The Prospective Two-Dimensional Graphene Nanosheets: Preparation, Functionalization and Applications
Corresponding Author: Yafei Zhang
Nano-Micro Letters,
Vol. 4 No. 1 (2012), Article Number: 1-9
Abstract
Graphene, as an intermediate phase between fullerene and carbon nanotube, has aroused much interests among the scientific community due to its outstanding electronic, mechanical, and thermal properties. With excellent electrical conductivity of 6000 S/cm, which is independent on chirality, graphene is a promising material for high-performance nanoelectronics, transparent conductor, as well as polymer composites. On account of its Young’s Modulus of 1 TPa and ultimate strength of 130 GPa, isolated graphene sheet is considered to be among the strongest materials ever measured. Comparable with the single-walled carbon nanotube bundle, graphene has a thermal conductivity of 5000 W/(m·K), which suggests a potential application of graphene in polymer matrix for improving thermal properties of the graphene/polymer composite. Furthermore, graphene exhibits a very high surface area, up to a value of 2630 m2/g. All of these outstanding properties suggest a wide application for this nanometer-thick, two-dimensional carbon material. This review article presents an overview of the significant advancement in graphene research: preparation, functionalization as well as the properties of graphene will be discussed. In addition, the feasibility and potential applications of graphene in areas, such as sensors, nanoelectronics and nanocomposites materials, will also be reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Jia, J. Campos-Delgado, M. Terrones, V. Meunier and M. S. Dresselhaus, Nanoscale 3, 86 (2011). http://dx.doi.org/10.1039/c0nr00600a
- O. C. Compton and S. T. Nguyen, Small 6, 711 (2010). http://dx.doi.org/10.1002/smll.200901934
- B. Z. Jang and A. Zhamu, J. Mater. Sci. 43, 5092 (2008). http://dx.doi.org/10.1007/s10853-008-2755-2
- W. Choi, I. Lahiri and R. Seelaboyina, Crit. Rev. Solid State Mater. Sci. 35, 52 (2010). http://dx.doi.org/10.1080/10408430903505036
- C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752 (2009). http://dx.doi.org/10.1002/anie.200901678
- S. Park and R. S. Ruoff, Nat. Nanotechnol. 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58
- J. Kim, F. Kim and J. Huang, Materialstoday 13, 28 (2010). http://dx.doi.org/10.1016/S1369-7021(10)70031-6
- C. N. R. Rao, A. K. Sood, Rakesh Voggu and K. S. Subrahmanyam, J. Phys. Chem. Lett. 1, 572 (2010). http://dx.doi.org/10.1021/jz9004174
- A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849
- X. Xie, L. Ju, X. Feng, Y. Sun, R Zhou, K. Liu, S. Fan, Q. Li and K. Jiang, Nano Lett. 9, 2565 (2009). http://dx.doi.org/10.1021/nl900677y
- P. Lauffer, K.V. Emtsev, R. Graupner, T. Seyller and L. Ley, Phys. Rev. B 77, 155426 (2008). http://dx.doi.org/10.1103/PhysRevB.77.155426
- X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245
- X. Li, W. Cai, L. Colombo and R. S. Ruoff, Nano Lett. 9, 4268 (2009). http://dx.doi.org/10.1021/nl902515k
- V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, Nat. Nanotechnol. 4, 25 (2009). http://dx.doi.org/10.1038/nnano.2008.329
- G. I. Titelman, V. Gelman, S. Bron, R. L. Khalfin, Y. Cohen and H. BiancoPeled, Carbon 43, 64 (2005). http://dx.doi.org/10.1016/j.carbon.2004.10.035
- D. Cai and M. Song, J. Mater. Chem. 17, 3678 (2007). http://dx.doi.org/10.1039/b705906j
- J. I. Paredes, S. Rodil-Villar, A. Martínez-Alonso and J. M. D. Tascón, Langmuir 24, 10560 (2008). http://dx.doi.org/10.1021/la801744a
- B. C. Brodie, Philos. Trans. R. Soc. London. 149, 249 (1859). http://dx.doi.org/10.1098/rstl.1859.0013
- L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481 (1898). http://dx.doi.org/10.1002/cber.18980310237
- W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017
- D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010). http://dx.doi.org/10.1039/b917103g
- S. Gilje, S. Han, M.S. Wang, K. L. Wang and R. B. Kaner, Nano Lett. 7, 3394 (2007). http://dx.doi.org/10.1021/nl0717715
- Y. Y. Liang, D. Q. Wu, X. L. Feng, K. Müllen, Adv. Mater. 21, 1679 (2009). http://dx.doi.org/10.1002/adma.200803160
- J. F. Che, L. Y. Shen and Y. H. Xiao, J. Mater. Chem. 20, 1722 (2010). http://dx.doi.org/10.1039/b922667b
- Z. J. Fan, K. Wang, T. Wei, J. Yan, L. P. Song and B. Shao, Carbon 48, 1670 (2010). http://dx.doi.org/10.1016/j.carbon.2009.12.006
- J. L. Zhang, H. Y. Yang, G. X. Shen, P. Cheng, J. Y. Zhang and S. W. Guo, Chem. Commun. 46, 1112 (2010). http://dx.doi.org/10.1039/b917705a
- Y. Chen, X. Zhang, P. Yu and Y. W. Ma, Chem. Commun. 4527 (2009). http://dx.doi.org/10.1039/b907723e
- G. Williams, B. Seger and P.V. Kamat, ACS Nano 2, 1487 (2008). http://dx.doi.org/10.1021/nn800251f
- H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang and X. H. Xia, ACS Nano 3, 2653 (2009). http://dx.doi.org/10.1021/nn900227d
- Z. Li, Y. G. Yao, Z. Y. Lin, K. S. Moon, W. Lin and C. P. Wong, J. Mater. Chem. 20, 4781 (2010). http://dx.doi.org/10.1039/c0jm00168f
- K. P. Loh, Q. Bao, P. K. Ang and J. Yang, J. Mater. Chem. 20, 2277 (2010). http://dx.doi.org/10.1039/b920539j
- X. Wu and P. Liu, Macromol. Res. 18, 101008 (2010). http://dx.doi.org/10.1007/s13233-010-1014-y
- M. Quintana, K. Spyrou, M. Grzelczak, W. R. Browne, P. Rudolf and M. Prato, ACS Nano 4, 3527 (2010). http://dx.doi.org/10.1021/nn100883p
- J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang and J. M. Tour, J. Am. Chem. Soc. 130, 16201 (2008). http://dx.doi.org/10.1021/ja806499w
- Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Y. Zhang and Y. Chen, Adv. Mater. 21, 1275 (2009). http://dx.doi.org/10.1002/adma.200801617
- J. F. Shen, N. Li, M. Shi, Y. Z. Hu and M. X. Ye, J. Colloid Interface Sci. 348, 377 (2010). http://dx.doi.org/10.1016/j.jcis.2010.04.055
- S. Alwarappan, C. Liu, A. Kumar and C. Li, J. Phys. Chem. C 114, 12920 (2010). http://dx.doi.org/10.1021/jp103273z
- Q. Yang, X. Pan, F. Huang and K. Li, J. Phys. Chem. C 114, 3811 (2010). http://dx.doi.org/10.1021/jp910232x
- H. Bai, Y. Xu, L. Zhao, C. Li and G. Shi, Chem. Commun. 13, 1667 (2009). http://dx.doi.org/10.1039/b821805f
- E. Choi, T. H. Han, J. Hong, J. Kim, S. H. Lee, H. W. Kim and S. O. Kim, J. Mater. Chem. 20, 1907 (2010). http://dx.doi.org/10.1039/b919074k
- H. Liu, J. Gao, M. Xue, N. Zhu, M. Zhang and T. Cao, Langmuir 25, 12006 (2009). http://dx.doi.org/10.1021/la9029613
- A. Ghosh, K. V. Rao, S. J. George and C. N. R. Rao, Chem. Eur. J. 16, 2700 (2010). http://dx.doi.org/10.1002/chem.200902828
- G. Ko, H. Y. Kim, J. Ahn, Y. M. Park, K. Y. Lee and J. Kim, Curr. Appl. Phys. 10, 1002 (2010). http://dx.doi.org/10.1016/j.cap.2009.12.024
- F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater. 6, 652 (2007). http://dx.doi.org/10.1038/nmat1967
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature 438, 197 (2005). http://dx.doi.org/10.1038/nature04233
- K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim, Science 315, 1379 (2007). http://dx.doi.org/10.1126/science.1137201
- J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner and B. H. Weiller, ACS Nano 3, 201 (2009). http://dx.doi.org/10.1021/nn800593m
- J. Lu, L. T. Drzal, R. M. Worden and I. Lee, Chem. Mater. 19, 6240 (2007). http://dx.doi.org/10.1021/cm702133u
- R. S. Sundaram, C. G. Navarro, K. Balasubramaniam, M. Burghard and K. Kern, Adv. Mater. 20, 3050 (2008). http://dx.doi.org/10.1002/adma.200800198
- Y. Zhu, S. Murali, W. Cai, X. Li, J. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater. 22, 3906 (2010). http://dx.doi.org/10.1002/adma.201001068
- S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen and R. S. Ruoff, Nano Lett. 7, 1888 (2007). http://dx.doi.org/10.1021/nl070477+
- H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, ACS Nano 2, 463 (2008). http://dx.doi.org/10.1021/nn700375n
- X. Wang, L. J. Zhi and K. Mullen, Nano Lett. 8, 323 (2008). http://dx.doi.org/10.1021/nl072838r
- G. Eda, G. Fanchini and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008). http://dx.doi.org/10.1038/nnano.2008.83
- L. J. Cote, F. Kim and J. X. Huang, J. Am. Chem. Soc. 131, 1043 (2009). http://dx.doi.org/10.1021/ja806262m
- D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451
- Y. Zhu, W. Cai, R. D. Piner, A. Velamakanni and R. S. Ruoff, Appl. Phys. Lett. 95, 103104 (2009). http://dx.doi.org/10.1063/1.3212862
- S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg and J. N. Coleman, Small 6, 458 (2009). http://dx.doi.org/10.1002/smll.200901162
- C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour and A. R. Barron, Nano Lett. 9, 3460 (2009). http://dx.doi.org/10.1021/nl9016623
- D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, Nano Lett. 9, 1752 (2009). http://dx.doi.org/10.1021/nl803279t
- X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, Nano Lett. 9, 4359 (2009). http://dx.doi.org/10.1021/nl902623y
- A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett. 9, 3087 (2009). http://dx.doi.org/10.1021/nl901829a
- J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008). http://dx.doi.org/10.1038/nnano.2008.58
- Y. Matsuo, K. Tahara and Y. Sugie, Chem. Mater. 9, 1 (1998).
- J. Y. Xu, Y. Hu and L. Song, Polym. Degrad. Stab. 73, 29 (2001). http://dx.doi.org/10.1016/S0141-3910(01)00046-5
- J. Xu, Y. Hu, L. Song, Q. Wang, W. Fan and Z. Chen, Carbon 40, 450 (2002). http://dx.doi.org/10.1016/S0008-6223(01)00134-8
- H. J. Salavagione, G. Martinez and M. A. Gomez, J. Mater. Chem. 19, 5027 (2009). http://dx.doi.org/10.1039/b904232f
- Y. Cao, J. Feng and P. Wu, Carbon 48, 1683 (2010). http://dx.doi.org/10.1016/j.carbon.2009.12.061
- S. Stankovich, D. Dikin, G. H. B. Dommett1, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Nature 442, 282 (2006). http://dx.doi.org/10.1038/nature04969
- S. Stankovich, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Carbon, 44, 3342 (2006). http://dx.doi.org/10.1016/j.carbon.2006.06.004
- S. H. Lee, D. R. Dreyer, J. A. A. Velamakanni, R. D. Piner, S. Park, Y. Zhu, S. O. Kim, C. W. Bielawski and R. S. Ruoff, Macromol. Rapid Commun. 31, 281 (2010). http://dx.doi.org/10.1002/marc.200900641
- T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’homme and L. C. Brinson, Nat. Nanotechnol. 3, 327 (2008). http://dx.doi.org/10.1038/nnano.2008.96
- S. Ganguli, A. K. Roy and D. P. Anderson, Carbon 46, 806 (2008). http://dx.doi.org/10.1016/j.carbon.2008.02.008
- M. A. Rafiee, J. Rafiee, Z. Z. Yu and N. Koratkar, Appl. Phys. Lett. 95, 3 (2009). http://dx.doi.org/10.1063/1.3269637
- S. R. Wang, M. Tambraparni, J. J. Qiu, J. Tipton and D. Dean, Macromolecules 42, 5251 (2009). http://dx.doi.org/10.1021/ma900631c
- A. P. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova and R. C. Haddon, J. Phys. Chem. C 111, 7565 (2007). http://dx.doi.org/10.1021/jp071761s
- H. Kim and C. W. Macosko, Macromolecules 41, 3317 (2008). http://dx.doi.org/10.1021/ma702385h
- R. Verdejo, F. Barroso-Bujans, M. A. Rodriguez-Perez, J. A. de Saja and M. A. Lopez-Manchado, J. Mater. Chem. 18, 2221 (2008). http://dx.doi.org/10.1039/b718289a
- D. Cai, K. Yusoh and M. Song, Nanotechnology 20, 085712 (2009). http://dx.doi.org/10.1088/0957-4484/20/8/085712
- Y. R. Lee, A. V. Raghu, H. M. Jeong and B. K. Kim, Macromol. Chem. Phys. 210, 1247 (2009). http://dx.doi.org/10.1002/macp.200900157
- S. Ansari and E. P. Giannelis, J. Polym. Sci., Part B: Polym. Phys. 47, 888 (2009). http://dx.doi.org/10.1002/polb.21695
- H. Kim and C. W. Macosko, Polymer 50, 3797 (2009). http://dx.doi.org/10.1016/j.polymer.2009.05.038
- X. S. Du, Z. Z. Yu, A. Dasari, J. Ma, M. S. Mo, Y. Z. Meng and Y. W. Mai, Chem. Mater. 20, 2066 (2008). http://dx.doi.org/10.1021/cm703285s
- Y. Du, N. T. Hu, H. W. Zhou, P. Li, P. Zhang, X. G. Zhao, G. D. Dang and C. H. Chen, Polym. Int. 58, 832 (2009). http://dx.doi.org/10.1002/pi.2602
- N. T. Hu, H. W. Zhou, G. D. Dang, X. H. Rao, C. H. Chen and W. J. Zhang, Polym. Int. 56, 655 (2007). http://dx.doi.org/10.1002/pi.2187
- J. Y. Jang, M. S. Kim, H. M. Jeong and C. M. Shin, Compos. Sci. Technol. 69, 186 (2009). http://dx.doi.org/10.1016/j.compscitech.2008.09.039
- W. P. Wang and C. Y. Pan, Polym. Eng. Sci. 44, 2335 (2004). http://dx.doi.org/10.1002/pen.20261
- J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao and Y. Chen, Carbon 47, 922 (2009). http://dx.doi.org/10.1016/j.carbon.2008.12.038
- P. Steurer, R. Wissert, R. Thomann and R. Mulhaupt, Macromol. Rapid Commun. 30, 316 (2009). http://dx.doi.org/10.1002/marc.200800754
- J. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. F. Ma, T. Y. Guo and Y. S. Chen, Adv. Funct. Mater. 19, 2297 (2009).http://dx.doi.org/10.1002/adfm.200801776
- T. Palacios, A. Hsu and H. Wang, IEEE Commun. Mag. 48, 122 (2010). http://dx.doi.org/10.1109/MCOM.2010.5473873
- C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz and J. Hone, Nat. Nanotech. 4, 861 (2009). http://dx.doi.org/10.1038/nnano.2009.267
- K. M. Milaninia, M. A. Baldo, A. Reina and J. Kong, Appl. Phys. Lett. 95, 183105 (2009). http://dx.doi.org/10.1063/1.3259415
References
X. Jia, J. Campos-Delgado, M. Terrones, V. Meunier and M. S. Dresselhaus, Nanoscale 3, 86 (2011). http://dx.doi.org/10.1039/c0nr00600a
O. C. Compton and S. T. Nguyen, Small 6, 711 (2010). http://dx.doi.org/10.1002/smll.200901934
B. Z. Jang and A. Zhamu, J. Mater. Sci. 43, 5092 (2008). http://dx.doi.org/10.1007/s10853-008-2755-2
W. Choi, I. Lahiri and R. Seelaboyina, Crit. Rev. Solid State Mater. Sci. 35, 52 (2010). http://dx.doi.org/10.1080/10408430903505036
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752 (2009). http://dx.doi.org/10.1002/anie.200901678
S. Park and R. S. Ruoff, Nat. Nanotechnol. 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58
J. Kim, F. Kim and J. Huang, Materialstoday 13, 28 (2010). http://dx.doi.org/10.1016/S1369-7021(10)70031-6
C. N. R. Rao, A. K. Sood, Rakesh Voggu and K. S. Subrahmanyam, J. Phys. Chem. Lett. 1, 572 (2010). http://dx.doi.org/10.1021/jz9004174
A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849
X. Xie, L. Ju, X. Feng, Y. Sun, R Zhou, K. Liu, S. Fan, Q. Li and K. Jiang, Nano Lett. 9, 2565 (2009). http://dx.doi.org/10.1021/nl900677y
P. Lauffer, K.V. Emtsev, R. Graupner, T. Seyller and L. Ley, Phys. Rev. B 77, 155426 (2008). http://dx.doi.org/10.1103/PhysRevB.77.155426
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245
X. Li, W. Cai, L. Colombo and R. S. Ruoff, Nano Lett. 9, 4268 (2009). http://dx.doi.org/10.1021/nl902515k
V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, Nat. Nanotechnol. 4, 25 (2009). http://dx.doi.org/10.1038/nnano.2008.329
G. I. Titelman, V. Gelman, S. Bron, R. L. Khalfin, Y. Cohen and H. BiancoPeled, Carbon 43, 64 (2005). http://dx.doi.org/10.1016/j.carbon.2004.10.035
D. Cai and M. Song, J. Mater. Chem. 17, 3678 (2007). http://dx.doi.org/10.1039/b705906j
J. I. Paredes, S. Rodil-Villar, A. Martínez-Alonso and J. M. D. Tascón, Langmuir 24, 10560 (2008). http://dx.doi.org/10.1021/la801744a
B. C. Brodie, Philos. Trans. R. Soc. London. 149, 249 (1859). http://dx.doi.org/10.1098/rstl.1859.0013
L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481 (1898). http://dx.doi.org/10.1002/cber.18980310237
W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017
D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010). http://dx.doi.org/10.1039/b917103g
S. Gilje, S. Han, M.S. Wang, K. L. Wang and R. B. Kaner, Nano Lett. 7, 3394 (2007). http://dx.doi.org/10.1021/nl0717715
Y. Y. Liang, D. Q. Wu, X. L. Feng, K. Müllen, Adv. Mater. 21, 1679 (2009). http://dx.doi.org/10.1002/adma.200803160
J. F. Che, L. Y. Shen and Y. H. Xiao, J. Mater. Chem. 20, 1722 (2010). http://dx.doi.org/10.1039/b922667b
Z. J. Fan, K. Wang, T. Wei, J. Yan, L. P. Song and B. Shao, Carbon 48, 1670 (2010). http://dx.doi.org/10.1016/j.carbon.2009.12.006
J. L. Zhang, H. Y. Yang, G. X. Shen, P. Cheng, J. Y. Zhang and S. W. Guo, Chem. Commun. 46, 1112 (2010). http://dx.doi.org/10.1039/b917705a
Y. Chen, X. Zhang, P. Yu and Y. W. Ma, Chem. Commun. 4527 (2009). http://dx.doi.org/10.1039/b907723e
G. Williams, B. Seger and P.V. Kamat, ACS Nano 2, 1487 (2008). http://dx.doi.org/10.1021/nn800251f
H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang and X. H. Xia, ACS Nano 3, 2653 (2009). http://dx.doi.org/10.1021/nn900227d
Z. Li, Y. G. Yao, Z. Y. Lin, K. S. Moon, W. Lin and C. P. Wong, J. Mater. Chem. 20, 4781 (2010). http://dx.doi.org/10.1039/c0jm00168f
K. P. Loh, Q. Bao, P. K. Ang and J. Yang, J. Mater. Chem. 20, 2277 (2010). http://dx.doi.org/10.1039/b920539j
X. Wu and P. Liu, Macromol. Res. 18, 101008 (2010). http://dx.doi.org/10.1007/s13233-010-1014-y
M. Quintana, K. Spyrou, M. Grzelczak, W. R. Browne, P. Rudolf and M. Prato, ACS Nano 4, 3527 (2010). http://dx.doi.org/10.1021/nn100883p
J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang and J. M. Tour, J. Am. Chem. Soc. 130, 16201 (2008). http://dx.doi.org/10.1021/ja806499w
Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Y. Zhang and Y. Chen, Adv. Mater. 21, 1275 (2009). http://dx.doi.org/10.1002/adma.200801617
J. F. Shen, N. Li, M. Shi, Y. Z. Hu and M. X. Ye, J. Colloid Interface Sci. 348, 377 (2010). http://dx.doi.org/10.1016/j.jcis.2010.04.055
S. Alwarappan, C. Liu, A. Kumar and C. Li, J. Phys. Chem. C 114, 12920 (2010). http://dx.doi.org/10.1021/jp103273z
Q. Yang, X. Pan, F. Huang and K. Li, J. Phys. Chem. C 114, 3811 (2010). http://dx.doi.org/10.1021/jp910232x
H. Bai, Y. Xu, L. Zhao, C. Li and G. Shi, Chem. Commun. 13, 1667 (2009). http://dx.doi.org/10.1039/b821805f
E. Choi, T. H. Han, J. Hong, J. Kim, S. H. Lee, H. W. Kim and S. O. Kim, J. Mater. Chem. 20, 1907 (2010). http://dx.doi.org/10.1039/b919074k
H. Liu, J. Gao, M. Xue, N. Zhu, M. Zhang and T. Cao, Langmuir 25, 12006 (2009). http://dx.doi.org/10.1021/la9029613
A. Ghosh, K. V. Rao, S. J. George and C. N. R. Rao, Chem. Eur. J. 16, 2700 (2010). http://dx.doi.org/10.1002/chem.200902828
G. Ko, H. Y. Kim, J. Ahn, Y. M. Park, K. Y. Lee and J. Kim, Curr. Appl. Phys. 10, 1002 (2010). http://dx.doi.org/10.1016/j.cap.2009.12.024
F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater. 6, 652 (2007). http://dx.doi.org/10.1038/nmat1967
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature 438, 197 (2005). http://dx.doi.org/10.1038/nature04233
K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim, Science 315, 1379 (2007). http://dx.doi.org/10.1126/science.1137201
J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner and B. H. Weiller, ACS Nano 3, 201 (2009). http://dx.doi.org/10.1021/nn800593m
J. Lu, L. T. Drzal, R. M. Worden and I. Lee, Chem. Mater. 19, 6240 (2007). http://dx.doi.org/10.1021/cm702133u
R. S. Sundaram, C. G. Navarro, K. Balasubramaniam, M. Burghard and K. Kern, Adv. Mater. 20, 3050 (2008). http://dx.doi.org/10.1002/adma.200800198
Y. Zhu, S. Murali, W. Cai, X. Li, J. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater. 22, 3906 (2010). http://dx.doi.org/10.1002/adma.201001068
S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen and R. S. Ruoff, Nano Lett. 7, 1888 (2007). http://dx.doi.org/10.1021/nl070477+
H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, ACS Nano 2, 463 (2008). http://dx.doi.org/10.1021/nn700375n
X. Wang, L. J. Zhi and K. Mullen, Nano Lett. 8, 323 (2008). http://dx.doi.org/10.1021/nl072838r
G. Eda, G. Fanchini and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008). http://dx.doi.org/10.1038/nnano.2008.83
L. J. Cote, F. Kim and J. X. Huang, J. Am. Chem. Soc. 131, 1043 (2009). http://dx.doi.org/10.1021/ja806262m
D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451
Y. Zhu, W. Cai, R. D. Piner, A. Velamakanni and R. S. Ruoff, Appl. Phys. Lett. 95, 103104 (2009). http://dx.doi.org/10.1063/1.3212862
S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg and J. N. Coleman, Small 6, 458 (2009). http://dx.doi.org/10.1002/smll.200901162
C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour and A. R. Barron, Nano Lett. 9, 3460 (2009). http://dx.doi.org/10.1021/nl9016623
D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, Nano Lett. 9, 1752 (2009). http://dx.doi.org/10.1021/nl803279t
X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, Nano Lett. 9, 4359 (2009). http://dx.doi.org/10.1021/nl902623y
A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett. 9, 3087 (2009). http://dx.doi.org/10.1021/nl901829a
J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008). http://dx.doi.org/10.1038/nnano.2008.58
Y. Matsuo, K. Tahara and Y. Sugie, Chem. Mater. 9, 1 (1998).
J. Y. Xu, Y. Hu and L. Song, Polym. Degrad. Stab. 73, 29 (2001). http://dx.doi.org/10.1016/S0141-3910(01)00046-5
J. Xu, Y. Hu, L. Song, Q. Wang, W. Fan and Z. Chen, Carbon 40, 450 (2002). http://dx.doi.org/10.1016/S0008-6223(01)00134-8
H. J. Salavagione, G. Martinez and M. A. Gomez, J. Mater. Chem. 19, 5027 (2009). http://dx.doi.org/10.1039/b904232f
Y. Cao, J. Feng and P. Wu, Carbon 48, 1683 (2010). http://dx.doi.org/10.1016/j.carbon.2009.12.061
S. Stankovich, D. Dikin, G. H. B. Dommett1, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Nature 442, 282 (2006). http://dx.doi.org/10.1038/nature04969
S. Stankovich, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Carbon, 44, 3342 (2006). http://dx.doi.org/10.1016/j.carbon.2006.06.004
S. H. Lee, D. R. Dreyer, J. A. A. Velamakanni, R. D. Piner, S. Park, Y. Zhu, S. O. Kim, C. W. Bielawski and R. S. Ruoff, Macromol. Rapid Commun. 31, 281 (2010). http://dx.doi.org/10.1002/marc.200900641
T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’homme and L. C. Brinson, Nat. Nanotechnol. 3, 327 (2008). http://dx.doi.org/10.1038/nnano.2008.96
S. Ganguli, A. K. Roy and D. P. Anderson, Carbon 46, 806 (2008). http://dx.doi.org/10.1016/j.carbon.2008.02.008
M. A. Rafiee, J. Rafiee, Z. Z. Yu and N. Koratkar, Appl. Phys. Lett. 95, 3 (2009). http://dx.doi.org/10.1063/1.3269637
S. R. Wang, M. Tambraparni, J. J. Qiu, J. Tipton and D. Dean, Macromolecules 42, 5251 (2009). http://dx.doi.org/10.1021/ma900631c
A. P. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova and R. C. Haddon, J. Phys. Chem. C 111, 7565 (2007). http://dx.doi.org/10.1021/jp071761s
H. Kim and C. W. Macosko, Macromolecules 41, 3317 (2008). http://dx.doi.org/10.1021/ma702385h
R. Verdejo, F. Barroso-Bujans, M. A. Rodriguez-Perez, J. A. de Saja and M. A. Lopez-Manchado, J. Mater. Chem. 18, 2221 (2008). http://dx.doi.org/10.1039/b718289a
D. Cai, K. Yusoh and M. Song, Nanotechnology 20, 085712 (2009). http://dx.doi.org/10.1088/0957-4484/20/8/085712
Y. R. Lee, A. V. Raghu, H. M. Jeong and B. K. Kim, Macromol. Chem. Phys. 210, 1247 (2009). http://dx.doi.org/10.1002/macp.200900157
S. Ansari and E. P. Giannelis, J. Polym. Sci., Part B: Polym. Phys. 47, 888 (2009). http://dx.doi.org/10.1002/polb.21695
H. Kim and C. W. Macosko, Polymer 50, 3797 (2009). http://dx.doi.org/10.1016/j.polymer.2009.05.038
X. S. Du, Z. Z. Yu, A. Dasari, J. Ma, M. S. Mo, Y. Z. Meng and Y. W. Mai, Chem. Mater. 20, 2066 (2008). http://dx.doi.org/10.1021/cm703285s
Y. Du, N. T. Hu, H. W. Zhou, P. Li, P. Zhang, X. G. Zhao, G. D. Dang and C. H. Chen, Polym. Int. 58, 832 (2009). http://dx.doi.org/10.1002/pi.2602
N. T. Hu, H. W. Zhou, G. D. Dang, X. H. Rao, C. H. Chen and W. J. Zhang, Polym. Int. 56, 655 (2007). http://dx.doi.org/10.1002/pi.2187
J. Y. Jang, M. S. Kim, H. M. Jeong and C. M. Shin, Compos. Sci. Technol. 69, 186 (2009). http://dx.doi.org/10.1016/j.compscitech.2008.09.039
W. P. Wang and C. Y. Pan, Polym. Eng. Sci. 44, 2335 (2004). http://dx.doi.org/10.1002/pen.20261
J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao and Y. Chen, Carbon 47, 922 (2009). http://dx.doi.org/10.1016/j.carbon.2008.12.038
P. Steurer, R. Wissert, R. Thomann and R. Mulhaupt, Macromol. Rapid Commun. 30, 316 (2009). http://dx.doi.org/10.1002/marc.200800754
J. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. F. Ma, T. Y. Guo and Y. S. Chen, Adv. Funct. Mater. 19, 2297 (2009).http://dx.doi.org/10.1002/adfm.200801776
T. Palacios, A. Hsu and H. Wang, IEEE Commun. Mag. 48, 122 (2010). http://dx.doi.org/10.1109/MCOM.2010.5473873
C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz and J. Hone, Nat. Nanotech. 4, 861 (2009). http://dx.doi.org/10.1038/nnano.2009.267
K. M. Milaninia, M. A. Baldo, A. Reina and J. Kong, Appl. Phys. Lett. 95, 183105 (2009). http://dx.doi.org/10.1063/1.3259415