Controlling Diffusion by Varying Width of Layers in Nano Channel
Corresponding Author: K. Tankeshwar
Nano-Micro Letters,
Vol. 4 No. 3 (2012), Article Number: 154-157
Abstract
Diffusive dynamics of fluid forming layers of high and low density regions in a nanochannel has been investigated. Diffusion coefficient in direction parallel and perpendicular to the confining wall has been found to show behaviour which is not observed in micro channel or bulk systems. The behaviour of diffusion is found to be controlled by the width of layers formed in nanochannel due to wall and particle interactions. This is an important result as width of layers and hence flow of fluid inside nano pores/tube can be controlled by an external source.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Aggarwal, J. Sood and K. Tankeshwar, Nanotechnology 18, 335707 (2007). http://iopscience.iop.org/0957-4484/18/33/335707
- G. E. Karniadakis, A. Beskok and N. Aluru, Microflows: Fundamentals and Simulation, Springer, 2002.
- M. J. Wei, J. Zhou, X. Lu, Y. Zhu, W. Liu, L. Lu and L. Zhang, Fluid Phase Equilib. 302, 316 (2011). http://www.sciencedirect.com/science/article/pii/S0378381210005121
- F. Sofos, T. Karakasidis and A. Liakopoulos, Int. J. Heat Mass Tran. 52, 735 (2009). http://www.sciencedirect.com/science/article/pii/S0017931008004407
- F. Sofos, T. E. Karakasidis and A. Liakopoulos, Int. J. Heat Mass Tran. 53, 3839 (2010). http://www.sciencedirect.com/science/article/pii/S0017931010002346
- T. Keshavarzi, F. Sedaghat and G. A. Mansoori, Micro?uid Nano?uid 8, 97 (2010). http://www.springerlink.com/content/vr14247607036366/
- O. Bunk, et al., Phys. Rev. E 75, 021501 (2007). http://pre.aps.org/abstract/PRE/v75/i2/e021501
- C. J. Hemming and G. N. Patey, J. Chem. Phys. 121, 6508 (2004). http://jcp.aip.org/resource/1/jcpsa6/v121/i13/p6508_s1?isAuthorized=no
- Jeetain Mittal, Thomas M. Truskett, Jeffrey R. Errington and Gerhard Hummer, Phys. Rev. Lett 100, 145901 (2008). http://prl.aps.org/abstract/PRL/v100/i14/e145901
- K. Tankeshwar and S. Srivastava, Nanotechnology 18, 485714 (2007). http://iopscience.iop.org/0957-4484/18/48/485714
- R. Devi, J. Sood, S. Srivastava and K. Tankeshwar, Microfluid Nanofluid 9, 737 (2010). http://www.springerlink.com/content/d117n48674371585/
- S. Sung and D. Chandler, J. Chem. Phys. 56, 4986 (1972). http://gold.cchem.berkeley.edu/Pubs/DC12.pdf
- K. Tankeshwar, B. Singla and K. N. Pathak, J. Phys. Condens. Matter 3, 3173 (1991). http://iopscience.iop.org/0953-8984/3/18/011
- K. Tankeshwar and M. P. Tosi, J. Phys.: Condensed Matter 3, 7511 (1991). http://iopscience.iop.org/0953-8984/3/38/022
- K. Tankeshwar and M. P. Tosi, J. Phys.: Condens. Matter 3, 9817 (1991). http://iopscience.iop.org/0953-8984/3/48/023
- R. K. Sharma, K. Tankeshwar and K. N. Pathak, J. Phys.: Condens. Matter 7, 537 (1995). http://iopscience.iop.org/0953-8984/7/3/009
References
N. Aggarwal, J. Sood and K. Tankeshwar, Nanotechnology 18, 335707 (2007). http://iopscience.iop.org/0957-4484/18/33/335707
G. E. Karniadakis, A. Beskok and N. Aluru, Microflows: Fundamentals and Simulation, Springer, 2002.
M. J. Wei, J. Zhou, X. Lu, Y. Zhu, W. Liu, L. Lu and L. Zhang, Fluid Phase Equilib. 302, 316 (2011). http://www.sciencedirect.com/science/article/pii/S0378381210005121
F. Sofos, T. Karakasidis and A. Liakopoulos, Int. J. Heat Mass Tran. 52, 735 (2009). http://www.sciencedirect.com/science/article/pii/S0017931008004407
F. Sofos, T. E. Karakasidis and A. Liakopoulos, Int. J. Heat Mass Tran. 53, 3839 (2010). http://www.sciencedirect.com/science/article/pii/S0017931010002346
T. Keshavarzi, F. Sedaghat and G. A. Mansoori, Micro?uid Nano?uid 8, 97 (2010). http://www.springerlink.com/content/vr14247607036366/
O. Bunk, et al., Phys. Rev. E 75, 021501 (2007). http://pre.aps.org/abstract/PRE/v75/i2/e021501
C. J. Hemming and G. N. Patey, J. Chem. Phys. 121, 6508 (2004). http://jcp.aip.org/resource/1/jcpsa6/v121/i13/p6508_s1?isAuthorized=no
Jeetain Mittal, Thomas M. Truskett, Jeffrey R. Errington and Gerhard Hummer, Phys. Rev. Lett 100, 145901 (2008). http://prl.aps.org/abstract/PRL/v100/i14/e145901
K. Tankeshwar and S. Srivastava, Nanotechnology 18, 485714 (2007). http://iopscience.iop.org/0957-4484/18/48/485714
R. Devi, J. Sood, S. Srivastava and K. Tankeshwar, Microfluid Nanofluid 9, 737 (2010). http://www.springerlink.com/content/d117n48674371585/
S. Sung and D. Chandler, J. Chem. Phys. 56, 4986 (1972). http://gold.cchem.berkeley.edu/Pubs/DC12.pdf
K. Tankeshwar, B. Singla and K. N. Pathak, J. Phys. Condens. Matter 3, 3173 (1991). http://iopscience.iop.org/0953-8984/3/18/011
K. Tankeshwar and M. P. Tosi, J. Phys.: Condensed Matter 3, 7511 (1991). http://iopscience.iop.org/0953-8984/3/38/022
K. Tankeshwar and M. P. Tosi, J. Phys.: Condens. Matter 3, 9817 (1991). http://iopscience.iop.org/0953-8984/3/48/023
R. K. Sharma, K. Tankeshwar and K. N. Pathak, J. Phys.: Condens. Matter 7, 537 (1995). http://iopscience.iop.org/0953-8984/7/3/009