Terahertz Generation Using Implanted InGaAs Photomixers and Multi-wavelength Quantum Dot Lasers
Corresponding Author: H. C. Liu
Nano-Micro Letters,
Vol. 4 No. 1 (2012), Article Number: 10-13
Abstract
We report on a study of terahertz (THz) generation using implanted InGaAs photomixers and multi-wavelength quantum dot lasers. We carry out InGaAs materials growth, optical characterization, device design and fabrication, and photomixing experiments. This approach is capable of generating a comb of electromagnetic radiation from microwave to terahertz. For shortening photomixer carrier lifetime, we employ proton implantation into an epitaxial layer of lattice matched InGaAs grown on InP. Under a 1.55 μm multi-mode InGaAs/InGaAsP quantum dot laser excitation, a frequency comb with a constant frequency spacing of 50 GHz generated on the photomixer is measured, which corresponds to the beats of the laser longitudinal modes. The measurement is performed with a Fourier transform infrared spectrometer. This approach affords a convenient method to achieve a broadband multi-peak coherent THz source.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, Nature 417, 156 (2002). http://dx.doi.org/10.1038/417156a
- S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Matyas, C. Jirauscheck, Q. Hu and H. C. Liu, Optics Express, in press.
- J. M. Dai, J. Liu and X. C. Zhang, IEEE J. Sel. Top. Quant. Electron. 17, 183 (2011). http://dx.doi.org/10.1109/JSTQE.2010.2047007
- K. Kawase, J. Shikata and H. Ito, J. Phys. D: Appl. Phys. 35, R1 (2001). http://dx.doi.org/10.1088/0022-3727/35/3/201
- W. Shi, Y. J. Ding, N. Fernelius and K. Vodopyanov, Opt. Lett. 27, 1454 (2002). http://dx.doi.org/10.1364/OL.27.001454
- S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, J. Appl. Phys. 109, 061301-1 (2011). http://dx.doi.org/10.1063/1.3552291
- E. R. Brown, Inter. J. High Speed Electron. Syst. 13, 497 (2003). http://dx.doi.org/10.1142/S0129156403001818
- N. Chimot, J. Mangeney, P. Crozat, J. M. Lourtioz, K. Blary, J. F. Lampin, G. Mouret, D. Bigourd and E. Fertein, Optics Express 14, 1856 (2006). http://dx.doi.org/10.1364/OE.14.001856
- J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary and J. F. Lampin, Appl. Phys. Lett. 91, 241102–1 (2007).
References
R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, Nature 417, 156 (2002). http://dx.doi.org/10.1038/417156a
S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Matyas, C. Jirauscheck, Q. Hu and H. C. Liu, Optics Express, in press.
J. M. Dai, J. Liu and X. C. Zhang, IEEE J. Sel. Top. Quant. Electron. 17, 183 (2011). http://dx.doi.org/10.1109/JSTQE.2010.2047007
K. Kawase, J. Shikata and H. Ito, J. Phys. D: Appl. Phys. 35, R1 (2001). http://dx.doi.org/10.1088/0022-3727/35/3/201
W. Shi, Y. J. Ding, N. Fernelius and K. Vodopyanov, Opt. Lett. 27, 1454 (2002). http://dx.doi.org/10.1364/OL.27.001454
S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, J. Appl. Phys. 109, 061301-1 (2011). http://dx.doi.org/10.1063/1.3552291
E. R. Brown, Inter. J. High Speed Electron. Syst. 13, 497 (2003). http://dx.doi.org/10.1142/S0129156403001818
N. Chimot, J. Mangeney, P. Crozat, J. M. Lourtioz, K. Blary, J. F. Lampin, G. Mouret, D. Bigourd and E. Fertein, Optics Express 14, 1856 (2006). http://dx.doi.org/10.1364/OE.14.001856
J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary and J. F. Lampin, Appl. Phys. Lett. 91, 241102–1 (2007).