An Overview on SARS-CoV-2 (COVID-19) and Other Human Coronaviruses and Their Detection Capability via Amplification Assay, Chemical Sensing, Biosensing, Immunosensing, and Clinical Assays
Corresponding Author: Hassan Karimi‑Maleh
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 18
Abstract
A novel coronavirus of zoonotic origin (SARS-CoV-2) has recently been recognized in patients with acute respiratory disease. COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses. The drastic increase in the number of coronavirus and its genome sequence have given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses. Clinical tests like PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients. However, these techniques are expensive and not readily available for point-of-care (POC) applications. Currently, lack of any rapid, available, and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem. To solve the negative features of clinical investigation, we provide a brief introduction of the general features of coronaviruses and describe various amplification assays, sensing, biosensing, immunosensing, and aptasensing for the determination of various groups of coronaviruses applied as a template for the detection of SARS-CoV-2. All sensing and biosensing techniques developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus, i.e., SARS-CoV-2. Also, the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system to detect the virus at the early stage of infection to tranquilize the speed and vastity of spreading. Among other approaches investigated among molecular approaches and PCR or recognition of viral diseases, LAMP-based methods and LFAs are of great importance for their numerous benefits, which can be helpful to design a universal platform for detection of future emerging pathogenic viruses.
Highlights:
1 Various amplification assays and sensing can be applied for the detection of SARS-CoV-2.
2 The outputs of biosensors should be presented quantitatively to obtain more accurate and more accessible results.
3 Developing smaller size platforms is one approach toward applying such phone apps, as well as utilizing LFA, biosensors, and nanobiosensors detection techniques.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Drosten, S. Gunther, W. Preiser, S. van der Werf, H.R. Brodt et al., Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348(20), 1967–1976 (2003). https://doi.org/10.1056/NEJMoa030747
- M.R. Keogh-Brown, R.D. Smith, The economic impact of SARS: How does the reality match the predictions? Health Policy 88(1), 110–120 (2008). https://doi.org/10.1016/j.healthpol.2008.03.003
- R.J. de Groot, S.C. Baker, R.S. Baric, C.S. Brown, C. Drosten et al., Commentary: middle east respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. J. Virol. 87(14), 7790–7792 (2013). https://doi.org/10.1128/JVI.01244-13
- A.M. Zaki, S. van Boheemen, T.M. Bestebroer, A.D. Osterhaus, R.A. Fouchier, Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367(19), 1814–1820 (2012). https://doi.org/10.1056/NEJMoa1211721
- A.C.P. Wong, X. Li, S.K.P. Lau, P.C.Y. Woo, Global epidemiology of bat coronaviruses. Viruses 11(2), 174 (2019). https://doi.org/10.3390/v11020174
- E. de Wit, N. van Doremalen, D. Falzarano, V.J. Munster, SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14(8), 523 (2016). https://doi.org/10.1038/nrmicro.2016.81
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5(4), 536–544 (2020). https://doi.org/10.1038/s41564-020-0695-z
- W.H. Organization, Coronavirus disease (covid-2019) situation reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
- J.F. Chan, S. Yuan, K.H. Kok, K.K. To, H. Chu et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223), 514–523 (2020). https://doi.org/10.1016/S0140-6736(20)30154-9
- (ICTV) ICoToV. Virus taxonomy. (2019, January)
- A.R. Fehr, S. Perlman (2015) in Coronaviruses: An overview of their replication and pathogenesis. ed. by (Springer), pp. 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
- D.R. Beniac, A. Andonov, E. Grudeski, T.F. Booth, Architecture of the SARS coronavirus prefusion spike. Nat. Struct. Mol. Biol. 13(8), 751–752 (2006). https://doi.org/10.1038/nsmb1123
- A.C. Walls, Y.J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, D. Veesler, Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2), 281–292 (2020). https://doi.org/10.1016/j.cell.2020.02.058
- J. Ziebuhr, E.J. Snijder, A.E. Gorbalenya, Virus-encoded proteinases and proteolytic processing in the nidovirales. J. Gen. Virol. 81(Pt 4), 853–879 (2000). https://doi.org/10.1099/0022-1317-81-4-853
- J. Tooze, S. Tooze, G. Warren, Replication of coronavirus MHV-a59 in sac- cells: determination of the first site of budding of progeny virions. Eur. J. Cell Biol. 33(2), 281–293 (1984)
- C.A. de Haan, P.J. Rottier, Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 64, 165–230 (2005). https://doi.org/10.1016/S0065-3527(05)64006-7
- M. Catanzaro, F. Fagiani, M. Racchi, E. Corsini, S. Govoni, C. Lanni, Immune response in covid-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct. Target Ther. 5(1), 84 (2020). https://doi.org/10.1038/s41392-020-0191-1
- S. Khan, J. Liu, M. Xue, Transmission of SARS-CoV-2, required developments in research and associated public health concerns. Front. Med. 7, 310 (2020). https://doi.org/10.3389/fmed.2020.00310
- V. Khot, M. Strous, A.K. Hawley, Computational approaches in viral ecology. Comput. Struct. Biotechnol. J. 18, 1605–1612 (2020). https://doi.org/10.1016/j.csbj.2020.06.019
- A.V. Ivanov, I.V. Safenkova, A.V. Zherdev, B.B. Dzantiev, Nucleic acid lateral flow assay with recombinase polymerase amplification: solutions for highly sensitive detection of RNA virus. Talanta 210, 120616 (2020). https://doi.org/10.1016/j.talanta.2019.120616
- R. Wang, R. Yu, B. Chen, F. Si, J. Wang et al., Identification of host cell proteins that interact with the M protein of porcine epidemic diarrhea virus. Vet. Microbiol. (2020). https://doi.org/10.1016/j.vetmic.2020.108729
- S. Long, B. Berkemeier, Maximizing viral detection with SIV droplet digital PCR (ddPCR) assays. PLoS ONE 15(5), e0233085 (2020). https://doi.org/10.1371/journal.pone.0233085
- A. Tahamtan, A. Ardebili, Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev. Mol. Diagn. 20, 453–454 (2020). https://doi.org/10.1080/14737159.2020.1757437
- N. Merindol, G. Pépin, C. Marchand, M. Rheault, C. Peterson et al., SARS-CoV-2 detection by direct rRT-PCR without RNA extraction. J. Clin. Virol. 128, 104423 (2020). https://doi.org/10.1016/j.jcv.2020.104423
- F. Yu, L. Yan, N. Wang, S. Yang, L. Wang et al., Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin. Infect. Dis. 71(15), 793–798 (2020). https://doi.org/10.1093/cid/ciaa345
- R. Liu, H. Han, F. Liu, Z. Lv, K. Wu et al., Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin. Chim. Acta 505, 172–175 (2020). https://doi.org/10.1016/j.cca.2020.03.009
- I.-N. Lu, C.P. Muller, F.Q. He, Applying next-generation sequencing to unravel the mutational landscape in viral quasispecies: a mini-review. Virus Res. (2020). https://doi.org/10.1016/j.virusres.2020.197963
- M.H. Cleveland, B. Anekella, M. Brewer, P.J. Chin, H. Couch et al., Report of the 2019 NIST-FDA workshop on standards for next generation sequencing detection of viral adventitious agents in biologics and biomanufacturing. Biologicals 64, 76–82 (2020). https://doi.org/10.1016/j.biologicals.2020.02.003
- N.T.T. Hong, N.T. Anh, N.T.H. Mai, H.D.T. Nghia, L.N.T. Nhu et al., Performance of metagenomic next-generation sequencing for the diagnosis of viral meningoencephalitis in a resource-limited setting. Open Forum Infect. Dis. 7(3), ofaa046 (2020). https://doi.org/10.1093/ofid/ofaa046
- E.R. Lee, N. Parkin, C. Jennings, C.J. Brumme, E. Enns et al., Performance comparison of next generation sequencing analysis pipelines for HIV-1 drug resistance testing. Sci. Rep. 10(1), 1634 (2020). https://doi.org/10.1038/s41598-020-58544-z
- L.A.E. Van Poelvoorde, X. Saelens, I. Thomas, N.H. Roosens, Next-generation sequencing: an eye-opener for the surveillance of antiviral resistance in influenza. Trends Biotechnol. 38(4), 360–367 (2020). https://doi.org/10.1016/j.tibtech.2019.09.009
- G. Seo, G. Lee, M.J. Kim, S.-H. Baek, M. Choi et al., Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal SWAB specimens using field-effect transistor-based biosensor. ACS Nano 14(4), 5135–5142 (2020). https://doi.org/10.1021/acsnano.0c02823
- L. Farzin, M. Shamsipur, L. Samandari, S. Sheibani, Hiv biosensors for early diagnosis of infection: the intertwine of nanotechnology with sensing strategies. Talanta 206, 120201 (2020). https://doi.org/10.1016/j.talanta.2019.120201
- M.Z.H. Khan, M.R. Hasan, S.I. Hossain, M.S. Ahommed, M. Daizy, Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: state of the art. Biosens. Bioelectron. 166, 112431 (2020). https://doi.org/10.1016/j.bios.2020.112431
- E. Ghazizadeh, S.E. Moosavifard, N. Daneshmand, S.K. Kaverlavani, Impediometric electrochemical sensor based on the inspiration of carnation italian ringspot virus structure to detect an attommolar of miR. Sci. Rep. 10(1), 9645 (2020). https://doi.org/10.1038/s41598-020-66393-z
- E.P. Simão, D.B. Silva, M.T. Cordeiro, L.H. Gil, C.A. Andrade, M.D. Oliveira, Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta 208, 120338 (2020). https://doi.org/10.1016/j.talanta.2019.120338
- E.I. Tzianni, J. Hrbac, D.K. Christodoulou, M.I. Prodromidis, A portable medical diagnostic device utilizing free-standing responsive polymer film-based biosensors and low-cost transducer for point-of-care applications. Sens. Actuator B Chem. 304, 127356 (2020). https://doi.org/10.1016/j.snb.2019.127356
- J. Mohanraj, D. Durgalakshmi, R.A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh, Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci. 566, 463–472 (2020). https://doi.org/10.1016/j.jcis.2020.01.089
- I.M. Mackay, K.E. Arden, A. Nitsche, Real-time PCR in virology. Nucleic Acids Res. 30(6), 1292–1305 (2002). https://doi.org/10.1093/nar/30.6.1292
- U.E. Gibson, C.A. Heid, P.M. Williams, A novel method for real time quantitative RT-PCR. Genome Res. 6(10), 995–1001 (1996). https://doi.org/10.1101/gr.6.10.995
- V.M. Corman, I. Eckerle, T. Bleicker, A. Zaki, O. Landt et al., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro. Surveill. 17(39), 20285 (2012). https://doi.org/10.2807/ese.17.39.20285-en
- W.H. Organization PCR primers for sars developed by who network laboratories. (2003, 17 April)
- W.H. Organization, Coronavirus disease (COVID-19) technical guidance: Laboratory testing for 2019-nCoV in humans. (Retrieved 2020, 18 March)
- S.A. Bustin, T. Nolan, Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech. 15(3), 155–166 (2004)
- D. Yang, J.L. Leibowitz, The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Res. 206, 120–133 (2015). https://doi.org/10.1016/j.virusres.2015.02.025
- T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28(12), E63 (2000). https://doi.org/10.1093/nar/28.12.e63
- Y. Mori, K. Nagamine, N. Tomita, T. Notomi, Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 289(1), 150–154 (2001). https://doi.org/10.1006/bbrc.2001.5921
- Z.K. Njiru, A.S. Mikosza, T. Armstrong, J.C. Enyaru, J.M. Ndung’u, A.R. Thompson, Loop-mediated isothermal amplification (lamp) method for rapid detection of trypanosoma brucei rhodesiense. PLoS Negl. Trop. Dis. 2(1), e147 (2008). https://doi.org/10.1371/journal.pntd.0000147
- L.L. Poon, C.S. Leung, K.H. Chan, J.H. Lee, K.Y. Yuen, Y. Guan, J.S. Peiris, Detection of human influenza a viruses by loop-mediated isothermal amplification. J. Clin. Microbiol. 43(1), 427–430 (2005). https://doi.org/10.1128/JCM.43.1.427-430.2005
- Y. Enomoto, T. Yoshikawa, M. Ihira, S. Akimoto, F. Miyake et al., Rapid diagnosis of herpes simplex virus infection by a loop-mediated isothermal amplification method. J. Clin. Microbiol. 43(2), 951–955 (2005). https://doi.org/10.1128/JCM.43.2.951-955.2005
- H.T.C. Thai, M.Q. Le, C.D. Vuong, M. Parida, H. Minekawa et al., Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42(5), 1956–1961 (2004). https://doi.org/10.1128/JCM.42.5.1956-1961.2004
- G.-S. Park, K. Ku, S.-H. Beak, S.J. Kim, S.I. Kim, B.-T. Kim, J.-S. Maeng, Development of reverse transcription loop-mediated isothermal amplification assays targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J. Mol. Diagn. 22(6), 729–735 (2020). https://doi.org/10.1016/j.jmoldx.2020.03.006
- L.E. Lamb, S.N. Bartolone, E. Ward, M.B. Chancellor, Rapid detection of novel coronavirus (COVID19) by reverse transcription-loop-mediated isothermal amplification. https://doi.org/10.2139/ssrn.3539654
- L. Yu, S. Wu, X. Hao, X. Li, X. Liu et al., Rapid colorimetric detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform: iLACO. medRxiv (2020). https://doi.org/10.1101/2020.02.20.20025874
- G. Woźniakowski, E. Samorek-Salamonowicz, W. Kozdruń, Comparison of loop-mediated isothermal amplification and PCR for the detection and differentiation of marek’s disease virus serotypes 1, 2, and 3. Avian Dis. 57(1), 539–543 (2013). https://doi.org/10.1637/10328-082012-ResNote.1
- X. Wang, D.J. Seo, M.H. Lee, C. Choi, Comparison of conventional PCR, multiplex PCR, and loop-mediated isothermal amplification assays for rapid detection of arcobacter species. J. Clin. Microbiol. 52(2), 557–563 (2014). https://doi.org/10.1128/JCM.02883-13
- J.R. Crowther, Elisa: Theory and Practice (Springer, Berlin, 2001). https://doi.org/10.1385/0896032795
- E. Engvall, P. Perlmann, Enzyme-linked immunosorbent assay, elisa. Iii. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J. Immunol. 109(1), 129–135 (1972)
- S. Greer, G.J. Alexander, Viral serology and detection. Baillieres Clin. Gastroenterol. 9(4), 689–721 (1995). https://doi.org/10.1016/0950-3528(95)90057-8
- CfDCa. Prevention, CDC laboratory testing for middle east respiratory syndrome coronavirus (MERS-CoV). (2019, 29 August)
- H.S. Wu, S.C. Chiu, T.C. Tseng, S.F. Lin, J.H. Lin et al., Serologic and molecular biologic methods for SARS-associated coronavirus infection, taiwan. Emerg. Infect. Dis. 10(2), 304–310 (2004). https://doi.org/10.3201/eid1002.030731
- J. Pang, M.X. Wang, I.Y.H. Ang, S.H.X. Tan, R.F. Lewis et al., Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): a systematic review. J. Clin. Med. 9(3), 623 (2020). https://doi.org/10.3390/jcm9030623
- J. Zhao, Q. Yuan, H. Wang, W. Liu, X. Liao et al., Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. (2020). https://doi.org/10.1101/2020.03.02.20030189
- K.K. To, O.T. Tsang, W.S. Leung, A.R. Tam, T.C. Wu et al., Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. 20(5), 565–574 (2020)
- I. Diazyme Laboratories, Why do we need antibody tests for covid-19 and how to interpret test results. (2020)
- M. Buheji, A.R. Buhiji, Designing intelligent system for stratification of covid-19 asymptomatic patients. Am. J. Med. Med. Sci. 10(4), 246–257 (2020). https://doi.org/10.5923/j.ajmms.20201004.17
- T. Waritani, J. Chang, B. McKinney, K. Terato, An elisa protocol to improve the accuracy and reliability of serological antibody assays. MethodsX 4, 153–165 (2017). https://doi.org/10.1016/j.mex.2017.03.002
- S. Hassanpour, B. Baradaran, M. Hejazi, M. Hasanzadeh, A. Mokhtarzadeh, M. de la Guardia, Recent trends in rapid detection of influenza infections by bio and nanobiosensor. TrAC Trends Anal. Chem. 98, 201–215 (2018). https://doi.org/10.1016/j.trac.2017.11.012
- Y. Lee, J.H. Ahn, Biomimetic tactile sensors based on nanomaterials. ACS Nano 14(2), 1220–1226 (2020). https://doi.org/10.1021/acsnano.0c00363
- A. Szuplewska, D. Kulpinska, A. Dybko, M. Chudy, A.M. Jastrzebska, A. Olszyna, Z. Brzozka, Future applications of mxenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol. 38(3), 264–279 (2020). https://doi.org/10.1016/j.tibtech.2019.09.001
- M.A. Ali, L. Dong, J. Dhau, A. Khosla, A. Kaushik, Perspective—electrochemical sensors for soil quality assessment. J. Electrochem. Soc. 167(3), 037550 (2020). https://doi.org/10.1149/1945-7111/ab69fe
- M. Pirzada, Z. Altintas, Recent progress in optical sensors for biomedical diagnostics. Micromachines 11(4), 356 (2020). https://doi.org/10.3390/mi11040356
- P.H. Lin, B.R. Li, Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 145(4), 1110–1120 (2020). https://doi.org/10.1039/C9AN02017A
- H.S. Maghdid, K.Z. Ghafoor, A.S. Sadiq, K. Curran, K. Rabie, A novel ai-enabled framework to diagnose coronavirus covid 19 using smartphone embedded sensors: Design study. arXiv preprint arXiv:200307434. (2020)
- M. Hackbart, X. Deng, S.C. Baker, Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc. Natl. Acad. Sci. USA 117(14), 8094–8103 (2020). https://doi.org/10.1073/pnas.1921485117
- H. Fischer, E. Tschachler, L. Eckhart, Pangolins lack IFIH1/MDA5, a cytoplasmic RNA sensor that initiates innate immune defense upon coronavirus infection. Front. Immunol. 11, 939 (2020). https://doi.org/10.3389/fimmu.2020.00939
- G. Nikaeen, S. Abbaszadeh, S. Yousefinejad, Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine 15(15), 1501–1512 (2020). https://doi.org/10.2217/nnm-2020-0117
- C. Parolo, A.S. Greenwood, N.E. Ogden, D. Kang, C. Hawes et al., E-DNA scaffold sensors and the reagentless, single-step, measurement of HIV-diagnostic antibodies in human serum. Microsyst. Nanoeng. 6(1), 1–8 (2020). https://doi.org/10.1038/s41378-019-0119-5
- S. Kamal, M.I. Rosen, C. Lazar, L. Siqueiros, Y. Wang, E.S. Daar, H. Liu, Perceptions of people living with hiv and hiv healthcare providers on real-time measuring and monitoring of antiretroviral adherence using ingestible sensors: a qualitative study. AIDS Res. Treat. 2020, 1098109 (2020). https://doi.org/10.1155/2020/1098109
- H. Chen, G. He, Y. Chen, X. Zhang, Hepatitis B virus can be sensed by STING-dependent DNA sensors but suppresses the DNA sensing pathway in humans with acute and chronic hepatitis B virus infection. Res Square (2020). https://doi.org/10.21203/rs.2.23304/v1
- M. Duhkinova, C. Crina, R. Weiss, V. Siciliano, Engineering intracellular protein sensors in mammalian cells. J. Vis. Exp. 158, e60878 (2020). https://doi.org/10.3791/60878
- S. Dolai, M. Tabib-Azar, Microfabricated nano-gap tunneling current zika virus sensors with single virus detection capabilities. IEEE Sens. J. 20(15), 8597–8603 (2020). https://doi.org/10.1109/JSEN.2020.2984172
- A.F. Versiani, E.M.N. Martins, L.M. Andrade, L. Cox, G.C. Pereira et al., Nanosensors based on LSPR are able to serologically differentiate dengue from zika infections. Sci. Rep. 10(1), 11302 (2020). https://doi.org/10.1038/s41598-020-68357-9
- S. Velanki, H.-F. Ji, Detection of feline coronavirus using microcantilever sensors. Meas. Sci. Technol. 17(11), 2964 (2006). https://doi.org/10.1088/0957-0233/17/11/015
- S. Hassanpour, B. Baradaran, M. de la Guardia, A. Baghbanzadeh, J. Mosafer et al., Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: a review on recent advancements. Mikrochim. Acta 185(12), 568 (2018). https://doi.org/10.1007/s00604-018-3088-8
- W.-Y. Chang, P.-H. Sung, C.-H. Chu, C.-J. Shih, Y.-C. Lin, Phase detection of the two-port fpw sensor for biosensing. IEEE Sens. J. 8(5), 501–507 (2008). https://doi.org/10.1109/JSEN.2008.918728
- P. Teengam, W. Siangproh, A. Tuantranont, T. Vilaivan, O. Chailapakul, C.S. Henry, Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced agnps aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem. 89(10), 5428–5435 (2017). https://doi.org/10.1021/acs.analchem.7b00255
- L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang et al., Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded x-ray-responsive bismuth sulfide@mesoporous silica core–shell nanoparticles. Adv. Funct. Mater. 28(5), 1704623 (2018). https://doi.org/10.1002/adfm.201704623
- Y. Li, M. Hong, B. Qiu, Z. Lin, Y. Chen, Z. Cai, G. Chen, Highly sensitive fluorescent immunosensor for detection of influenza virus based on Ag autocatalysis. Biosens. Bioelectron. 54, 358–364 (2014). https://doi.org/10.1016/j.bios.2013.10.045
- I.M. Khoris, K. Takemura, J. Lee, T. Hara, F. Abe, T. Suzuki, E.Y. Park, Enhanced colorimetric detection of norovirus using in situ growth of Ag shell on Au NPs. Biosens. Bioelectron. 126, 425–432 (2019). https://doi.org/10.1016/j.bios.2018.10.067
- S.R. Ahmed, J. Kim, T. Suzuki, J. Lee, E.Y. Park, Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron. 85, 503–508 (2016). https://doi.org/10.1016/j.bios.2016.05.050
- R.K. Kankala, Y.H. Han, J. Na, C.H. Lee, Z. Sun et al., Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 32(23), e1907035 (2020). https://doi.org/10.1002/adma.201907035
- E. Doustkhah, J. Lin, S. Rostamnia, C. Len, R. Luque, X. Luo et al., Development of sulfonic-acid-functionalized mesoporous materials: synthesis and catalytic applications. Chemistry 25(7), 1614–1635 (2019). https://doi.org/10.1002/chem.201802183
- J. Wang, Y. Xu, B. Ding, Z. Chang, X. Zhang, Y. Yamauchi, K.C. Wu, Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework. Angew. Chem. Int. Ed. 57(11), 2894–2898 (2018). https://doi.org/10.1002/anie.201712959
- Z. Jia, Y. Ma, L. Yang, C. Guo, N. Zhou et al., NiCo2O4 spinel embedded with carbon nanotubes derived from bimetallic NiCo metal-organic framework for the ultrasensitive detection of human immune deficiency virus-1 gene. Biosens. Bioelectron. 133, 55–63 (2019). https://doi.org/10.1016/j.bios.2019.03.030
- A. Rashidi, M. Omidi, M. Choolaei, M. Nazarzadeh, A. Yadegari et al., Electromechanical properties of vertically aligned carbon nanotube. Adv. Mater. Res. 705, 332–336 (2013). https://doi.org/10.4028/www.scientific.net/AMR.705.332
- E. Proniewicz, A. Tąta, A. Szkudlarek, J. Świder, M. Molenda, M. Starowicz, Y. Ozaki, Electrochemically synthesized γ-Fe2O3 nanoparticles as peptide carriers and sensitive and reproducible sers biosensors Comparison of adsorption on γ-Fe2O3 versus Fe. Appl. Surf. Sci. 495, 143578 (2019). https://doi.org/10.1016/j.apsusc.2019.143578
- J. Ding, W. Qin, Recent advances in potentiometric biosensors. TrAC Trend. Anal. Chem. 124, 115803 (2020). https://doi.org/10.1016/j.trac.2019.115803
- Q. Zhou, D. Tang, Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC Trend. Anal. Chem. 124, 115814 (2020). https://doi.org/10.1016/j.trac.2020.115814
- O. Hanpanich, K. Saito, N. Shimada, A. Maruyama, One-step isothermal RNA detection with LNA-modified MNAzymes chaperoned by cationic copolymer. Biosens. Bioelectron. 165, 112383 (2020). https://doi.org/10.1016/j.bios.2020.112383
- M. Hasanzadeh, A.S. Nahar, S. Hassanpour, N. Shadjou, A. Mokhtarzadeh, J. Mohammadi, Proline dehydrogenase-entrapped mesoporous magnetic silica nanomaterial for electrochemical biosensing of l-proline in biological fluids. Enzyme Microb. Technol. 105, 64–76 (2017). https://doi.org/10.1016/j.enzmictec.2017.05.007
- Y. Chen, C. Qian, C. Liu, H. Shen, Z. Wang et al., Nucleic acid amplification free biosensors for pathogen detection. Biosens. Bioelectron. 153, 112049 (2020). https://doi.org/10.1016/j.bios.2020.112049
- F. Cui, H.S. Zhou, Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens. Bioelectron. 165, 112349 (2020). https://doi.org/10.1016/j.bios.2020.112349
- G.C.H. Mo, C. Posner, E.A. Rodriguez, T. Sun, J. Zhang, A rationally enhanced red fluorescent protein expands the utility of fret biosensors. Nat. Commun. 11(1), 1848 (2020). https://doi.org/10.1038/s41467-020-15687-x
- S. Mavrikou, G. Moschopoulou, V. Tsekouras, S. Kintzios, Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 s1 spike protein antigen. Sensors 20(11), 3121 (2020). https://doi.org/10.3390/s20113121
- C. Bian, H. Wang, X. Zhang, S. Xiao, Z. Liu, X. Wang, Sensitive detection of low-concentration sulfide based on the synergistic effect of rGO, np-Au, and recombinant microbial cell. Biosens. Bioelectron. 151, 111985 (2020). https://doi.org/10.1016/j.bios.2019.111985
- V. Gaudin, Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—a comprehensive review. Biosens. Bioelectron. 90, 363–377 (2017). https://doi.org/10.1016/j.bios.2016.12.005
- M. Hasanzadeh, A. Karimzadeh, S. Sadeghi, A. Mokhtarzadeh, N. Shadjou, A. Jouyban, Graphene quantum dot as an electrically conductive material toward low potential detection: a new platform for interface science. J. Mater. Sci. Mater. Electron. 27(6), 6488–6495 (2016). https://doi.org/10.1007/s10854-016-4590-6
- A. Dalal, H. Mohan, M. Prasad, C. Pundir, Detection methods for influenza a H1N1 virus with special reference to biosensors: a review. Biosci. Rep. 40(2), 3852 (2020). https://doi.org/10.1042/BSR20193852
- B. Nohwal, R. Chaudhary, C. Pundir, Amperometric l-lysine determination biosensor amplified with l-lysine oxidase nanoparticles and graphene oxide nanoparticles. Process Biochem. 97, 57–63 (2020). https://doi.org/10.1016/j.procbio.2020.06.011
- P. Kanagavalli, M. Veerapandian, Opto-electrochemical functionality of Ru(ii)-reinforced graphene oxide nanosheets for immunosensing of dengue virus non-structural 1 protein. Biosens. Bioelectron. 150, 111878 (2020). https://doi.org/10.1016/j.bios.2019.111878
- R. Eivazzadeh-Keihan, P. Pashazadeh-Panahi, T. Mahmoudi, K.K. Chenab, B. Baradaran et al., Dengue virus: a review on advances in detection and trends–from conventional methods to novel biosensors. Microchim. Acta 186(6), 329 (2019). https://doi.org/10.1007/s00604-019-3420-y
- A. Lopreside, Exploiting bioluminescence to enhance the analytical performance of whole-cell and cell-free biosensors for environmental and point-of-care applications. (2020)
- S.Y. Kim, W. Jin, A. Sood, D.W. Montgomery, O.C. Grant et al., Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res. 181, 104873 (2020). https://doi.org/10.1016/j.antiviral.2020.104873
- G. Pinto, P. Canepa, C. Canale, M. Canepa, O. Cavalleri, Morphological and mechanical characterization of DNA SAMs combining nanolithography with AFM and optical methods. Materials 13(13), 2888 (2020). https://doi.org/10.3390/ma13132888
- P. Annamalai, M. Kanta, P. Ramu, B. Ravi, K. Veerapandian, R. Srinivasan, A simple colorimetric molecular detection of novel coronavirus (COVID-19), an essential diagnostic tool for pandemic screening. medRxiv (2020). https://doi.org/10.1101/2020.04.10.20060293
- S. Zhang, X. Sun, W. Guo, J. Xu, Simultaneous detection of 2019 novel coronavirus and influenza virus by double fluorescent RT-PCR. Am J Lab Med. 5(1), 42–46 (2020). https://doi.org/10.11648/j.ajlm.20200501.16
- D. Zhang, X. Zhang, R. Ma, S. Deng, X. Wang et al., Ultra-fast and onsite interrogation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in environmental specimens via surface enhanced raman scattering (SERS). medRxiv (2020). https://doi.org/10.1101/2020.05.02.20086876
- C. Annalaura, F. Ileana, L. Dasheng, V. Marco, Making waves: coronavirus detection, presence and persistence in the water environment: state of the art and knowledge needs for public health. Water Res. (2020). https://doi.org/10.1016/j.watres.2020.115907
- A. Kilianski, A.M. Mielech, X. Deng, S.C. Baker, Assessing activity and inhibition of middle east respiratory syndrome coronavirus papain-like and 3C-like proteases using luciferase-based biosensors. J. Virol. 87(21), 11955–11962 (2013). https://doi.org/10.1128/JVI.02105-13
- L. Shi, Q. Sun, J. He, H. Xu, C. Liu et al., Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Biomed. Mater. Eng. 26(s1), S2207–S2216 (2015). https://doi.org/10.3233/BME-151526
- F.N. Ishikawa, H.-K. Chang, M. Curreli, H.-I. Liao, C.A. Olson et al., Electrical detection of the sars virus n-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano 3(5), 1219–1224 (2009). https://doi.org/10.1021/nn900086c
- T.J. Park, M.S. Hyun, H.J. Lee, S.Y. Lee, S. Ko, A self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta 79(2), 295–301 (2009). https://doi.org/10.1016/j.talanta.2009.03.051
- A. Mokhtarzadeh, R. Eivazzadeh-Keihan, P. Pashazadeh, M. Hejazi, N. Gharaatifar et al., Nanomaterial-based biosensors for detection of pathogenic virus. Trends Anal. Chem. 97, 445–457 (2017). https://doi.org/10.1016/j.trac.2017.10.005
- C. Qi, J.-Z. Duan, Z.-H. Wang, Y.-Y. Chen, P.-H. Zhang et al., Investigation of interaction between two neutralizing monoclonal antibodies and SARS virus using biosensor based on imaging ellipsometry. Biomed. Microdevices 8(3), 247–253 (2006). https://doi.org/10.1007/s10544-006-8305-2
- L. Huang, J. Chen, Z. Yu, D. Tang, Self-powered temperature sensor with seebeck effect transduction for photothermal–thermoelectric coupled immunoassay. Anal. Chem. 92(3), 2809–2814 (2020). https://doi.org/10.1021/acs.analchem.9b05218
- S.A. Byrnes, T. Huynh, T.C. Chang, C.E. Anderson, J.J. McDermott et al., Wash-free, digital immunoassay in polydisperse droplets. Anal. Chem. 92(5), 3535–3543 (2020). https://doi.org/10.1021/acs.analchem.9b02526
- M. Hasanzadeh, H.N. Baghban, A. Mokhtarzadeh, N. Shadjou, S. Mahboob, An innovative immunosensor for detection of tumor suppressor protein p53 in unprocessed human plasma and cancer cell lysates. Int. J. Biol. Macromol. 105(Pt 1), 1337–1348 (2017). https://doi.org/10.1016/j.ijbiomac.2017.07.165
- M. Hasanzadeh, S. Tagi, E. Solhi, A. Mokhtarzadeh, N. Shadjou, A. Eftekhari, S. Mahboob, An innovative immunosensor for ultrasensitive detection of breast cancer specific carbohydrate (ca15-3) in unprocessed human plasma and MCF-7 breast cancer cell lysates using gold nanospear electrochemically assembled onto thiolated graphene quantum dots. Int. J. Biol. Macromol. 114, 1008–1017 (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.183
- M. Hasanzadeh, S. Tagi, E. Solhi, N. Shadjou, A. Jouyban, A. Mokhtarzadeh, Immunosensing of breast cancer prognostic marker in adenocarcinoma cell lysates and unprocessed human plasma samples using gold nanostructure coated on organic substrate. Int. J. Biol. Macromol. 118, 1082–1089 (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.091
- A. Padoan, C. Cosma, L. Sciacovelli, D. Faggian, M. Plebani, Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IGM/IGG and antibody kinetics. Clin. Chem. Lab. Med. 58(7), 1081–1088 (2020). https://doi.org/10.1515/cclm-2020-0443
- B. Meyer, G. Torriani, S. Yerly, L. Mazza, A. Calame et al., Validation of a commercially available SARS-CoV-2 serological immunoassay. Clin. Microbiol. Infect. 26, 1386–1394 (2020). https://doi.org/10.1016/j.cmi.2020.06.024
- Z. Chen, Z. Zhang, X. Zhai, Y. Li, L. Lin et al., Rapid and sensitive detection of anti-SARS-CoV-2 IGG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal. Chem. 92(10), 7226–7231 (2020). https://doi.org/10.1021/acs.analchem.0c00784
- E.R. Adams, R. Anand, M.I. Andersson, K. Auckland, J.K. Baillie et al., Evaluation of antibody testing for SARS-CoV-2 using ELISA and lateral flow immunoassays. medRxiv (Preprint, 2020). https://doi.org/10.1101/2020.04.15.20066407
- T. Nicol, C. Lefeuvre, O. Serri, A. Pivert, F. Joubaud et al., Assessment of SARS-CoV-2 serological tests for the diagnosis of covid-19 through the evaluation of three immunoassays: two automated immunoassays (euroimmun and abbott) and one rapid lateral flow immunoassay (NG biotech). J. Clin. Virol. 129, 104511 (2020). https://doi.org/10.1016/j.jcv.2020.104511
- D. Sevenler, A. Bardon, M. FernandezSuarez, L. Marshall, M. Toner, P.K. Drain, R.D. Sandlin, Immunoassay for HIV drug metabolites tenofovir and tenofovir diphosphate. ACS Infect. Dis. 6(7), 1635–1642 (2020). https://doi.org/10.1021/acsinfecdis.0c00010
- R.M. Stalter, J.M. Baeten, D. Donnell, M.A. Spinelli, D.V. Glidden et al., Urine tenofovir levels measured by a novel immunoassay predict HIV protection. Clin. Infect. Dis. (2020). https://doi.org/10.1093/cid/ciaa785
- W. Yang, D. Yang, S. Gong, X. Dong, L. Liu et al., An immunoassay cassette with a handheld reader for HIV urine testing in point-of-care diagnostics. Biomed. Microdevices 22(2), 39 (2020). https://doi.org/10.1007/s10544-020-00494-4
- Z. Sharifi, M. Parsania, A. Pourfathollah, S. Haghighat, Prevalence of anti-HBc in HBsAg negative blood donors using two enzyme immunoassays kits. Sci. J. Iran Blood Transfus Organ 17(2), 83–90 (2020)
- A. Eshetu, A. Hauser, D. Schmidt, B. Bartmeyer, V. Bremer et al., Comparison of two immunoassays for concurrent detection of HCV antigen and antibodies among HIV/HCV co-infected patients in dried serum/plasma spots. J. Virol. Methods 279, 113839 (2020). https://doi.org/10.1016/j.jviromet.2020.113839
- J. Patel, P. Sharma, Design of a novel rapid immunoassay for simultaneous detection of hepatitis C virus core antigen and antibodies. Arch. Virol. 165(3), 627–641 (2020). https://doi.org/10.1007/s00705-019-04518-0
- A. Weiss, Concurrent engineering for lateral-flow diagnostics. IVD Technol. 5(7), 48–57 (1999)
- K. Malik, H. Sadia, M.H. Basit, in Protein-based detection methods for genetically modified crops. ed. by (IntechOpen; 2018). https://doi.org/10.5772/intechopen.75520
- J. Hansson, H. Yasuga, T. Haraldsson, W. van der Wijngaart, Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays. Lab Chip 16(2), 298–304 (2016). https://doi.org/10.1039/C5LC01318F
- W. Guo, J. Hansson, W. van der Wijngaart, Viscosity independent paper microfluidic imbibition. The 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016, 9–13 October 2016, Dublin, Ireland. 13–14 (2016)
- L.A. Layqah, S. Eissa, An electrochemical immunosensor for the corona virus associated with the middle east respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim. Acta 186(4), 224 (2019). https://doi.org/10.1007/s00604-019-3345-5
- B. Zuo, S. Li, Z. Guo, J. Zhang, C. Chen, Piezoelectric immunosensor for sars-associated coronavirus in sputum. Anal. Chem. 76(13), 3536–3540 (2004). https://doi.org/10.1021/ac035367b
- C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: rNA ligands to bacteriophage t4 DNA polymerase. Science 249(4968), 505–510 (1990). https://doi.org/10.1126/science.2200121
- S.H. Rajabnejad, A. Mokhtarzadeh, K. Abnous, S.M. Taghdisi, M. Ramezani, B.M. Razavi, Targeted delivery of melittin to cancer cells by AS1411 anti-nucleolin aptamer. Drug Dev. Ind. Pharm. 44(6), 982–987 (2018). https://doi.org/10.1080/03639045.2018.1427760
- J. Mosafer, A. Mokhtarzadeh, Cell surface nucleolin as a promising receptor for effective AS1411 aptamer-mediated targeted drug delivery into cancer cells. Curr. Drug Deliv. 15(9), 1323–1329 (2018). https://doi.org/10.2174/1567201815666180724104451
- S. Xie, Y. Du, Y. Zhang, Z. Wang, D. Zhang et al., Aptamer-based optical manipulation of protein subcellular localization in cells. Nat. Commun. 11(1), 1347 (2020). https://doi.org/10.1038/s41467-020-15113-2
- M. Chen, Z. Tang, C. Ma, Y. Yan, A fluorometric aptamer based assay for prostate specific antigen based on enzyme-assisted target recycling. Sens. Actuator B Chem. 302, 127178 (2020). https://doi.org/10.1016/j.snb.2019.127178
- F. Tian, J. Zhou, R. Fu, Y. Cui, Q. Zhao, B. Jiao, Y. He, Multicolor colorimetric detection of ochratoxin a via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chem. 320, 126607 (2020). https://doi.org/10.1016/j.foodchem.2020.126607
- S. Arshavsky-Graham, K. Urmann, R. Salama, N. Massad-Ivanir, J.G. Walter, T. Scheper, E. Segal, Aptamers vs. antibodies as capture probes in optical porous silicon biosensors. Analyst 145, 4991–5003 (2020). https://doi.org/10.1039/D0AN00178C
- M. Hasanzadeh, A. Zargami, H.N. Baghban, A. Mokhtarzadeh, N. Shadjou, S. Mahboob, Aptamer-based assay for monitoring genetic disorder phenylketonuria (PKU). Int. J. Biol. Macromol. 116, 735–743 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.028
- M. Hasanzadeh, N. Razmi, A. Mokhtarzadeh, N. Shadjou, S. Mahboob, Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported α-cyclodextrin. Int. J. Biol. Macromol. 108, 69–80 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.149
- M. Hasanzadeh, M. Moosavy, J. Soleymani, A. Mokhtarzadeh, Determination of aflatoxin M1 using aptamer based biosensior on the surface of dendritic fibrous nano-silica functionalized by amine groups. Anal. Methods 11(30), 3910–3919 (2019). https://doi.org/10.1039/C9AY01185D
- S. Wadhwa, A.T. John, S. Nagabooshanam, A. Mathur, J. Narang, Graphene quantum dot-gold hybrid nanoparticles integrated aptasensor for ultra-sensitive detection of vitamin D3 towards point-of-care application. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.146427
- R. Eivazzadeh-Keihan, P. Pashazadeh-Panahi, B. Baradaran, A. Maleki, M. Hejazi, A. Mokhtarzadeh, M. de la Guardia, Recent advances on nanomaterial based electrochemical and optical aptasensors for detection of cancer biomarkers. TrAC Trend Anal. Chem. 100, 103–115 (2018). https://doi.org/10.1016/j.trac.2017.12.019
- H. Safarpour, S. Dehghani, R. Nosrati, N. Zebardast, M. Alibolandi, A. Mokhtarzadeh, M. Ramezani, Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosens. Bioelectron. 148, 111833 (2020). https://doi.org/10.1016/j.bios.2019.111833
- M. Yousefi, S. Dehghani, R. Nosrati, H. Zare, M. Evazalipour et al., Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: a review. Biosens. Bioelectron. 130, 1–19 (2019). https://doi.org/10.1016/j.bios.2019.01.015
- L. Wang, X. Peng, H. Fu, C. Huang, Y. Li, Z. Liu, Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens. Bioelectron. 147, 111777 (2020). https://doi.org/10.1016/j.bios.2019.111777
- C. Zhu, L. Li, G. Yang, S. Fang, M. Liu et al., Online reaction based single-step capillary electrophoresis-systematic evolution of ligands by exponential enrichment for ssDNA aptamers selection. Anal. Chim. Acta 1070, 112–122 (2019). https://doi.org/10.1016/j.aca.2019.04.034
- L. Gold, Selex: how it happened and where it will go. J. Mol. Evol. 81(5–6), 140–143 (2015). https://doi.org/10.1007/s00239-015-9705-9
- A. Mokhtarzadeh, M. Tabarzad, J. Ranjbari, M. de la Guardia, M. Hejazi, M. Ramezani, Aptamers as smart ligands for nano-carriers targeting. TrAC Trends Anal. Chem. 82, 316–327 (2016). https://doi.org/10.1016/j.trac.2016.06.018
- W. Yi-Xian, Y. Zun-Zhong, S. Cheng-Yan, Y. Yi-Bin, Application of aptamer based biosensors for detection of pathogenic microorganisms. Chin. J. Anal. Chem. 40(4), 634–642 (2012). https://doi.org/10.1016/S1872-2040(11)60542-2
- D.G. Ahn, I.J. Jeon, J.D. Kim, M.S. Song, S.R. Han et al., RNA aptamer-based sensitive detection of SARS coronavirus nucleocapsid protein. Analyst 134(9), 1896–1901 (2009). https://doi.org/10.1039/b906788d
- S.-J. Cho, H.-M. Woo, K.-S. Kim, J.-W. Oh, Y.-J. Jeong, Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer. J. Biol. Bioeng. 112(6), 535–540 (2011). https://doi.org/10.1016/j.jbiosc.2011.08.014
- M. Afsharzadeh, M. Hashemi, A. Mokhtarzadeh, K. Abnous, M. Ramezani, Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif. Cells Nanomed. Biotechnol. 46(6), 1095–1110 (2018). https://doi.org/10.1080/21691401.2017.1376675
- C. Roh, S.K. Jo, Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J. Chem. Technol. Biotechnol. 86(12), 1475–1479 (2011). https://doi.org/10.1002/jctb.2721
- I. Sola, F. Almazan, S. Zuniga, L. Enjuanes, Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol. 2(1), 265–288 (2015). https://doi.org/10.1146/annurev-virology-100114-055218
- C.M. Niemeyer, M. Adler, R. Wacker, Detecting antigens by quantitative immuno-PCR. Nat. Protoc. 2(8), 1918–1930 (2007). https://doi.org/10.1038/nprot.2007.267
- News in brief, First NGS-based COVID-19 diagnostic. Nat. Biotechnol. 38(7), 777 (2020). https://doi.org/10.1038/s41587-020-0608-y
- E.B. Bahadır, M.K. Sezgintürk, Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 478, 107–120 (2015). https://doi.org/10.1016/j.ab.2015.03.011
- Y.S. Malik, A.K. Verma, N. Kumar, N. Touil, K. Karthik et al., Advances in diagnostic approaches for viral etiologies of diarrhea: From the lab to the field. Front. Microbiol. 10, 1957 (2019). https://doi.org/10.3389/fmicb.2019.01957
References
C. Drosten, S. Gunther, W. Preiser, S. van der Werf, H.R. Brodt et al., Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348(20), 1967–1976 (2003). https://doi.org/10.1056/NEJMoa030747
M.R. Keogh-Brown, R.D. Smith, The economic impact of SARS: How does the reality match the predictions? Health Policy 88(1), 110–120 (2008). https://doi.org/10.1016/j.healthpol.2008.03.003
R.J. de Groot, S.C. Baker, R.S. Baric, C.S. Brown, C. Drosten et al., Commentary: middle east respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. J. Virol. 87(14), 7790–7792 (2013). https://doi.org/10.1128/JVI.01244-13
A.M. Zaki, S. van Boheemen, T.M. Bestebroer, A.D. Osterhaus, R.A. Fouchier, Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367(19), 1814–1820 (2012). https://doi.org/10.1056/NEJMoa1211721
A.C.P. Wong, X. Li, S.K.P. Lau, P.C.Y. Woo, Global epidemiology of bat coronaviruses. Viruses 11(2), 174 (2019). https://doi.org/10.3390/v11020174
E. de Wit, N. van Doremalen, D. Falzarano, V.J. Munster, SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14(8), 523 (2016). https://doi.org/10.1038/nrmicro.2016.81
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5(4), 536–544 (2020). https://doi.org/10.1038/s41564-020-0695-z
W.H. Organization, Coronavirus disease (covid-2019) situation reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
J.F. Chan, S. Yuan, K.H. Kok, K.K. To, H. Chu et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223), 514–523 (2020). https://doi.org/10.1016/S0140-6736(20)30154-9
(ICTV) ICoToV. Virus taxonomy. (2019, January)
A.R. Fehr, S. Perlman (2015) in Coronaviruses: An overview of their replication and pathogenesis. ed. by (Springer), pp. 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
D.R. Beniac, A. Andonov, E. Grudeski, T.F. Booth, Architecture of the SARS coronavirus prefusion spike. Nat. Struct. Mol. Biol. 13(8), 751–752 (2006). https://doi.org/10.1038/nsmb1123
A.C. Walls, Y.J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, D. Veesler, Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2), 281–292 (2020). https://doi.org/10.1016/j.cell.2020.02.058
J. Ziebuhr, E.J. Snijder, A.E. Gorbalenya, Virus-encoded proteinases and proteolytic processing in the nidovirales. J. Gen. Virol. 81(Pt 4), 853–879 (2000). https://doi.org/10.1099/0022-1317-81-4-853
J. Tooze, S. Tooze, G. Warren, Replication of coronavirus MHV-a59 in sac- cells: determination of the first site of budding of progeny virions. Eur. J. Cell Biol. 33(2), 281–293 (1984)
C.A. de Haan, P.J. Rottier, Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 64, 165–230 (2005). https://doi.org/10.1016/S0065-3527(05)64006-7
M. Catanzaro, F. Fagiani, M. Racchi, E. Corsini, S. Govoni, C. Lanni, Immune response in covid-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct. Target Ther. 5(1), 84 (2020). https://doi.org/10.1038/s41392-020-0191-1
S. Khan, J. Liu, M. Xue, Transmission of SARS-CoV-2, required developments in research and associated public health concerns. Front. Med. 7, 310 (2020). https://doi.org/10.3389/fmed.2020.00310
V. Khot, M. Strous, A.K. Hawley, Computational approaches in viral ecology. Comput. Struct. Biotechnol. J. 18, 1605–1612 (2020). https://doi.org/10.1016/j.csbj.2020.06.019
A.V. Ivanov, I.V. Safenkova, A.V. Zherdev, B.B. Dzantiev, Nucleic acid lateral flow assay with recombinase polymerase amplification: solutions for highly sensitive detection of RNA virus. Talanta 210, 120616 (2020). https://doi.org/10.1016/j.talanta.2019.120616
R. Wang, R. Yu, B. Chen, F. Si, J. Wang et al., Identification of host cell proteins that interact with the M protein of porcine epidemic diarrhea virus. Vet. Microbiol. (2020). https://doi.org/10.1016/j.vetmic.2020.108729
S. Long, B. Berkemeier, Maximizing viral detection with SIV droplet digital PCR (ddPCR) assays. PLoS ONE 15(5), e0233085 (2020). https://doi.org/10.1371/journal.pone.0233085
A. Tahamtan, A. Ardebili, Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev. Mol. Diagn. 20, 453–454 (2020). https://doi.org/10.1080/14737159.2020.1757437
N. Merindol, G. Pépin, C. Marchand, M. Rheault, C. Peterson et al., SARS-CoV-2 detection by direct rRT-PCR without RNA extraction. J. Clin. Virol. 128, 104423 (2020). https://doi.org/10.1016/j.jcv.2020.104423
F. Yu, L. Yan, N. Wang, S. Yang, L. Wang et al., Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin. Infect. Dis. 71(15), 793–798 (2020). https://doi.org/10.1093/cid/ciaa345
R. Liu, H. Han, F. Liu, Z. Lv, K. Wu et al., Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin. Chim. Acta 505, 172–175 (2020). https://doi.org/10.1016/j.cca.2020.03.009
I.-N. Lu, C.P. Muller, F.Q. He, Applying next-generation sequencing to unravel the mutational landscape in viral quasispecies: a mini-review. Virus Res. (2020). https://doi.org/10.1016/j.virusres.2020.197963
M.H. Cleveland, B. Anekella, M. Brewer, P.J. Chin, H. Couch et al., Report of the 2019 NIST-FDA workshop on standards for next generation sequencing detection of viral adventitious agents in biologics and biomanufacturing. Biologicals 64, 76–82 (2020). https://doi.org/10.1016/j.biologicals.2020.02.003
N.T.T. Hong, N.T. Anh, N.T.H. Mai, H.D.T. Nghia, L.N.T. Nhu et al., Performance of metagenomic next-generation sequencing for the diagnosis of viral meningoencephalitis in a resource-limited setting. Open Forum Infect. Dis. 7(3), ofaa046 (2020). https://doi.org/10.1093/ofid/ofaa046
E.R. Lee, N. Parkin, C. Jennings, C.J. Brumme, E. Enns et al., Performance comparison of next generation sequencing analysis pipelines for HIV-1 drug resistance testing. Sci. Rep. 10(1), 1634 (2020). https://doi.org/10.1038/s41598-020-58544-z
L.A.E. Van Poelvoorde, X. Saelens, I. Thomas, N.H. Roosens, Next-generation sequencing: an eye-opener for the surveillance of antiviral resistance in influenza. Trends Biotechnol. 38(4), 360–367 (2020). https://doi.org/10.1016/j.tibtech.2019.09.009
G. Seo, G. Lee, M.J. Kim, S.-H. Baek, M. Choi et al., Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal SWAB specimens using field-effect transistor-based biosensor. ACS Nano 14(4), 5135–5142 (2020). https://doi.org/10.1021/acsnano.0c02823
L. Farzin, M. Shamsipur, L. Samandari, S. Sheibani, Hiv biosensors for early diagnosis of infection: the intertwine of nanotechnology with sensing strategies. Talanta 206, 120201 (2020). https://doi.org/10.1016/j.talanta.2019.120201
M.Z.H. Khan, M.R. Hasan, S.I. Hossain, M.S. Ahommed, M. Daizy, Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: state of the art. Biosens. Bioelectron. 166, 112431 (2020). https://doi.org/10.1016/j.bios.2020.112431
E. Ghazizadeh, S.E. Moosavifard, N. Daneshmand, S.K. Kaverlavani, Impediometric electrochemical sensor based on the inspiration of carnation italian ringspot virus structure to detect an attommolar of miR. Sci. Rep. 10(1), 9645 (2020). https://doi.org/10.1038/s41598-020-66393-z
E.P. Simão, D.B. Silva, M.T. Cordeiro, L.H. Gil, C.A. Andrade, M.D. Oliveira, Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta 208, 120338 (2020). https://doi.org/10.1016/j.talanta.2019.120338
E.I. Tzianni, J. Hrbac, D.K. Christodoulou, M.I. Prodromidis, A portable medical diagnostic device utilizing free-standing responsive polymer film-based biosensors and low-cost transducer for point-of-care applications. Sens. Actuator B Chem. 304, 127356 (2020). https://doi.org/10.1016/j.snb.2019.127356
J. Mohanraj, D. Durgalakshmi, R.A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh, Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci. 566, 463–472 (2020). https://doi.org/10.1016/j.jcis.2020.01.089
I.M. Mackay, K.E. Arden, A. Nitsche, Real-time PCR in virology. Nucleic Acids Res. 30(6), 1292–1305 (2002). https://doi.org/10.1093/nar/30.6.1292
U.E. Gibson, C.A. Heid, P.M. Williams, A novel method for real time quantitative RT-PCR. Genome Res. 6(10), 995–1001 (1996). https://doi.org/10.1101/gr.6.10.995
V.M. Corman, I. Eckerle, T. Bleicker, A. Zaki, O. Landt et al., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro. Surveill. 17(39), 20285 (2012). https://doi.org/10.2807/ese.17.39.20285-en
W.H. Organization PCR primers for sars developed by who network laboratories. (2003, 17 April)
W.H. Organization, Coronavirus disease (COVID-19) technical guidance: Laboratory testing for 2019-nCoV in humans. (Retrieved 2020, 18 March)
S.A. Bustin, T. Nolan, Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech. 15(3), 155–166 (2004)
D. Yang, J.L. Leibowitz, The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Res. 206, 120–133 (2015). https://doi.org/10.1016/j.virusres.2015.02.025
T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28(12), E63 (2000). https://doi.org/10.1093/nar/28.12.e63
Y. Mori, K. Nagamine, N. Tomita, T. Notomi, Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 289(1), 150–154 (2001). https://doi.org/10.1006/bbrc.2001.5921
Z.K. Njiru, A.S. Mikosza, T. Armstrong, J.C. Enyaru, J.M. Ndung’u, A.R. Thompson, Loop-mediated isothermal amplification (lamp) method for rapid detection of trypanosoma brucei rhodesiense. PLoS Negl. Trop. Dis. 2(1), e147 (2008). https://doi.org/10.1371/journal.pntd.0000147
L.L. Poon, C.S. Leung, K.H. Chan, J.H. Lee, K.Y. Yuen, Y. Guan, J.S. Peiris, Detection of human influenza a viruses by loop-mediated isothermal amplification. J. Clin. Microbiol. 43(1), 427–430 (2005). https://doi.org/10.1128/JCM.43.1.427-430.2005
Y. Enomoto, T. Yoshikawa, M. Ihira, S. Akimoto, F. Miyake et al., Rapid diagnosis of herpes simplex virus infection by a loop-mediated isothermal amplification method. J. Clin. Microbiol. 43(2), 951–955 (2005). https://doi.org/10.1128/JCM.43.2.951-955.2005
H.T.C. Thai, M.Q. Le, C.D. Vuong, M. Parida, H. Minekawa et al., Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42(5), 1956–1961 (2004). https://doi.org/10.1128/JCM.42.5.1956-1961.2004
G.-S. Park, K. Ku, S.-H. Beak, S.J. Kim, S.I. Kim, B.-T. Kim, J.-S. Maeng, Development of reverse transcription loop-mediated isothermal amplification assays targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J. Mol. Diagn. 22(6), 729–735 (2020). https://doi.org/10.1016/j.jmoldx.2020.03.006
L.E. Lamb, S.N. Bartolone, E. Ward, M.B. Chancellor, Rapid detection of novel coronavirus (COVID19) by reverse transcription-loop-mediated isothermal amplification. https://doi.org/10.2139/ssrn.3539654
L. Yu, S. Wu, X. Hao, X. Li, X. Liu et al., Rapid colorimetric detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform: iLACO. medRxiv (2020). https://doi.org/10.1101/2020.02.20.20025874
G. Woźniakowski, E. Samorek-Salamonowicz, W. Kozdruń, Comparison of loop-mediated isothermal amplification and PCR for the detection and differentiation of marek’s disease virus serotypes 1, 2, and 3. Avian Dis. 57(1), 539–543 (2013). https://doi.org/10.1637/10328-082012-ResNote.1
X. Wang, D.J. Seo, M.H. Lee, C. Choi, Comparison of conventional PCR, multiplex PCR, and loop-mediated isothermal amplification assays for rapid detection of arcobacter species. J. Clin. Microbiol. 52(2), 557–563 (2014). https://doi.org/10.1128/JCM.02883-13
J.R. Crowther, Elisa: Theory and Practice (Springer, Berlin, 2001). https://doi.org/10.1385/0896032795
E. Engvall, P. Perlmann, Enzyme-linked immunosorbent assay, elisa. Iii. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J. Immunol. 109(1), 129–135 (1972)
S. Greer, G.J. Alexander, Viral serology and detection. Baillieres Clin. Gastroenterol. 9(4), 689–721 (1995). https://doi.org/10.1016/0950-3528(95)90057-8
CfDCa. Prevention, CDC laboratory testing for middle east respiratory syndrome coronavirus (MERS-CoV). (2019, 29 August)
H.S. Wu, S.C. Chiu, T.C. Tseng, S.F. Lin, J.H. Lin et al., Serologic and molecular biologic methods for SARS-associated coronavirus infection, taiwan. Emerg. Infect. Dis. 10(2), 304–310 (2004). https://doi.org/10.3201/eid1002.030731
J. Pang, M.X. Wang, I.Y.H. Ang, S.H.X. Tan, R.F. Lewis et al., Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): a systematic review. J. Clin. Med. 9(3), 623 (2020). https://doi.org/10.3390/jcm9030623
J. Zhao, Q. Yuan, H. Wang, W. Liu, X. Liao et al., Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. (2020). https://doi.org/10.1101/2020.03.02.20030189
K.K. To, O.T. Tsang, W.S. Leung, A.R. Tam, T.C. Wu et al., Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. 20(5), 565–574 (2020)
I. Diazyme Laboratories, Why do we need antibody tests for covid-19 and how to interpret test results. (2020)
M. Buheji, A.R. Buhiji, Designing intelligent system for stratification of covid-19 asymptomatic patients. Am. J. Med. Med. Sci. 10(4), 246–257 (2020). https://doi.org/10.5923/j.ajmms.20201004.17
T. Waritani, J. Chang, B. McKinney, K. Terato, An elisa protocol to improve the accuracy and reliability of serological antibody assays. MethodsX 4, 153–165 (2017). https://doi.org/10.1016/j.mex.2017.03.002
S. Hassanpour, B. Baradaran, M. Hejazi, M. Hasanzadeh, A. Mokhtarzadeh, M. de la Guardia, Recent trends in rapid detection of influenza infections by bio and nanobiosensor. TrAC Trends Anal. Chem. 98, 201–215 (2018). https://doi.org/10.1016/j.trac.2017.11.012
Y. Lee, J.H. Ahn, Biomimetic tactile sensors based on nanomaterials. ACS Nano 14(2), 1220–1226 (2020). https://doi.org/10.1021/acsnano.0c00363
A. Szuplewska, D. Kulpinska, A. Dybko, M. Chudy, A.M. Jastrzebska, A. Olszyna, Z. Brzozka, Future applications of mxenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol. 38(3), 264–279 (2020). https://doi.org/10.1016/j.tibtech.2019.09.001
M.A. Ali, L. Dong, J. Dhau, A. Khosla, A. Kaushik, Perspective—electrochemical sensors for soil quality assessment. J. Electrochem. Soc. 167(3), 037550 (2020). https://doi.org/10.1149/1945-7111/ab69fe
M. Pirzada, Z. Altintas, Recent progress in optical sensors for biomedical diagnostics. Micromachines 11(4), 356 (2020). https://doi.org/10.3390/mi11040356
P.H. Lin, B.R. Li, Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 145(4), 1110–1120 (2020). https://doi.org/10.1039/C9AN02017A
H.S. Maghdid, K.Z. Ghafoor, A.S. Sadiq, K. Curran, K. Rabie, A novel ai-enabled framework to diagnose coronavirus covid 19 using smartphone embedded sensors: Design study. arXiv preprint arXiv:200307434. (2020)
M. Hackbart, X. Deng, S.C. Baker, Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc. Natl. Acad. Sci. USA 117(14), 8094–8103 (2020). https://doi.org/10.1073/pnas.1921485117
H. Fischer, E. Tschachler, L. Eckhart, Pangolins lack IFIH1/MDA5, a cytoplasmic RNA sensor that initiates innate immune defense upon coronavirus infection. Front. Immunol. 11, 939 (2020). https://doi.org/10.3389/fimmu.2020.00939
G. Nikaeen, S. Abbaszadeh, S. Yousefinejad, Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine 15(15), 1501–1512 (2020). https://doi.org/10.2217/nnm-2020-0117
C. Parolo, A.S. Greenwood, N.E. Ogden, D. Kang, C. Hawes et al., E-DNA scaffold sensors and the reagentless, single-step, measurement of HIV-diagnostic antibodies in human serum. Microsyst. Nanoeng. 6(1), 1–8 (2020). https://doi.org/10.1038/s41378-019-0119-5
S. Kamal, M.I. Rosen, C. Lazar, L. Siqueiros, Y. Wang, E.S. Daar, H. Liu, Perceptions of people living with hiv and hiv healthcare providers on real-time measuring and monitoring of antiretroviral adherence using ingestible sensors: a qualitative study. AIDS Res. Treat. 2020, 1098109 (2020). https://doi.org/10.1155/2020/1098109
H. Chen, G. He, Y. Chen, X. Zhang, Hepatitis B virus can be sensed by STING-dependent DNA sensors but suppresses the DNA sensing pathway in humans with acute and chronic hepatitis B virus infection. Res Square (2020). https://doi.org/10.21203/rs.2.23304/v1
M. Duhkinova, C. Crina, R. Weiss, V. Siciliano, Engineering intracellular protein sensors in mammalian cells. J. Vis. Exp. 158, e60878 (2020). https://doi.org/10.3791/60878
S. Dolai, M. Tabib-Azar, Microfabricated nano-gap tunneling current zika virus sensors with single virus detection capabilities. IEEE Sens. J. 20(15), 8597–8603 (2020). https://doi.org/10.1109/JSEN.2020.2984172
A.F. Versiani, E.M.N. Martins, L.M. Andrade, L. Cox, G.C. Pereira et al., Nanosensors based on LSPR are able to serologically differentiate dengue from zika infections. Sci. Rep. 10(1), 11302 (2020). https://doi.org/10.1038/s41598-020-68357-9
S. Velanki, H.-F. Ji, Detection of feline coronavirus using microcantilever sensors. Meas. Sci. Technol. 17(11), 2964 (2006). https://doi.org/10.1088/0957-0233/17/11/015
S. Hassanpour, B. Baradaran, M. de la Guardia, A. Baghbanzadeh, J. Mosafer et al., Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: a review on recent advancements. Mikrochim. Acta 185(12), 568 (2018). https://doi.org/10.1007/s00604-018-3088-8
W.-Y. Chang, P.-H. Sung, C.-H. Chu, C.-J. Shih, Y.-C. Lin, Phase detection of the two-port fpw sensor for biosensing. IEEE Sens. J. 8(5), 501–507 (2008). https://doi.org/10.1109/JSEN.2008.918728
P. Teengam, W. Siangproh, A. Tuantranont, T. Vilaivan, O. Chailapakul, C.S. Henry, Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced agnps aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem. 89(10), 5428–5435 (2017). https://doi.org/10.1021/acs.analchem.7b00255
L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang et al., Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded x-ray-responsive bismuth sulfide@mesoporous silica core–shell nanoparticles. Adv. Funct. Mater. 28(5), 1704623 (2018). https://doi.org/10.1002/adfm.201704623
Y. Li, M. Hong, B. Qiu, Z. Lin, Y. Chen, Z. Cai, G. Chen, Highly sensitive fluorescent immunosensor for detection of influenza virus based on Ag autocatalysis. Biosens. Bioelectron. 54, 358–364 (2014). https://doi.org/10.1016/j.bios.2013.10.045
I.M. Khoris, K. Takemura, J. Lee, T. Hara, F. Abe, T. Suzuki, E.Y. Park, Enhanced colorimetric detection of norovirus using in situ growth of Ag shell on Au NPs. Biosens. Bioelectron. 126, 425–432 (2019). https://doi.org/10.1016/j.bios.2018.10.067
S.R. Ahmed, J. Kim, T. Suzuki, J. Lee, E.Y. Park, Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron. 85, 503–508 (2016). https://doi.org/10.1016/j.bios.2016.05.050
R.K. Kankala, Y.H. Han, J. Na, C.H. Lee, Z. Sun et al., Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 32(23), e1907035 (2020). https://doi.org/10.1002/adma.201907035
E. Doustkhah, J. Lin, S. Rostamnia, C. Len, R. Luque, X. Luo et al., Development of sulfonic-acid-functionalized mesoporous materials: synthesis and catalytic applications. Chemistry 25(7), 1614–1635 (2019). https://doi.org/10.1002/chem.201802183
J. Wang, Y. Xu, B. Ding, Z. Chang, X. Zhang, Y. Yamauchi, K.C. Wu, Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework. Angew. Chem. Int. Ed. 57(11), 2894–2898 (2018). https://doi.org/10.1002/anie.201712959
Z. Jia, Y. Ma, L. Yang, C. Guo, N. Zhou et al., NiCo2O4 spinel embedded with carbon nanotubes derived from bimetallic NiCo metal-organic framework for the ultrasensitive detection of human immune deficiency virus-1 gene. Biosens. Bioelectron. 133, 55–63 (2019). https://doi.org/10.1016/j.bios.2019.03.030
A. Rashidi, M. Omidi, M. Choolaei, M. Nazarzadeh, A. Yadegari et al., Electromechanical properties of vertically aligned carbon nanotube. Adv. Mater. Res. 705, 332–336 (2013). https://doi.org/10.4028/www.scientific.net/AMR.705.332
E. Proniewicz, A. Tąta, A. Szkudlarek, J. Świder, M. Molenda, M. Starowicz, Y. Ozaki, Electrochemically synthesized γ-Fe2O3 nanoparticles as peptide carriers and sensitive and reproducible sers biosensors Comparison of adsorption on γ-Fe2O3 versus Fe. Appl. Surf. Sci. 495, 143578 (2019). https://doi.org/10.1016/j.apsusc.2019.143578
J. Ding, W. Qin, Recent advances in potentiometric biosensors. TrAC Trend. Anal. Chem. 124, 115803 (2020). https://doi.org/10.1016/j.trac.2019.115803
Q. Zhou, D. Tang, Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC Trend. Anal. Chem. 124, 115814 (2020). https://doi.org/10.1016/j.trac.2020.115814
O. Hanpanich, K. Saito, N. Shimada, A. Maruyama, One-step isothermal RNA detection with LNA-modified MNAzymes chaperoned by cationic copolymer. Biosens. Bioelectron. 165, 112383 (2020). https://doi.org/10.1016/j.bios.2020.112383
M. Hasanzadeh, A.S. Nahar, S. Hassanpour, N. Shadjou, A. Mokhtarzadeh, J. Mohammadi, Proline dehydrogenase-entrapped mesoporous magnetic silica nanomaterial for electrochemical biosensing of l-proline in biological fluids. Enzyme Microb. Technol. 105, 64–76 (2017). https://doi.org/10.1016/j.enzmictec.2017.05.007
Y. Chen, C. Qian, C. Liu, H. Shen, Z. Wang et al., Nucleic acid amplification free biosensors for pathogen detection. Biosens. Bioelectron. 153, 112049 (2020). https://doi.org/10.1016/j.bios.2020.112049
F. Cui, H.S. Zhou, Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens. Bioelectron. 165, 112349 (2020). https://doi.org/10.1016/j.bios.2020.112349
G.C.H. Mo, C. Posner, E.A. Rodriguez, T. Sun, J. Zhang, A rationally enhanced red fluorescent protein expands the utility of fret biosensors. Nat. Commun. 11(1), 1848 (2020). https://doi.org/10.1038/s41467-020-15687-x
S. Mavrikou, G. Moschopoulou, V. Tsekouras, S. Kintzios, Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 s1 spike protein antigen. Sensors 20(11), 3121 (2020). https://doi.org/10.3390/s20113121
C. Bian, H. Wang, X. Zhang, S. Xiao, Z. Liu, X. Wang, Sensitive detection of low-concentration sulfide based on the synergistic effect of rGO, np-Au, and recombinant microbial cell. Biosens. Bioelectron. 151, 111985 (2020). https://doi.org/10.1016/j.bios.2019.111985
V. Gaudin, Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—a comprehensive review. Biosens. Bioelectron. 90, 363–377 (2017). https://doi.org/10.1016/j.bios.2016.12.005
M. Hasanzadeh, A. Karimzadeh, S. Sadeghi, A. Mokhtarzadeh, N. Shadjou, A. Jouyban, Graphene quantum dot as an electrically conductive material toward low potential detection: a new platform for interface science. J. Mater. Sci. Mater. Electron. 27(6), 6488–6495 (2016). https://doi.org/10.1007/s10854-016-4590-6
A. Dalal, H. Mohan, M. Prasad, C. Pundir, Detection methods for influenza a H1N1 virus with special reference to biosensors: a review. Biosci. Rep. 40(2), 3852 (2020). https://doi.org/10.1042/BSR20193852
B. Nohwal, R. Chaudhary, C. Pundir, Amperometric l-lysine determination biosensor amplified with l-lysine oxidase nanoparticles and graphene oxide nanoparticles. Process Biochem. 97, 57–63 (2020). https://doi.org/10.1016/j.procbio.2020.06.011
P. Kanagavalli, M. Veerapandian, Opto-electrochemical functionality of Ru(ii)-reinforced graphene oxide nanosheets for immunosensing of dengue virus non-structural 1 protein. Biosens. Bioelectron. 150, 111878 (2020). https://doi.org/10.1016/j.bios.2019.111878
R. Eivazzadeh-Keihan, P. Pashazadeh-Panahi, T. Mahmoudi, K.K. Chenab, B. Baradaran et al., Dengue virus: a review on advances in detection and trends–from conventional methods to novel biosensors. Microchim. Acta 186(6), 329 (2019). https://doi.org/10.1007/s00604-019-3420-y
A. Lopreside, Exploiting bioluminescence to enhance the analytical performance of whole-cell and cell-free biosensors for environmental and point-of-care applications. (2020)
S.Y. Kim, W. Jin, A. Sood, D.W. Montgomery, O.C. Grant et al., Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res. 181, 104873 (2020). https://doi.org/10.1016/j.antiviral.2020.104873
G. Pinto, P. Canepa, C. Canale, M. Canepa, O. Cavalleri, Morphological and mechanical characterization of DNA SAMs combining nanolithography with AFM and optical methods. Materials 13(13), 2888 (2020). https://doi.org/10.3390/ma13132888
P. Annamalai, M. Kanta, P. Ramu, B. Ravi, K. Veerapandian, R. Srinivasan, A simple colorimetric molecular detection of novel coronavirus (COVID-19), an essential diagnostic tool for pandemic screening. medRxiv (2020). https://doi.org/10.1101/2020.04.10.20060293
S. Zhang, X. Sun, W. Guo, J. Xu, Simultaneous detection of 2019 novel coronavirus and influenza virus by double fluorescent RT-PCR. Am J Lab Med. 5(1), 42–46 (2020). https://doi.org/10.11648/j.ajlm.20200501.16
D. Zhang, X. Zhang, R. Ma, S. Deng, X. Wang et al., Ultra-fast and onsite interrogation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in environmental specimens via surface enhanced raman scattering (SERS). medRxiv (2020). https://doi.org/10.1101/2020.05.02.20086876
C. Annalaura, F. Ileana, L. Dasheng, V. Marco, Making waves: coronavirus detection, presence and persistence in the water environment: state of the art and knowledge needs for public health. Water Res. (2020). https://doi.org/10.1016/j.watres.2020.115907
A. Kilianski, A.M. Mielech, X. Deng, S.C. Baker, Assessing activity and inhibition of middle east respiratory syndrome coronavirus papain-like and 3C-like proteases using luciferase-based biosensors. J. Virol. 87(21), 11955–11962 (2013). https://doi.org/10.1128/JVI.02105-13
L. Shi, Q. Sun, J. He, H. Xu, C. Liu et al., Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Biomed. Mater. Eng. 26(s1), S2207–S2216 (2015). https://doi.org/10.3233/BME-151526
F.N. Ishikawa, H.-K. Chang, M. Curreli, H.-I. Liao, C.A. Olson et al., Electrical detection of the sars virus n-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano 3(5), 1219–1224 (2009). https://doi.org/10.1021/nn900086c
T.J. Park, M.S. Hyun, H.J. Lee, S.Y. Lee, S. Ko, A self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta 79(2), 295–301 (2009). https://doi.org/10.1016/j.talanta.2009.03.051
A. Mokhtarzadeh, R. Eivazzadeh-Keihan, P. Pashazadeh, M. Hejazi, N. Gharaatifar et al., Nanomaterial-based biosensors for detection of pathogenic virus. Trends Anal. Chem. 97, 445–457 (2017). https://doi.org/10.1016/j.trac.2017.10.005
C. Qi, J.-Z. Duan, Z.-H. Wang, Y.-Y. Chen, P.-H. Zhang et al., Investigation of interaction between two neutralizing monoclonal antibodies and SARS virus using biosensor based on imaging ellipsometry. Biomed. Microdevices 8(3), 247–253 (2006). https://doi.org/10.1007/s10544-006-8305-2
L. Huang, J. Chen, Z. Yu, D. Tang, Self-powered temperature sensor with seebeck effect transduction for photothermal–thermoelectric coupled immunoassay. Anal. Chem. 92(3), 2809–2814 (2020). https://doi.org/10.1021/acs.analchem.9b05218
S.A. Byrnes, T. Huynh, T.C. Chang, C.E. Anderson, J.J. McDermott et al., Wash-free, digital immunoassay in polydisperse droplets. Anal. Chem. 92(5), 3535–3543 (2020). https://doi.org/10.1021/acs.analchem.9b02526
M. Hasanzadeh, H.N. Baghban, A. Mokhtarzadeh, N. Shadjou, S. Mahboob, An innovative immunosensor for detection of tumor suppressor protein p53 in unprocessed human plasma and cancer cell lysates. Int. J. Biol. Macromol. 105(Pt 1), 1337–1348 (2017). https://doi.org/10.1016/j.ijbiomac.2017.07.165
M. Hasanzadeh, S. Tagi, E. Solhi, A. Mokhtarzadeh, N. Shadjou, A. Eftekhari, S. Mahboob, An innovative immunosensor for ultrasensitive detection of breast cancer specific carbohydrate (ca15-3) in unprocessed human plasma and MCF-7 breast cancer cell lysates using gold nanospear electrochemically assembled onto thiolated graphene quantum dots. Int. J. Biol. Macromol. 114, 1008–1017 (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.183
M. Hasanzadeh, S. Tagi, E. Solhi, N. Shadjou, A. Jouyban, A. Mokhtarzadeh, Immunosensing of breast cancer prognostic marker in adenocarcinoma cell lysates and unprocessed human plasma samples using gold nanostructure coated on organic substrate. Int. J. Biol. Macromol. 118, 1082–1089 (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.091
A. Padoan, C. Cosma, L. Sciacovelli, D. Faggian, M. Plebani, Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IGM/IGG and antibody kinetics. Clin. Chem. Lab. Med. 58(7), 1081–1088 (2020). https://doi.org/10.1515/cclm-2020-0443
B. Meyer, G. Torriani, S. Yerly, L. Mazza, A. Calame et al., Validation of a commercially available SARS-CoV-2 serological immunoassay. Clin. Microbiol. Infect. 26, 1386–1394 (2020). https://doi.org/10.1016/j.cmi.2020.06.024
Z. Chen, Z. Zhang, X. Zhai, Y. Li, L. Lin et al., Rapid and sensitive detection of anti-SARS-CoV-2 IGG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal. Chem. 92(10), 7226–7231 (2020). https://doi.org/10.1021/acs.analchem.0c00784
E.R. Adams, R. Anand, M.I. Andersson, K. Auckland, J.K. Baillie et al., Evaluation of antibody testing for SARS-CoV-2 using ELISA and lateral flow immunoassays. medRxiv (Preprint, 2020). https://doi.org/10.1101/2020.04.15.20066407
T. Nicol, C. Lefeuvre, O. Serri, A. Pivert, F. Joubaud et al., Assessment of SARS-CoV-2 serological tests for the diagnosis of covid-19 through the evaluation of three immunoassays: two automated immunoassays (euroimmun and abbott) and one rapid lateral flow immunoassay (NG biotech). J. Clin. Virol. 129, 104511 (2020). https://doi.org/10.1016/j.jcv.2020.104511
D. Sevenler, A. Bardon, M. FernandezSuarez, L. Marshall, M. Toner, P.K. Drain, R.D. Sandlin, Immunoassay for HIV drug metabolites tenofovir and tenofovir diphosphate. ACS Infect. Dis. 6(7), 1635–1642 (2020). https://doi.org/10.1021/acsinfecdis.0c00010
R.M. Stalter, J.M. Baeten, D. Donnell, M.A. Spinelli, D.V. Glidden et al., Urine tenofovir levels measured by a novel immunoassay predict HIV protection. Clin. Infect. Dis. (2020). https://doi.org/10.1093/cid/ciaa785
W. Yang, D. Yang, S. Gong, X. Dong, L. Liu et al., An immunoassay cassette with a handheld reader for HIV urine testing in point-of-care diagnostics. Biomed. Microdevices 22(2), 39 (2020). https://doi.org/10.1007/s10544-020-00494-4
Z. Sharifi, M. Parsania, A. Pourfathollah, S. Haghighat, Prevalence of anti-HBc in HBsAg negative blood donors using two enzyme immunoassays kits. Sci. J. Iran Blood Transfus Organ 17(2), 83–90 (2020)
A. Eshetu, A. Hauser, D. Schmidt, B. Bartmeyer, V. Bremer et al., Comparison of two immunoassays for concurrent detection of HCV antigen and antibodies among HIV/HCV co-infected patients in dried serum/plasma spots. J. Virol. Methods 279, 113839 (2020). https://doi.org/10.1016/j.jviromet.2020.113839
J. Patel, P. Sharma, Design of a novel rapid immunoassay for simultaneous detection of hepatitis C virus core antigen and antibodies. Arch. Virol. 165(3), 627–641 (2020). https://doi.org/10.1007/s00705-019-04518-0
A. Weiss, Concurrent engineering for lateral-flow diagnostics. IVD Technol. 5(7), 48–57 (1999)
K. Malik, H. Sadia, M.H. Basit, in Protein-based detection methods for genetically modified crops. ed. by (IntechOpen; 2018). https://doi.org/10.5772/intechopen.75520
J. Hansson, H. Yasuga, T. Haraldsson, W. van der Wijngaart, Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays. Lab Chip 16(2), 298–304 (2016). https://doi.org/10.1039/C5LC01318F
W. Guo, J. Hansson, W. van der Wijngaart, Viscosity independent paper microfluidic imbibition. The 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016, 9–13 October 2016, Dublin, Ireland. 13–14 (2016)
L.A. Layqah, S. Eissa, An electrochemical immunosensor for the corona virus associated with the middle east respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim. Acta 186(4), 224 (2019). https://doi.org/10.1007/s00604-019-3345-5
B. Zuo, S. Li, Z. Guo, J. Zhang, C. Chen, Piezoelectric immunosensor for sars-associated coronavirus in sputum. Anal. Chem. 76(13), 3536–3540 (2004). https://doi.org/10.1021/ac035367b
C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: rNA ligands to bacteriophage t4 DNA polymerase. Science 249(4968), 505–510 (1990). https://doi.org/10.1126/science.2200121
S.H. Rajabnejad, A. Mokhtarzadeh, K. Abnous, S.M. Taghdisi, M. Ramezani, B.M. Razavi, Targeted delivery of melittin to cancer cells by AS1411 anti-nucleolin aptamer. Drug Dev. Ind. Pharm. 44(6), 982–987 (2018). https://doi.org/10.1080/03639045.2018.1427760
J. Mosafer, A. Mokhtarzadeh, Cell surface nucleolin as a promising receptor for effective AS1411 aptamer-mediated targeted drug delivery into cancer cells. Curr. Drug Deliv. 15(9), 1323–1329 (2018). https://doi.org/10.2174/1567201815666180724104451
S. Xie, Y. Du, Y. Zhang, Z. Wang, D. Zhang et al., Aptamer-based optical manipulation of protein subcellular localization in cells. Nat. Commun. 11(1), 1347 (2020). https://doi.org/10.1038/s41467-020-15113-2
M. Chen, Z. Tang, C. Ma, Y. Yan, A fluorometric aptamer based assay for prostate specific antigen based on enzyme-assisted target recycling. Sens. Actuator B Chem. 302, 127178 (2020). https://doi.org/10.1016/j.snb.2019.127178
F. Tian, J. Zhou, R. Fu, Y. Cui, Q. Zhao, B. Jiao, Y. He, Multicolor colorimetric detection of ochratoxin a via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chem. 320, 126607 (2020). https://doi.org/10.1016/j.foodchem.2020.126607
S. Arshavsky-Graham, K. Urmann, R. Salama, N. Massad-Ivanir, J.G. Walter, T. Scheper, E. Segal, Aptamers vs. antibodies as capture probes in optical porous silicon biosensors. Analyst 145, 4991–5003 (2020). https://doi.org/10.1039/D0AN00178C
M. Hasanzadeh, A. Zargami, H.N. Baghban, A. Mokhtarzadeh, N. Shadjou, S. Mahboob, Aptamer-based assay for monitoring genetic disorder phenylketonuria (PKU). Int. J. Biol. Macromol. 116, 735–743 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.028
M. Hasanzadeh, N. Razmi, A. Mokhtarzadeh, N. Shadjou, S. Mahboob, Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported α-cyclodextrin. Int. J. Biol. Macromol. 108, 69–80 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.149
M. Hasanzadeh, M. Moosavy, J. Soleymani, A. Mokhtarzadeh, Determination of aflatoxin M1 using aptamer based biosensior on the surface of dendritic fibrous nano-silica functionalized by amine groups. Anal. Methods 11(30), 3910–3919 (2019). https://doi.org/10.1039/C9AY01185D
S. Wadhwa, A.T. John, S. Nagabooshanam, A. Mathur, J. Narang, Graphene quantum dot-gold hybrid nanoparticles integrated aptasensor for ultra-sensitive detection of vitamin D3 towards point-of-care application. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.146427
R. Eivazzadeh-Keihan, P. Pashazadeh-Panahi, B. Baradaran, A. Maleki, M. Hejazi, A. Mokhtarzadeh, M. de la Guardia, Recent advances on nanomaterial based electrochemical and optical aptasensors for detection of cancer biomarkers. TrAC Trend Anal. Chem. 100, 103–115 (2018). https://doi.org/10.1016/j.trac.2017.12.019
H. Safarpour, S. Dehghani, R. Nosrati, N. Zebardast, M. Alibolandi, A. Mokhtarzadeh, M. Ramezani, Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosens. Bioelectron. 148, 111833 (2020). https://doi.org/10.1016/j.bios.2019.111833
M. Yousefi, S. Dehghani, R. Nosrati, H. Zare, M. Evazalipour et al., Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: a review. Biosens. Bioelectron. 130, 1–19 (2019). https://doi.org/10.1016/j.bios.2019.01.015
L. Wang, X. Peng, H. Fu, C. Huang, Y. Li, Z. Liu, Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens. Bioelectron. 147, 111777 (2020). https://doi.org/10.1016/j.bios.2019.111777
C. Zhu, L. Li, G. Yang, S. Fang, M. Liu et al., Online reaction based single-step capillary electrophoresis-systematic evolution of ligands by exponential enrichment for ssDNA aptamers selection. Anal. Chim. Acta 1070, 112–122 (2019). https://doi.org/10.1016/j.aca.2019.04.034
L. Gold, Selex: how it happened and where it will go. J. Mol. Evol. 81(5–6), 140–143 (2015). https://doi.org/10.1007/s00239-015-9705-9
A. Mokhtarzadeh, M. Tabarzad, J. Ranjbari, M. de la Guardia, M. Hejazi, M. Ramezani, Aptamers as smart ligands for nano-carriers targeting. TrAC Trends Anal. Chem. 82, 316–327 (2016). https://doi.org/10.1016/j.trac.2016.06.018
W. Yi-Xian, Y. Zun-Zhong, S. Cheng-Yan, Y. Yi-Bin, Application of aptamer based biosensors for detection of pathogenic microorganisms. Chin. J. Anal. Chem. 40(4), 634–642 (2012). https://doi.org/10.1016/S1872-2040(11)60542-2
D.G. Ahn, I.J. Jeon, J.D. Kim, M.S. Song, S.R. Han et al., RNA aptamer-based sensitive detection of SARS coronavirus nucleocapsid protein. Analyst 134(9), 1896–1901 (2009). https://doi.org/10.1039/b906788d
S.-J. Cho, H.-M. Woo, K.-S. Kim, J.-W. Oh, Y.-J. Jeong, Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer. J. Biol. Bioeng. 112(6), 535–540 (2011). https://doi.org/10.1016/j.jbiosc.2011.08.014
M. Afsharzadeh, M. Hashemi, A. Mokhtarzadeh, K. Abnous, M. Ramezani, Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif. Cells Nanomed. Biotechnol. 46(6), 1095–1110 (2018). https://doi.org/10.1080/21691401.2017.1376675
C. Roh, S.K. Jo, Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J. Chem. Technol. Biotechnol. 86(12), 1475–1479 (2011). https://doi.org/10.1002/jctb.2721
I. Sola, F. Almazan, S. Zuniga, L. Enjuanes, Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol. 2(1), 265–288 (2015). https://doi.org/10.1146/annurev-virology-100114-055218
C.M. Niemeyer, M. Adler, R. Wacker, Detecting antigens by quantitative immuno-PCR. Nat. Protoc. 2(8), 1918–1930 (2007). https://doi.org/10.1038/nprot.2007.267
News in brief, First NGS-based COVID-19 diagnostic. Nat. Biotechnol. 38(7), 777 (2020). https://doi.org/10.1038/s41587-020-0608-y
E.B. Bahadır, M.K. Sezgintürk, Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 478, 107–120 (2015). https://doi.org/10.1016/j.ab.2015.03.011
Y.S. Malik, A.K. Verma, N. Kumar, N. Touil, K. Karthik et al., Advances in diagnostic approaches for viral etiologies of diarrhea: From the lab to the field. Front. Microbiol. 10, 1957 (2019). https://doi.org/10.3389/fmicb.2019.01957