3), 295–300 (2008). https://doi.org/10.1016/j.taap.2007.11.010
H.X. Wang, M. Liu, S.Y. Weng, J.J. Li, C. Xie et al., Immune mechanisms of concanavalin a model of autoimmune hepatitis. World J. Gastroenterol. 18(2), 119–125 (2012). https://doi.org/10.3748/wjg.v18.i2.119
H. Tsutsui, S. Nishiguchi, Importance of kupffer cells in the development of acute liver injuries in mice. Int. J. Mol. Sci. 15(5), 7711–7730 (2014). https://doi.org/10.3390/ijms15057711
G. Tiegs, J. Hentschel, A. Wendel, At cell-dependent experimental liver injury in mice inducible by concanavalin a. J. Clin. Invest. 90(1), 196–203 (1992). https://doi.org/10.1172/jci115836
F.J. Cubero, M.E. Zoubek, W. Hu, J. Peng, G. Zhao et al., Combined activities of JNK1 and JNK2 in hepatocytes protect against toxic liver injury. Gastroenterology 150(4), 968–981 (2016). https://doi.org/10.1053/j.gastro.2015.12.019
B.L. Woolbright, H. Jaeschke, The impact of sterile inflammation in acute liver injury. J. Clin. Transl. Res. 3(Suppl 1), 170–188 (2017). https://doi.org/10.18053/jctres.03.2017S1.003
P. Kubes, W.Z. Mehal, Sterile inflammation in the liver. Gastroenterology 143(5), 1158–1172 (2012). https://doi.org/10.1053/j.gastro.2012.09.008
F. Heymann, F. Tacke, Immunology in the liver-from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 13(2), 88–110 (2016). https://doi.org/10.1038/nrgastro.2015.200
L.E. Schmidt, F.S. Larsen, Prognostic implications of hyperlactatemia, multiple organ failure, and systemic inflammatory response syndrome in patients with acetaminophen-induced acute liver failure. Crit. Care Med. 34(2), 337–343 (2006). https://doi.org/10.1097/01.ccm.0000194724.70031.b6
D.M. Mosser, J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969 (2008). https://doi.org/10.1038/nri2448
C.G. Antoniades, A. Quaglia, L.S. Taams, R.R. Mitry, M. Hussain et al., Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans. Hepatology 56(2), 735–746 (2012). https://doi.org/10.1002/hep.25657
C.G. Antoniades, W. Khamri, R.D. Abeles, L.S. Taams, E. Triantafyllou et al., Secretory leukocyte protease inhibitor: a pivotal mediator of anti-inflammatory responses in acetaminophen-induced acute liver failure. Hepatology 59(4), 1564–1576 (2014). https://doi.org/10.1002/hep.26933
C. Bernsmeier, O.T. Pop, A. Singanayagam, E. Triantafyllou, V.C. Patel et al., Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase mertk. Gastroenterology 148(3), 603–615 (2015). https://doi.org/10.1053/j.gastro.2014.11.045
W. Khamri, R.D. Abeles, T.Z. Hou, A.E. Anderson, A. El-Masry et al., Increased expression of cytotoxic T-lymphocyte-associated protein 4 by T cells, induced by B7 in sera, reduces adaptive immunity in patients with acute liver failure. Gastroenterology 153(1), 263–276.e268 (2017). https://doi.org/10.1053/j.gastro.2017.03.023
K.R. Karlmark, R. Weiskirchen, H.W. Zimmermann, N. Gassler, F. Ginhoux et al., Hepatic recruitment of the inflammatory GR1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50(1), 261–274 (2009). https://doi.org/10.1002/hep.22950
D. Dal-Secco, J. Wang, Z. Zeng, E. Kolaczkowska, C.H. Wong et al., A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J. Exp. Med. 212(4), 447–456 (2015). https://doi.org/10.1084/jem.20141539
G. Chen, H.Z. Deng, X. Song, M.Z. Lu, L. Zhao et al., Reactive oxygen species-responsive polymeric nanoparticles for alleviating sepsis-induced acute liver injury in mice. Biomaterials 144, 30–41 (2017). https://doi.org/10.1016/j.biomaterials.2017.08.008
H. Kim, Y. Kim, K. Guk, D. Yoo, H. Lim et al., Fully biodegradable and cationic poly(amino oxalate) particles for the treatment of acetaminophen-induced acute liver failure. Int. J. Pharm. 434(1), 243–250 (2012). https://doi.org/10.1016/j.ijpharm.2012.05.067
F.L. Yen, T.H. Wu, L.T. Lin, T.M. Cham, C.C. Lin, Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCL(4)-induced acute liver failure. Pharm. Res. 26(4), 893–902 (2009). https://doi.org/10.1007/s11095-008-9791-0
C. Akao, T. Tanaka, R. Onodera, A. Ohyama, N. Sato et al., Potential use of fucose-appended dendrimer/alpha-cyclodextrin conjugates as NF-kappab decoy carriers for the treatment of lipopolysaccharide-induced fulminant hepatitis in mice. J. Control Release 193, 35–41 (2014). https://doi.org/10.1016/j.jconrel.2014.07.004
H. He, N. Zheng, Z. Song, K.H. Kim, C. Yao et al., Suppression of hepatic inflammation via systemic sirna delivery by membrane-disruptive and endosomolytic helical polypeptide hybrid nanoparticles. ACS Nano 10(2), 1859–1870 (2016). https://doi.org/10.1021/acsnano.5b05470
Y. Higuchi, S. Kawakami, M. Oka, Y. Yabe, F. Yamashita et al., Intravenous administration of mannosylated cationic liposome/NF kappa B decoy complexes effectively prevent LPS-induced cytokine production in a murine liver failure model. FEBS Lett. 580(15), 3706–3714 (2006). https://doi.org/10.1016/j.febslet.2006.05.059
W. Chen, J. Luan, G. Wei, X. Zhang, J. Fan et al., In vivo hepatocellular expression of interleukin-22 using penetratin-based hybrid nanoparticles as potential anti-hepatitis therapeutics. Biomaterials 187, 66–80 (2018). https://doi.org/10.1016/j.biomaterials.2018.09.046
P. Roy, S. Das, R.G. Auddy, A. Saha, A. Mukherjee, Engineered andrographolide nanoparticles mitigate paracetamol hepatotoxicity in mice. Pharm. Res. 30(5), 1252–1262 (2013). https://doi.org/10.1007/s11095-012-0964-5
J.Q. Xiao, X.L. Shi, H.C. Ma, J.J. Tan, Z. Lin et al., Administration of IL-1Ra chitosan nanoparticles enhances the therapeutic efficacy of mesenchymal stem cell transplantation in acute liver failure. Arch. Med. Res. 44(5), 370–379 (2013). https://doi.org/10.1016/j.arcmed.2013.06.004
N. Jiang, X. Zhang, X. Zheng, D. Chen, K. Siu et al., A novel in vivo sirna delivery system specifically targeting liver cells for protection of cona-induced fulminant hepatitis. PLoS ONE 7(9), e44138 (2012). https://doi.org/10.1371/journal.pone.0044138
Y. Chien, Y.L. Chang, H.Y. Li, M. Larsson, W.W. Wu et al., Synergistic effects of carboxymethyl-hexanoyl chitosan, cationic polyurethane-short branch PEI in miR122 gene delivery: accelerated differentiation of iPSCs into mature hepatocyte-like cells and improved stem cell therapy in a hepatic failure model. Acta Biomater. 13, 228–244 (2015). https://doi.org/10.1016/j.actbio.2014.11.018
H. Liang, K. Huang, T. Su, Z. Li, S. Hu et al., Mesenchymal stem cell/red blood cell-inspired nanoparticle therapy in mice with carbon tetrachloride-induced acute liver failure. ACS Nano 12(7), 6536–6544 (2018). https://doi.org/10.1021/acsnano.8b00553
D. Lee, S. Bae, D. Hong, H. Lim, J.H. Yoon et al., H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents. Sci. Rep. 3, 2233 (2013). https://doi.org/10.1038/srep02233
A. Lamprecht, Nanomedicines in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 12, 195–204 (2015). https://doi.org/10.1038/nrgastro.2015.37
Z. Chen, L. Xiao, W. Liu, D. Liu, Y.-Y. Xiao et al., Novel materials which possess the ability to target liver cells. Expert Opin. Drug Deliv. 9(6), 649–656 (2012). https://doi.org/10.1517/17425247.2012.679261
S.C. Shen, C.H. Ko, S.W. Tseng, S.H. Tsai et al., Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production. Toxicol. Appl. Pharmacol. 197(2), 84–95 (2004). https://doi.org/10.1016/j.taap.2004.02.002
H.J. Heo, D.O. Kim, S.C. Shin, M.J. Kim, B.G. Kim et al., Effect of antioxidant flavanone, naringenin, from citrus junoson neuroprotection. J. Agric. Food Chem. 52(6), 1520–1525 (2004). https://doi.org/10.1021/jf035079g
S.L. Wang, S.Y. Lin, T.F. Chen, W.T. Cheng, Eudragit e accelerated the diketopiperazine formation of enalapril maleate determined by thermal FTIR microspectroscopic technique. Pharm. Res. 21(11), 2127–2132 (2004). https://doi.org/10.1023/b:pham.0000048206.62093.4e
T. Hanawa, S. Asayama, T. Watanabe, S. Owada, H. Kawakami, Protective effects of the complex between manganese porphyrins and catalase-poly(ethylene glycol) conjugates against hepatic ischemia/reperfusion injury in vivo. J. Control Release 135(1), 60–64 (2009). https://doi.org/10.1016/j.jconrel.2008.12.012
J. Pihlajamaki, T. Kuulasmaa, D. Kaminska, M. Simonen, V. Karja et al., Serum interleukin 1 receptor antagonist as an independent marker of non-alcoholic steatohepatitis in humans. J. Hepatol. 56(3), 663–670 (2012). https://doi.org/10.1016/j.jhep.2011.10.005
S. Girard, H. Kadhim, A. Larouche, M. Roy, F. Gobeil et al., Pro-inflammatory disequilibrium of the IL-1 beta/IL-1ra ratio in an experimental model of perinatal brain damages induced by lipopolysaccharide and hypoxia-ischemia. Cytokine 43(1), 54–62 (2008). https://doi.org/10.1016/j.cyto.2008.04.007
N.P. Trivedi, U.M. Rawal, B.P. Patel, Hepatoprotective effect of andrographolide against hexachlorocyclohexane-induced oxidative injury. Integr. Cancer Ther. 6(3), 271–280 (2007). https://doi.org/10.1177/1534735407305985
I.C. Sun, D.K. Eun, J.H. Na, S. Lee, I.J. Kim et al., Heparin-coated gold nanoparticles for liver-specific CT imaging. Chem. Eur J. 15(48), 13341–13347 (2009). https://doi.org/10.1002/chem.200902344
C. Nathan, A. Cunningham-Bussel, Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 13(5), 349–361 (2013). https://doi.org/10.1038/nri3423
R. Haas, F. Marelli-Berg, C. Mauro, In the eye of the storm: T cell behavior in the inflammatory microenvironment. Am. J. Clin. Exp. Immunol. 2(2), 146–155 (2013)
Y.L. Colson, M.W. Grinstaff, Biologically responsive polymeric nanoparticles for drug delivery. Adv. Mater. 24(28), 3878–3886 (2012). https://doi.org/10.1002/adma.201200420
J.-W. Kang, E.-J. Koh, S.-M. Lee, Melatonin protects liver against ischemia and reperfusion injury through inhibition of toll-like receptor signaling pathway. J. Pineal Res. 50(4), 403–411 (2011). https://doi.org/10.1111/j.1600-079X.2011.00858.x
Y. Zhang, X. Li, J.J. Grailer, N. Wang, M. Wang et al., Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J. Pineal Res. 60(4), 405–414 (2016). https://doi.org/10.1111/jpi.12322
H. Volt, J.A. Garcia, C. Doerrier, M.E. Diaz-Casado, A. Guerra-Librero et al., Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J. Pineal Res. 60(2), 193–205 (2016). https://doi.org/10.1111/jpi.12303
V. Dubey, D. Mishra, A. Asthana, N.K. Jain, Transdermal delivery of a pineal hormone: melatonin via elastic liposomes. Biomaterials 27(18), 3491–3496 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.060
C. Tapeinos, A. Pandit, Physical, chemical, and biological structures based on ROS-sensitive moieties that are able to respond to oxidative microenvironments. Adv. Mater. 28(27), 5553–5585 (2016). https://doi.org/10.1002/adma.201505376
A. Napoli, M. Valentini, N. Tirelli, M. Muller, J.A. Hubbell, Oxidation-responsive polymeric vesicles. Nat. Mater. 3(3), 183–189 (2004). https://doi.org/10.1038/nmat1081
G. Li Volti, T. Musumeci, R. Pignatello, P. Murabito, I. Barbagallo et al., Antioxidant potential of different melatonin-loaded nanomedicines in an experimental model of sepsis. Exp. Biol. Med. (Maywood) 237(6), 670–677 (2012). https://doi.org/10.1258/ebm.2012.011425
S.D. Khaja, S. Lee, N. Murthy, Acid-degradable protein delivery vehicles based on metathesis chemistry. Biomacromol 8(5), 1391–1395 (2007). https://doi.org/10.1021/bm061234z
S.C. Yang, M. Bhide, I.N. Crispe, R.H. Pierce, N. Murthy, Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjug. Chem. 19(6), 1164–1169 (2008). https://doi.org/10.1021/bc700442g
H. Park, S. Kim, S. Kim, Y. Song, K. Seung et al., Antioxidant and anti-inflammatory activities of hydroxybenzyl alcohol releasing biodegradable polyoxalate nanoparticles. Biomacromol 11(8), 2103–2108 (2010). https://doi.org/10.1021/bm100474w
M. Otsuka, Y. Matsuda, Controlled drug release of highly water-soluble pentoxifylline from time-limit disintegration-type wax matrix tablets. Pharm. Res. 11(3), 351–354 (1994). https://doi.org/10.1023/a:1018944516678
W. Poon, Y.N. Zhang, B. Ouyang, B.R. Kingston, J.L.Y. Wu et al., Elimination pathways of nanoparticles. ACS Nano 13(5), 5785–5798 (2019). https://doi.org/10.1021/acsnano.9b01383
Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control Release 240, 332–348 (2016). https://doi.org/10.1016/j.jconrel.2016.01.020
N. Rolando, J. Wade, M. Davalos, J. Wendon, J. Philpott-Howard et al., The systemic inflammatory response syndrome in acute liver failure. Hepatology 32(4), 734–739 (2000). https://doi.org/10.1053/jhep.2000.17687
B. Oh, M. Lee, Combined delivery of HMGB-1 box a peptide and S1plyase siRNA in animal models of acute lung injury. J. Control Release 175, 25–35 (2014). https://doi.org/10.1016/j.jconrel.2013.12.008
O.F. Khan, E.W. Zaia, S. Jhunjhunwala, W. Xue, W.X. Cai et al., Dendrimer-inspired nanomaterials for the in vivo delivery of siRNA to lung vasculature. Nano Lett. 15(5), 3008–3016 (2015). https://doi.org/10.1021/nl5048972
J. Nam, S. Son, K.S. Park, W.P. Zou, L.D. Shea et al., Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4(6), 398–414 (2019). https://doi.org/10.1038/s41578-019-0108-1
K.A. Whitehead, R. Langer, D.G. Anderson, Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8(2), 129–138 (2009). https://doi.org/10.1038/nrd2742
C.-K. Chen, W.-C. Law, R. Aalinkeel, B. Nair, A. Kopwitthaya et al., Well-defined degradable cationic polylactide as nanocarrier for the delivery of siRNA to silence angiogenesis in prostate cancer. Adv. Healthcare Mater. 1(6), 751–761 (2012). https://doi.org/10.1002/adhm.201200094
S. An, D. He, E. Wagner, C. Jiang, Peptide-like polymers exerting effective glioma-targeted sirna delivery and release for therapeutic application. Small 11(38), 5142–5150 (2015). https://doi.org/10.1002/smll.201501167
S. Liang, X.-Z. Yang, X.-J. Du, H.-X. Wang, H.-J. Li et al., Optimizing the size of micellar nanoparticles for efficient siRNA delivery. Adv. Funct. Mater. 25(30), 4778–4787 (2015). https://doi.org/10.1002/adfm.201501548
Y. Dong, T. Yu, L. Ding, E. Laurini, Y. Huang et al., A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J. Am. Chem. Soc. 140(47), 16264–16274 (2018). https://doi.org/10.1021/jacs.8b10021
R. Medzhitov, Origin and physiological roles of inflammation. Nature 454(7203), 428–435 (2008). https://doi.org/10.1038/nature07201
A. Tagami, H. Ohnishi, H. Moriwaki, M. Phillips, R.D. Hughes, Fas-mediated apoptosis in acute alcoholic hepatitis. Hepatogastroenterology 50(50), 443–448 (2003)
O. Cheung, P. Puri, C. Eicken, M.J. Contos, F. Mirshahi et al., Nonalcoholic steatohepatitis is associated with altered hepatic microrna expression. Hepatology 48(6), 1810–1820 (2008). https://doi.org/10.1002/hep.22569
X.G. Deng, R.L. Qiu, Y.H. Wu, Z.X. Li, P. Xie et al., Overexpression of miR-122 promotes the hepatic differentiation and maturation of mouse ESCs through a miR-122/FoxA1/HNF4a-positive feedback loop. Liver Int. 34(2), 281–295 (2014). https://doi.org/10.1111/liv.12239
N. Davoodian, A.S. Lotfi, M. Soleimani, S.J. Mowla, MicroRNA-122 overexpression promotes hepatic differentiation of human adipose tissue-derived stem cells. J. Cell. Biochem. 115(9), 1582–1593 (2014). https://doi.org/10.1002/jcb.24822
R. Doddapaneni, Y.K. Chawla, A. Das, J.K. Kalra, S. Ghosh et al., Overexpression of microRNA-122 enhances in vitro hepatic differentiation of fetal liver-derived stem/progenitor cells. J. Cell. Biochem. 114(7), 1575–1583 (2013). https://doi.org/10.1002/jcb.24499
A. Bielinska, R.A. Shivdasani, L.Q. Zhang, G.J. Nabel, Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science 250(4983), 997–1000 (1990). https://doi.org/10.1126/science.2237444
R. Morishita, J. Higaki, N. Tomita, T. Ogihara, Application of transcription factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ. Res. 82(10), 1023–1028 (1998). https://doi.org/10.1161/01.res.82.10.1023
R. Morishita, T. Sugimoto, M. Aoki, I. Kida, N. Tomita et al., In vivo transfection of cis element “decoy” against nuclear factor-kappab binding site prevents myocardial infarction. Nat. Med. 3(8), 894–899 (1997). https://doi.org/10.1038/nm0897-894
I. Ogushi, Y. Iimuro, E. Seki, G. Son, T. Hirano et al., Nuclear factor kappa b decoy oligodeoxynucleotides prevent endotoxin-induced fatal liver failure in a murine model. Hepatology 38(2), 335–344 (2003). https://doi.org/10.1053/jhep.2003.50298
F. Hoffmann, G. Sass, J. Zillies, S. Zahler, G. Tiegs et al., A novel technique for selective NF-kappab inhibition in kupffer cells: contrary effects in fulminant hepatitis and ischaemia-reperfusion. Gut 58(12), 1670–1678 (2009). https://doi.org/10.1136/gut.2008.165647
T. Hirano, J. Fujimoto, T. Ueki, H. Yamamoto, T. Iwasaki et al., Persistent gene expression in rat liver in vivo by repetitive transfections using HVJ-liposome. Gene Ther. 5(4), 459–464 (1998). https://doi.org/10.1038/sj.gt.3300617
M. Yoshida, N. Yamamoto, T. Uehara, R. Terao, T. Nitta et al., Kupffer cell targeting by intraportal injection of the HVJ cationic liposome. Eur. Surg. Res. 34(3), 251–259 (2002). https://doi.org/10.1159/000063397
L.A. Zenewicz, R.A. Flavell, Recent advances in IL-22 biology. Int. Immunol. 23(3), 159–163 (2011). https://doi.org/10.1093/intimm/dxr001
J.A. Dudakov, A.M. Hanash, M.R. van den Brink, Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015). https://doi.org/10.1146/annurev-immunol-032414-112123
S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet et al., Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). https://doi.org/10.1038/natrevmats.2016.14
W.R. Jo, H.J. Park, Antiallergic effect of fisetin on ige-mediated mast cell activation in vitro and on passive cutaneous anaphylaxis (PCA). J. Nutr. Biochem. 48, 103–111 (2017). https://doi.org/10.1016/j.jnutbio.2017.06.010
L.B. Jeng, B. KumarVelmurugan, M.C. Chen, H.H. Hsu, T.J. Ho et al., Fisetin mediated apoptotic cell death in parental and oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo. J. Cell Physiol. 233(9), 7134–7142 (2018). https://doi.org/10.1002/jcp.26532
M.X. Xu, C.X. Ge, Y.T. Qin, T.T. Gu, D.S. Lou et al., Multicombination approach suppresses listeria monocytogenes-induced septicemia-associated acute hepatic failure: the role of iRhom2 signaling. Adv. Healthcare Mater. 7(17), 22 (2018). https://doi.org/10.1002/adhm.201800427
Z. Zhou, X. Liu, D. Zhu, Y. Wang, Z. Zhang et al., Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv. Drug Deliv. Rev. 115, 115–154 (2017). https://doi.org/10.1016/j.addr.2017.07.021
M.E. Davis, J.E. Zuckerman, C.H. Choi, D. Seligson, A. Tolcher et al., Evidence of rnai in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291), 1067–1070 (2010). https://doi.org/10.1038/nature08956
K.L. Kozielski, S.Y. Tzeng, B.A. De Mendoza, J.J. Green, Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic sirna delivery to primary human brain cancer cells. ACS Nano 8(4), 3232–3241 (2014). https://doi.org/10.1021/nn500704t
C.E. Nelson, A.J. Kim, E.J. Adolph, M.K. Gupta, F. Yu et al., Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo. Adv. Mater. 26(4), 607–614 (2014). https://doi.org/10.1002/adma.201303520
S. Shen, L. Zhang, M. Li, Z. Feng, H. Li et al., Collaborative assembly-mediated siRNA delivery for relieving inflammation-induced insulin resistance. Nano Res. 13(11), 2958–2966 (2020). https://doi.org/10.1007/s12274-020-2954-y
M.S. Shim, S. Wong, Y. Jik Kwon, siRNA as a conventional drug in the clinic? Challenges and current technologies. Drug Disc. Today Technol. 9(2), e167–e173 (2012). https://doi.org/10.1016/j.ddtec.2012.01.003
Y. Liu, L.C. Mounkes, H.D. Liggitt, C.S. Brown, I. Solodin et al., Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat. Biotechnol. 15(2), 167–173 (1997). https://doi.org/10.1038/nbt0297-167
C.Y. Tan, R.C. Lai, W. Wong, Y.Y. Dan, S.K. Lim et al., Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res. Ther. 5(3), 76 (2014). https://doi.org/10.1186/scrt465
B. Huang, X. Cheng, H. Wang, W. Huang, Z. la Ga Hu et al., Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J. Transl. Med. 14, 45 (2016). https://doi.org/10.1186/s12967-016-0792-1
M. Lotfinia, M. Kadivar, A. Piryaei, B. Pournasr, S. Sardari et al., Effect of secreted molecules of human embryonic stem cell-derived mesenchymal stem cells on acute hepatic failure model. Stem Cells Dev. 25(24), 1898–1908 (2016). https://doi.org/10.1089/scd.2016.0244
L. Chen, B. Xiang, X. Wang, C. Xiang, Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure. Stem Cell Res Ther. 8(1), 9 (2017). https://doi.org/10.1186/s13287-016-0453-6
H.H. Wu, O.K. Lee, Exosomes from mesenchymal stem cells induce the conversion of hepatocytes into progenitor oval cells. Stem Cell Res. Ther. 8(1), 117 (2017). https://doi.org/10.1186/s13287-017-0560-z
Y.H. Wang, D.B. Wu, B. Chen, E.Q. Chen, H. Tang, Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res. Ther. 9(1), 227 (2018). https://doi.org/10.1186/s13287-018-0972-4
I. Aurich, L.P. Mueller, H. Aurich, J. Luetzkendorf, K. Tisljar et al., Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 56(3), 405–415 (2007). https://doi.org/10.1136/gut.2005.090050
D.S. Zagoura, M.G. Roubelakis, V. Bitsika, O. Trohatou, K.I. Pappa et al., Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut 61(6), 894–906 (2012). https://doi.org/10.1136/gutjnl-2011-300908
A. Banas, T. Teratani, Y. Yamamoto, M. Tokuhara, F. Takeshita et al., Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46(1), 219–228 (2007). https://doi.org/10.1002/hep.21704
K.D. Lee, T.K. Kuo, J. Whang-Peng, Y.F. Chung, C.T. Lin et al., In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40(6), 1275–1284 (2004). https://doi.org/10.1002/hep.20469
Z. Wang, Z. Wang, W.W. Lu, W. Zhen, D. Yang et al., Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 9(10), e435–e435 (2017). https://doi.org/10.1038/am.2017.171
A.B. Fajardo-Puerta, M. Mato Prado, A.E. Frampton, L.R. Jiao, Gene of the month: Hgf. J. Clin. Pathol. 69(7), 575–579 (2016). https://doi.org/10.1136/jclinpath-2015-203575
T. Nakamura, K. Sakai, T. Nakamura, K. Matsumoto, Hepatocyte growth factor twenty years on: much more than a growth factor. J. Gastroenterol. Hepatol. 26(Suppl 1), 188–202 (2011). https://doi.org/10.1111/j.1440-1746.2010.06549.x
C.X. Lin, X.E. Wang, N.Y. Liu, Q. Peng, Y. Li et al., Characterization and evaluation of hgf-loaded plga nanoparticles in a ccl4-induced acute liver injury mouse model. J. Nanomater. 2019, 7936143 (2019). https://doi.org/10.1155/2019/7936143
J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (ii). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/c8cs00457a
M. Li, Y.H. Lao, R.L. Mintz, Z. Chen, D. Shao et al., A multifunctional mesoporous silica-gold nanocluster hybrid platform for selective breast cancer cell detection using a catalytic amplification-based colorimetric assay. Nanoscale 11(6), 2631–2636 (2019). https://doi.org/10.1039/c8nr08337a
R. Kubota, S. Imamura, T. Shimizu, S. Asayama, H. Kawakami, Synthesis of water-soluble dinuclear Mn-porphyrin with multiple antioxidative activities. ACS Med. Chem. Lett. 5(6), 639–643 (2014). https://doi.org/10.1021/ml400493f
L.P. Liang, J. Huang, R. Fulton, J.N. Pearson-Smith, B.J. Day et al., Pre-clinical therapeutic development of a series of metalloporphyrins for parkinson’s disease. Toxicol. Appl. Pharmacol. 326, 34–42 (2017). https://doi.org/10.1016/j.taap.2017.04.004
I. Batinic-Haberle, A. Tovmasyan, I. Spasojevic, An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins–from superoxide dismutation to H2O2-driven pathways. Redox Biol. 5, 43–65 (2015). https://doi.org/10.1016/j.redox.2015.01.017
I. Batinic-Haberle, I. Spasojevic, H.M. Tse, A. Tovmasyan, Z. Rajic et al., Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities. Amino Acids 42(1), 95–113 (2012). https://doi.org/10.1007/s00726-010-0603-6
T. Zhang, J. Fang, H. Tsutsuki, K. Ono, W. Islam et al., Synthesis of PEGylated manganese protoporphyrin as a catalase mimic and its therapeutic application to acetaminophen-induced acute liver failure. Biol. Pharm. Bull. 42(7), 1199–1206 (2019). https://doi.org/10.1248/bpb.b19-00152
P. Boonruamkaew, P. Chonpathompikunlert, Y. Nagasaki, Redox nanoparticle therapeutics for acetaminophen-induced hepatotoxicity in mice. Oxid. Med. Cell Longev. 2016, 4984597 (2016). https://doi.org/10.1155/2016/4984597
L. Li, H. Wang, Z.Y. Ong, K. Xu, P.L.R. Ee et al., Polymer- and lipid-based nanoparticle therapeutics for the treatment of liver diseases. Nano Today 5(4), 296–312 (2010). https://doi.org/10.1016/j.nantod.2010.06.007
H.L. Wang, C.A. Thorling, X.W. Liang, K.R. Bridle, J.E. Grice et al., Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J. Mater. Chem. B 3(6), 939–958 (2015). https://doi.org/10.1039/c4tb01611d
G.-Z. Jin, A. Chakraborty, J.-H. Lee, J.C. Knowles, H.-W. Kim, Targeting with nanoparticles for the therapeutic treatment of brain diseases. J. Tissue Eng. 11, 1–13 (2020). https://doi.org/10.1177/2041731419897460
Z. Liu, Y. Li, W. Li, C. Xiao, D. Liu et al., Multifunctional nanohybrid based on porous silicon nanoparticles, gold nanoparticles, and acetalated dextran for liver regeneration and acute liver failure theranostics. Adv. Mater. 30(24), 1703393 (2018). https://doi.org/10.1002/adma.201703393
V.C. Cogger, G.P. McNerney, T. Nyunt, L.D. DeLeve, P. McCourt et al., Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations. J. Struct. Biol. 171(3), 382–388 (2010). https://doi.org/10.1016/j.jsb.2010.06.001
V. Moenkemoeller, M. Schuettpelz, P. McCourt, K. Sorensen, B. Smedsrod et al., Imaging fenestrations in liver sinusoidal endothelial cells by optical localization microscopy. Phys. Chem. Chem. Phys. 16(24), 12576–12581 (2014). https://doi.org/10.1039/c4cp01574f
Y. Liu, Y. Hu, L. Huang, Influence of polyethylene glycol density and surface lipid on pharmacokinetics and biodistribution of lipid-calcium-phosphate nanoparticles. Biomaterials 35(9), 3027–3034 (2014). https://doi.org/10.1016/j.biomaterials.2013.12.022
E.L. Romero, M.J. Morilla, J. Regts, G.A. Koning, G.L. Scherphof, On the mechanism of hepatic transendothelial passage of large liposomes. FEBS Lett. 448(1), 193–196 (1999). https://doi.org/10.1016/s0014-5793(99)00364-6
C. Ergen, F. Heymann, W. Al Rawashdeh, F. Gremse, M. Bartneck et al., Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles. Biomaterials 114, 106–120 (2017). https://doi.org/10.1016/j.biomaterials.2016.11.009
A. Pietrzak-Nguyen, M. Fichter, M. Dedters, L. Pretsch, S.H. Gregory et al., Enhanced in vivo targeting of murine nonparenchymal liver cells with monophosphoryl lipid a functionalized microcapsules. Biomacromol 15(7), 2378–2388 (2014). https://doi.org/10.1021/bm5006728
K. Yanagisawa, F. Moriyasu, T. Miyahara, M. Yuki, H. Iijima, Phagocytosis of ultrasound contrast agent microbubbles by kupffer cells. Ultrasound Med. Biol. 33(2), 318–325 (2007). https://doi.org/10.1016/j.ultrasmedbio.2006.08.008
S.M. Moghimi, A.C. Hunter, Capture of stealth nanoparticles by the body’s defences. Crit. Rev. Ther. Drug Carrier Syst. 18(6), 527–550 (2001)
S.-H. Cheng, F.-C. Li, J.S. Souris, C.-S. Yang, F.-G. Tseng et al., Visualizing dynamics of sub-hepatic distribution of nanoparticles using intravital multiphoton fluorescence microscopy. ACS Nano 6(5), 4122–4131 (2012). https://doi.org/10.1021/nn300558p
K. Xiao, Y. Li, J. Luo, J.S. Lee, W. Xiao et al., The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32(13), 3435–3446 (2011). https://doi.org/10.1016/j.biomaterials.2011.01.021
L. Brannon-Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 64, 206–212 (2012). https://doi.org/10.1016/j.addr.2012.09.033
R.A. Petros, J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9(8), 615–627 (2010). https://doi.org/10.1038/nrd2591
L. Kong, J. Qiu, W. Sun, J. Yang, M. Shen et al., Multifunctional PEI-entrapped gold nanoparticles enable efficient delivery of therapeutic siRNA into glioblastoma cells. Biomater. Sci. 5(2), 258–266 (2017). https://doi.org/10.1039/c6bm00708b
Y.C. Li, X.H. Xu, Nanomedicine solutions to intricate physiological -pathological barriers and molecular mechanisms of tumor multidrug resistance. J. Control Release 323, 483–501 (2020). https://doi.org/10.1016/j.jconrel.2020.05.007
M.A. Dobrovolskaia, S.E. McNeil, Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2(8), 469–478 (2007). https://doi.org/10.1038/nnano.2007.223
B. Smedsrød, Clearance function of scavenger endothelial cells. Comp. Hepatol. 3(Suppl 1), S22 (2004). https://doi.org/10.1186/1476-5926-2-s1-s22
P.H. Weigel, J.H.N. Yik, Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochima. Biophys. Acta Gen Subj. 1572(2–3), 341–363 (2002). https://doi.org/10.1016/s0304-4165(02)00318-5
N. Mishra, N.P. Yadav, V.K. Rai, P. Sinha, K.S. Yadav et al., Efficient hepatic delivery of drugs: novel strategies and their significance. Biomed. Res. Int. 2013, 382184 (2013). https://doi.org/10.1155/2013/382184
J.U. Baenziger, D. Fiete, Galactose and n-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell 22, 611–620 (1980). https://doi.org/10.1016/0092-8674(80)90371-2
K.M. Kamruzzaman Selim, Y.S. Ha, S.J. Kim, Y. Chang, T.J. Kim et al., Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials 28(4), 710–716 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.014
F. Suriano, R. Pratt, J.P. Tan, N. Wiradharma, A. Nelson et al., Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery. Biomaterials 31(9), 2637–2645 (2010). https://doi.org/10.1016/j.biomaterials.2009.12.022
T. Terada, M. Iwai, S. Kawakami, F. Yamashita, M. Hashida, Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J. Control Release 111(3), 333–342 (2006). https://doi.org/10.1016/j.jconrel.2005.12.023
Y. Cao, Y. Gu, H. Ma, J. Bai, L. Liu et al., Self-assembled nanoparticle drug delivery systems from galactosylated polysaccharide-doxorubicin conjugate loaded doxorubicin. Int. J. Biol. Macromol. 46(2), 245–249 (2010). https://doi.org/10.1016/j.ijbiomac.2009.11.008
H.F. Liang, C.T. Chen, S.C. Chen, A.R. Kulkarni, Y.L. Chiu et al., Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 27(9), 2051–2059 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.027
S. Diez, G. Navarro, C.T. de Ilarduya, In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma. J. Gene Med. 11(1), 38–45 (2009). https://doi.org/10.1002/jgm.1273
X.R. Qi, W.W. Yan, J. Shi, Hepatocytes targeting of cationic liposomes modified with soybean sterylglucoside and polyethylene glycol. World J. Gastroenterol. 11(32), 4947–4952 (2005). https://doi.org/10.3748/wjg.v11.i32.4947
W.I. Weis, M.E. Taylor, K. Drickamer, The c-type lectin superfamily in the immune system. Immunol. Rev. 163(1), 19–34 (1998). https://doi.org/10.1111/j.1600-065X.1998.tb01185.x
P. Opanasopit, M. Nishikawa, F. Yamashita, Y. Takakura, M. Hashida, Pharmacokinetic analysis of lectin-dependent biodistribution of fucosylated bovine serum albumin: a possible carrier for kupffer cells. J. Drug Target. 9(5), 341–351 (2001). https://doi.org/10.3109/10611860108998770
Y. Higuchi, M. Nishikawa, S. Kawakami, F. Yamashita, M. Hashida, Uptake characteristics of mannosylated and fucosylated bovine serum albumin in primary cultured rat sinusoidal endothelial cells and kupffer cells. Int. J. Pharm. 287(1–2), 147–154 (2004). https://doi.org/10.1016/j.ijpharm.2004.08.021
H. Yukawa, M. Watanabe, N. Kaji, Y. Okamoto, M. Tokeshi et al., Monitoring transplanted adipose tissue-derived stem cells combined with heparin in the liver by fluorescence imaging using quantum dots. Biomaterials 33(7), 2177–2186 (2012). https://doi.org/10.1016/j.biomaterials.2011.12.009
G.C. Chen, S.Y. Lin, D.H. Huang, Y.J. Zhang, C.Y. Li et al., Revealing the fate of transplanted stem cells in vivo with a novel optical imaging strategy. Small 14(3), 10 (2018). https://doi.org/10.1002/smll.201702679
J.W. Bulte, D.L. Kraitchman, Iron oxide mr contrast agents for molecular and cellular imaging. NMR Biomed. 17(7), 484–499 (2004). https://doi.org/10.1002/nbm.924
J. Puppi, M. Modo, A. Dhawan, S.C. Lehec, R.R. Mitry et al., Ex vivo magnetic resonance imaging of transplanted hepatocytes in a rat model of acute liver failure. Cell Transplant. 23(3), 329–343 (2014). https://doi.org/10.3727/096368913x663596
Y.J. Xu, L. Dong, Y. Lu, L.C. Zhang, D. An et al., Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. Nanoscale 8(3), 1684–1690 (2016). https://doi.org/10.1039/c5nr07023f
F.Q. Fan, Z.X. He, L.L. Kong, Q.H. Chen, Q. Yuan et al., Pharmacological targeting of kinases mst1 and mst2 augments tissue repair and regeneration. Sci. Transl. Med. 8(352), 352ra108 (2016). https://doi.org/10.1126/scitranslmed.aaf2304
K.H. Min, H.S. Min, H.J. Lee, D.J. Park, J.Y. Yhee et al., Ph-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 9(1), 134–145 (2015). https://doi.org/10.1021/nn506210a
C. Kang, W. Cho, M. Park, J. Kim, S. Park et al., H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics. Biomaterials 85, 195–203 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.070
G.-W. Kim, C. Kang, Y.-B. Oh, M.-H. Ko, J.-H. Seo et al., Ultrasonographic imaging and anti-inflammatory therapy of muscle and tendon injuries using polymer nanoparticles. Theranostics 7(9), 2463–2476 (2017). https://doi.org/10.7150/thno.18922
S. Son, H.S. Min, D.G. You, B.S. Kim, I.C. Kwon, Echogenic nanoparticles for ultrasound technologies: evolution from diagnostic imaging modality to multimodal theranostic agent. Nano Today 9(4), 525–540 (2014). https://doi.org/10.1016/j.nantod.2014.06.002
S. Wei, N. Fu, Y. Sun, Z. Yang, L. Lei et al., Targeted contrast-enhanced ultrasound imaging of angiogenesis in an orthotopic mouse tumor model of renal carcinoma. Ultrasound Med. Biol. 40(6), 1250–1259 (2014). https://doi.org/10.1016/j.ultrasmedbio.2013.12.001
Y. Go, H. Lee, L. Jeong, S. Sun, E. Hong et al., Acid-triggered echogenic nanoparticles for contrast-enhanced ultrasound imaging and therapy of acute liver failure. Biomaterials 186, 22–30 (2018). https://doi.org/10.1016/j.biomaterials.2018.09.034
B. Kim, E. Lee, Y. Kim, S. Park, G. Khang et al., Dual acid-responsive micelle-forming anticancer polymers as new anticancer therapeutics. Adv. Funct. Mater. 23(40), 5091–5097 (2013). https://doi.org/10.1002/adfm201300871
D. Yoo, K. Guk, H. Kim, G. Khang, D. Wu, D. Lee, Antioxidant polymeric nanoparticles as novel therapeutics for airway inflammatory diseases. Int. J. Pharm. 450(1–2), 87–94 (2013). https://doi.org/10.1016/j.ijpharm.2013.04.028
S. Fujisawa, T. Atsumi, M. Ishihara, Y. Kadoma, Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res. 24(2b), 563–569 (2004)
M. Baker, Deceptive curcumin offers cautionary tale for chemists. Nature 541(7636), 144–145 (2017). https://doi.org/10.1038/541144a
K.M. Nelson, J.L. Dahlin, J. Bisson, J. Graham, G.F. Pauli et al., The essential medicinal chemistry of curcumin. J. Med. Chem. 60(5), 1620–1637 (2017). https://doi.org/10.1021/acs.jmedchem.6b00975
S.K. Libutti, G.F. Paciotti, A.A. Byrnes, H.R. Alexander Jr., W.E. Gannon et al., Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res. 16(24), 6139–6149 (2010). https://doi.org/10.1158/1078-0432.Ccr-10-0978
Y.X. Wang, Superparamagnetic iron oxide based mri contrast agents: current status of clinical application. Quant. Imaging Med. Surg. 1(1), 35–40 (2011). https://doi.org/10.3978/j.issn.2223-4292.2011.08.03
Y.X. Wang, S.M. Hussain, G.P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11(11), 2319–2331 (2001). https://doi.org/10.1007/s003300100908
M.R.A. Abdollah, T.J. Carter, C. Jones, T.L. Kalber, V. Rajkumar et al., Fucoidan prolongs the circulation time of dextran-coated iron oxide nanoparticles. ACS Nano 12(2), 1156–1169 (2018). https://doi.org/10.1021/acsnano.7b06734
T.K. Jain, M.K. Reddy, M.A. Morales, D.L. Leslie-Pelecky, V. Labhasetwar, Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 5(2), 316–327 (2008). https://doi.org/10.1021/mp7001285
M. Levy, N. Luciani, D. Alloyeau, D. Elgrabli, V. Deveaux et al., Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 32(16), 3988–3999 (2011). https://doi.org/10.1016/j.biomaterials.2011.02.031
M.R. Ali, M.A. Rahman, Y. Wu, T. Han, X. Peng et al., Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl. Acad. Sci. U.S.A. 114(15), e3110–e3118 (2017). https://doi.org/10.1073/pnas.1619302114
S.K. Balasubramanian, J. Jittiwat, J. Manikandan, C.N. Ong, L.E. Yu et al., Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31(8), 2034–2042 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.079
L.L. Estevanato, L.M. Lacava, L.C. Carvalho, R.B. Azevedo, O. Silva et al., Long-term biodistribution and biocompatibility investigation of dextran-coated magnetite nanoparticle using mice as the animal model. J. Biomed. Nanotechnol. 8(2), 301–308 (2012). https://doi.org/10.1166/jbn.2012.1376
J. Kolosnjaj-Tabi, Y. Javed, L. Lartigue, J. Volatron, D. Elgrabli et al., The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano 9(8), 7925–7939 (2015). https://doi.org/10.1021/acsnano.5b00042
X. Yang, M. Yang, B. Pang, M. Vara, Y. Xia, Gold nanomaterials at work in biomedicine. Chem. Rev. 115(19), 10410–10488 (2015). https://doi.org/10.1021/acs.chemrev.5b00193
J. Wendon, J. Cordoba, A. Dhawan, F.S. Larsen, M. Manns et al., Easl clinical practical guidelines on the management of acute (fulminant) liver failure. J. Hepatol. 66(5), 1047–1081 (2017). https://doi.org/10.1016/j.jhep.2016.12.003
M. Schuldiner, O. Yanuka, J. Itskovitz-Eldor, D.A. Melton, N. Benvenisty, Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 97(21), 11307–11312 (2000). https://doi.org/10.1073/pnas.97.21.11307
H.C. Cho, E. Marbán, Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circ. Res. 106(4), 674–685 (2010). https://doi.org/10.1161/circresaha.109.212936
S. Snykers, J. De Kock, V. Rogiers, T. Vanhaecke, In vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art. Stem Cells 27(3), 577–605 (2009). https://doi.org/10.1634/stemcells.2008-0963
J. Fan, Y. Sun, S. Wang, Y. Li, X. Zeng et al., Inhibition of autophagy overcomes the nanotoxicity elicited by cadmium-based quantum dots. Biomaterials 78, 102–114 (2016). https://doi.org/10.1016/j.biomaterials.2015.11.029
Y. Li, H. Zhu, S. Wang, X. Qian, J. Fan et al., Interplay of oxidative stress and autophagy in PAMAM dendrimers-induced neuronal cell death. Theranostics 5(12), 1363–1377 (2015). https://doi.org/10.7150/thno.13181
S. Wang, Y. Li, J. Fan, Z. Wang, X. Zeng et al., The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials 35(26), 7588–7597 (2014). https://doi.org/10.1016/j.biomaterials.2014.05.029
C.F. Jones, R.A. Campbell, A.E. Brooks, S. Assemi, S. Tadjiki et al., Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano 6(11), 9900–9910 (2012). https://doi.org/10.1021/nn303472r
Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/c8cs00618k
Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control Release 240(28), 332–348 (2016). https://doi.org/10.1016/j.jconrel.2016.01.020
R. Cheng, F. Meng, C. Deng, H.A. Klok, Z. Zhong, Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14), 3647–3657 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.084
Y. Jiang, R. Tang, B. Duncan, Z. Jiang, B. Yan et al., Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules. Angew. Chem. Int. Ed. 54(2), 506–510 (2015). https://doi.org/10.1002/anie.201409161
A. El-Sayed, H. Harashima, Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol. Ther. 21(6), 1118–1130 (2013). https://doi.org/10.1038/mt.2013.54
J. Kurreck, Rna interference: from basic research to therapeutic applications. Angew. Chem. Int. Ed. 48(8), 1378–1398 (2009). https://doi.org/10.1002/anie.200802092
Y.J. Kwon, Before and after endosomal escape: roles of stimuli-converting siRNA/polymer interactions in determining gene silencing efficiency. Acc. Chem. Res. 45(7), 1077–1088 (2012). https://doi.org/10.1021/ar200241v
A. Higuchi, Q.D. Ling, Y. Chang, S.T. Hsu, A. Umezawa, Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 113(5), 3297–3328 (2013). https://doi.org/10.1021/cr300426x
A. Higuchi, S.S. Kumar, G. Benelli, A.A. Alarfaj, M.A. Munusamy et al., Stem cell therapies for reversing vision loss. Trends Biotechnol. 35(11), 1102–1117 (2017). https://doi.org/10.1016/j.tibtech.2017.06.016
A. Higuchi, N.J. Ku, Y.C. Tseng, C.H. Pan, H.F. Li et al., Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab. Invest. 97(10), 1167–1179 (2017). https://doi.org/10.1038/labinvest.2017.100
J.N. Tiwari, Y.K. Seo, T. Yoon, W.G. Lee, W.J. Cho et al., Accelerated bone regeneration by two-photon photoactivated carbon nitride nanosheets. ACS Nano 11(1), 742–751 (2017). https://doi.org/10.1021/acsnano.6b07138