Titania Nanostructures for Dye-sensitized Solar Cells
Corresponding Author: M. Malekshahi Byranvand
Nano-Micro Letters,
Vol. 4 No. 4 (2012), Article Number: 253-266
Abstract
Titania is one kind of important materials, which has been extensively investigated because of its unique electronic and optical properties. Research efforts have largely focused on the optimization of the dye, but recently the titania nanostructures electrode itself has attracted more attention. It has been shown that particle size, shape, crystallinity, surface morphology, and chemistry of the TiO2 material are key parameters which should be controlled for optimized performance of the solar cell. Titania can be found in different shape of nanostructures including mesoporous, nanotube, nanowire, and nanorod structures. The present article reviews the structural, synthesis, electronic, and optical properties of TiO2 nanostructures for dye sensitized solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. I. Baraton, Nano-TiO2 for Dye-Sensitized Solar Cells Recent Patents on Nanotechnology 6, 10 (2012). http://dx.doi.org/10.2174/187221012798109273
- M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Solar cell efficiency tables (version 39), Progress in Photovoltaics: Research and Applications 20, 12 (2012). http://dx.doi.org/10.1002/pip.2163
- B. O’Regan, M. Gratzel, Nature 353, 737 (1991). http://dx.doi.org/10.1038/353737a0
- M. K. Nazeeruddin, S. M. Zakeeruddin, J. J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi, K. Schenk and M. Graetzel, Coordin. Chem. Rev. 248, 1317 (2004). http://dx.doi.org/10.1016/j.ccr.2004.03.012
- C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Grätzel, J. Am. Ceram. Soc. 80, 3157 (1997). http://dx.doi.org/10.1111/j.1151-2916.1997.tb03245.x
- M. Grätzel, Accounts. Chem. Res. 42, 1788 (2009). http://dx.doi.org/10.1021/ar900141y
- P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker and M. Grätzel, J. Phys. Chem. B 107, 14336 (2003). http://dx.doi.org/10.1021/jp0365965
- K. D. Benkstein, N. Kopidakis, J. van de Lagemaat and A. J. Frank, J. Phys. Chem. B 107, 7759 (2003). http://dx.doi.org/10.1021/jp022681l
- W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao and Y. Lin, Electrochim. Acta 54, 4467 (2009). http://dx.doi.org/10.1016/j.electacta.2009.03.037
- K. D. A. T. Geoprey Meacock, Michael J Knowles and Aristoteles Himonides, J. Sci. Food Agric. 73, 221 (1997).
- D. P. Macwan, P. Dave and S. Chaturvedi, J. Mater. Sci. 46, 3669 (2011). http://dx.doi.org/10.1007/s10853-011-5378-y
- X. Tang, J. Qian, Z. Wang, H. Wang, Q. Feng and G. Liu, Colloid Interf. Sci. 330, 386 (2009). http://dx.doi.org/10.1016/j.jcis.2008.10.072
- L. W. Fan Zuo, Tao Wu, Zhenyu Zhang, Dan Borchardt and Pingyun Feng, J. Am. Chem. Soc. 132, 11856 (2010).
- Y. Masuda and K. Kato, Thin Solid Films 516, 2547 (2008). http://dx.doi.org/10.1016/j.tsf.2007.04.063
- M. Gratzel, Nature 414, 338 (2001). http://dx.doi.org/10.1038/35104607
- A. Hagfeldt and M. Gratzel, Acc. Chem. Res. 33, 269 (2000). http://dx.doi.org/10.1021/ar980112j
- P. Wang, S. M. Zakeeruddin, J. E. Moser, M.K. Nazeeruddin, T. Sekiguchi and M. Gratzel, Nat. Mater. 2, 402 (2003). http://dx.doi.org/10.1038/nmat904
- S. Pelet, J. E. Moser and M. Grätzel, J. Phys. Chem. B 104, 1791 (2000). http://dx.doi.org/10.1021/jp9934477
- A. Hagfeldt and M. Grätzel, Acc. Chem. Res. 33, 269 (2000). http://dx.doi.org/10.1021/ar980112j
- V. S. Shelly D. Burnside, Christophe Barbé, Pascal Comte, Francine Arendse, Keith Brooks and Michael Grätzel, Chem. Mater. 10, 2419 (1998).
- M. Grätzel, J. Photochem. Photobiol. C. 4, 145 (2003). http://dx.doi.org/10.1016/S1389-5567(03)00026-1
- A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev. 110, 6595 (2010). http://dx.doi.org/10.1021/cr900356p
- X. Chen, S. S. Mao, Chem. Rev. 107, 2891 (2007). http://dx.doi.org/10.1021/cr0500535
- M. Gratzel, J. Colloid Interf. Sci. 4, 314 (1999). http://dx.doi.org/10.1016/S1359-0294(99)90013-4
- O. K. Varghese and C. A. Grimes, J. Nanosci. Nanotechnol. 3, 277 (2003). http://dx.doi.org/10.1166/jnn.2003.158
- Y. G. Guo, J. S. Hu, H. P. Liang, L. J. Wan and C. L. Bai, Adv. Funct. Mater. 15, 196 (2005). http://dx.doi.org/10.1002/adfm.200305098
- Hoda Hafez, Zhang Lan, Qinghua Li, Jihuai Wu and H. Hafez, Nanotechnology, Science and Applications 3, 45 (2010). http://dx.doi.org/10.2147/NSA.S11350
- S. J. Limmer, S. Seraji, Y. Wu, T. P. Chou, C. Nguyen and G. Z. Cao, Adv. Funct. Mater. 12, 59 (2002). http://dx.doi.org/10.1002/1616-3028(20020101)12:1<59::AID-ADFM59>3.0.CO;2-B
- M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska and M. Gratzel, Nano Lett. 5, 1789 (2005). http://dx.doi.org/10.1021/nl051401l
- P. Roy, S. Berger and P. Schmuki, Angewandte Chemie 50, 2904 (2011). http://dx.doi.org/10.1002/anie.201001374
- P. Roy, D. Kim, K. Lee, E. Spiecker and P. Schmuki, Nanoscale 2, 45 (2010). http://dx.doi.org/10.1039/b9nr00131j
- J. Nelson, Phys. Rev. B 59, 15374 (1999). http://dx.doi.org/10.1103/PhysRevB.59.15374
- J. Bisquert, Phys. Rev. Lett. 91, 010602 (2003). http://dx.doi.org/10.1103/PhysRevLett.91.010602
- A. G. James R. Jennings, Laurence M. Peter, Patrik Schmuki and Alison B. Walker, J. Am. Chem. Soc. 130, 13364 (2008).
- Y. S. S. Nakade, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, J. Phys. Chem. B 107, 8607 (2003). http://dx.doi.org/10.1021/jp034773w
- J. Bai, B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao and L. Zou, J. Mater. Sci. 43, 1880 (2008). http://dx.doi.org/10.1007/s10853-007-2418-8
- Y. Liu, B. Zhou, B. Xiong, J. Bai and L. Li, Chin. Sci. Bull. 52, 1585 (2007). http://dx.doi.org/10.1007/s11434-007-0254-5
- A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C. A. Schiller, P. Falaras and P. Schmuki, Chem. Asian J. 4, 520 (2009). http://dx.doi.org/10.1002/asia.200800441
- D. Kim, A. Ghicov and P. Schmuki, Electrochem. Commun. 10, 1835 (2008). http://dx.doi.org/10.1016/j.elecom.2008.09.029
- S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon and Y. E. Sung, Adv. Mater. 20, 54 (2008). http://dx.doi.org/10.1002/adma.200701819
- S. Pavasupree, S. Ngamsinlapasathian, Y. Suzuki and S. Yoshikawa, J. Nanosci. Nanotechnol. 6, 3685 (2006). http://dx.doi.org/10.1166/jnn.2006.612
- K. Zhu, T. B. Vinzant, N. R. Neale and A. J. Frank, Nano Lett. 7, 3739 (2007). http://dx.doi.org/10.1021/nl072145a
- J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki and A. B. Walker, J. Am. Chem. Soc. 130, 13364 (2008). http://dx.doi.org/10.1021/ja804852z
- P. Charoensirithavorn, Y. Ogomi, T. Sagawa, S. Hayase and S. Yoshikawa, J. Electrochem. Soc. 157, B354 (2010). http://dx.doi.org/10.1149/1.3280229
- H. H. Ou and S. L. Lo, Sep. Purif. Technol. 58, 179 (2007). http://dx.doi.org/10.1016/j.seppur.2007.07.017
- G. R. Patzke, F. Krumeich and R. Nesper, Angew. Chem. Int. Ed. 41, 2446 (2002). http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K
- D. V. Bavykin, J. M. Friedrich and F. C. Walsh, Adv. Mater. 18, 2807 (2006). http://dx.doi.org/10.1002/adma.200502696
- J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, Curr. Opin. Solid State Mater. Sci. 11, 3 (2007). http://dx.doi.org/10.1016/j.cossms.2007.08.004
- V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin and M. Aucouturier, Surf. Interface Anal. 27, 629 (1999). http://dx.doi.org/10.1002/(SICI)1096-9918(199907)27:7<629:: AID-SIA551>3.0.CO;2-0
- R. Beranek, H. Hildebrand and P. Schmuki, Electrochem. Solid-State Lett. 6, B12 (2003). http://dx.doi.org/10.1149/1.1545192
- J. M. Macak, K. Sirotna and P. Schmuki, Electrochim. Acta. 50, 3679 (2005). http://dx.doi.org/10.1016/j.electacta.2005.01.014
- J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova and P. Schmuki, Angew. Chem. Int. Ed. 44, 7463 (2005). http://dx.doi.org/10.1002/anie.200502781
- J. M. Macák, H. Tsuchiya and P. Schmuki, Angew. Chem. Int. Ed. 44, 2100 (2005). http://dx.doi.org/10.1002/anie.200462459
- M. Adachi, Y. Murata, I. Okada and S. Yoshikawa, J. Electrochem. Soc. 150, G488 (2003). http://dx.doi.org/10.1149/1.1589763
- J. M. Macak, F. Schmidt-Stein and P. Schmuki, Electrochem. Commun. 9, 1783 (2007). http://dx.doi.org/10.1016/j.elecom.2007.04.002
- Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida, Phys. Chem. Chem. Phys. 7, 4157 (2005). http://dx.doi.org/10.1039/b511016e
- G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Lett. 6, 215 (2006). http://dx.doi.org/10.1021/nl052099j
- M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin and C. A. Grimes, Nanotech. 17, 1446 (2006). http://dx.doi.org/10.1088/0957-4484/17/5/046
- L. L. Li, C. Y. Tsai, H. P. Wu, C. C. Chen and E. W. G. Diau, J. Mater. Chem. 20, 2753 (2010). http://dx.doi.org/10.1039/b922003h
- J. D. Berrigan, T. S. Kang, Y. Cai, J. R. Deneault, M. F. Durstock and K. H. Sandhage, Adv. Funct. Mater. 21, 1693 (2011). http://dx.doi.org/10.1002/adfm.201002676
- J. J. Hill, N. Banks, K. Haller, M. E. Orazem and K. J. Ziegler, J. Am. Chem. Soc. 133, 18663 (2011). http://dx.doi.org/10.1021/ja2044216
- L. Sun, S. Zhang, X. Wang, X. W. Sun, D. Y. Ong and A. K. Ko Kyaw, Energy Environ. Sci. 4, 2240 (2011).
- K. L. Li, Z. B. Xie and S. Adams, Electrochim. Acta 62, 116 (2012). http://dx.doi.org/10.1016/j.electacta.2011.11.118
- Qing Zheng, Hosung Kang, Jongju Yun, Jiyong Lee, Jong Hyeok Park and Seunghyun Baik, ACS Nano 5, 5088 (2011). http://dx.doi.org/10.1021/nn201169u
- Q. Zhang and G. Cao, Nano Today 6, 91 (2011). http://dx.doi.org/10.1016/j.nantod.2010.12.007
- Xinjian Feng, Karthik Shankar, Oomman K. Varghese, Maggie Paulose, Thomas J. Latempa and Craig A. Grimes, Nano Lett. 8, 3781 (2008).
- Bin Liu and Eray S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009). http://dx.doi.org/10.1021/ja8078972
- L. Sun, S. Zhang, X. Wang, X. W. Sun, D. Y. Ong, X. Wang and D. Zhao, Chem. Phys. Chem. 12, 3634 (2011). http://dx.doi.org/10.1002/cphc.201100450
- E. H. N. Tetreault, T. Moehl, J. Brillet, R. Smajda, S. Bungener, N. Cai, P. Wang, S. M. Zakeeruddin, L. Forro, A. Magrez and Graetzel, ACS Nano 4, 7644 (2010). http://dx.doi.org/10.1021/nn1024434
- M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater. 4, 455 (2005). http://dx.doi.org/10.1038/nmat1387
- X. L. Jijun Qiu, Fuwei Zhuge, Xiaoyan Gan, Xiangdong Gao, Weizhen He Se-Jeong Park, Hyung-Kook Kim and Yoon-Hwae Hwang, Nanotechnology 21, 195602 (2010).
- H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa and M. Tachiya, J. Phys. Chem. B 107, 2570 (2003). http://dx.doi.org/10.1021/jp0220027
- Z. Wei, R. Li, T. Huang and A. Yu, Electrochim. Acta, 56, 7696 (2011). http://dx.doi.org/10.1016/j.electacta.2011.06.038
- X. Feng, J. Zhai and L. Jiang, Angew. Chem. Inter. Ed. 44, 5115 (2005).
- Qinghong Zhang and Lian Gao, Langmuir 19, 967 (2003). http://dx.doi.org/10.1021/la020310q
- Q. Huang and L. Gao, Chem. Lett. 32, 638 (2003). http://dx.doi.org/10.1246/cl.2003.638
- R. S. Chen, C. A. Chen, et al., Appl. Phys. Lett. 100, 123108 (2012). http://dx.doi.org/10.1063/1.3694926
- T. Y. Tsai and S. Y. Lu, J. Electrochem. Soc. 158, B1306 (2011). http://dx.doi.org/10.1149/2.023111jes
- G. Melcarne, L. De Marco, E. Carlino, F. Martina, M. Manca, R. Cingolani, G. Gigli and G. Ciccarella, J. Mater. Chem. 20, 7248 (2010). http://dx.doi.org/10.1039/c0jm01167c
- A. E. Shalan, M. M. Rashad, Y. Yu, M. Lira-Cantú, M. S. A. Abdel-Mottaleb, Appl. Phys. A (2012). http://dx.doi.org/10.1007/s00339-012-7368-6
- J. Kim, J. K. Koh, B. Kim, J. H. Kim and E. Kim, Angew. Chem. Inter. Ed. 51, 6864 (2012).
- S. H. T. Stefan Guldin, Matthias Kolle, Mark E. Welland, Peter Müller-Buschbaum, Richard H. Friend, Ullrich Steiner and Nicolas Tétreault, Nano Lett. 10, 2303 (2010).
References
M. I. Baraton, Nano-TiO2 for Dye-Sensitized Solar Cells Recent Patents on Nanotechnology 6, 10 (2012). http://dx.doi.org/10.2174/187221012798109273
M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Solar cell efficiency tables (version 39), Progress in Photovoltaics: Research and Applications 20, 12 (2012). http://dx.doi.org/10.1002/pip.2163
B. O’Regan, M. Gratzel, Nature 353, 737 (1991). http://dx.doi.org/10.1038/353737a0
M. K. Nazeeruddin, S. M. Zakeeruddin, J. J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi, K. Schenk and M. Graetzel, Coordin. Chem. Rev. 248, 1317 (2004). http://dx.doi.org/10.1016/j.ccr.2004.03.012
C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Grätzel, J. Am. Ceram. Soc. 80, 3157 (1997). http://dx.doi.org/10.1111/j.1151-2916.1997.tb03245.x
M. Grätzel, Accounts. Chem. Res. 42, 1788 (2009). http://dx.doi.org/10.1021/ar900141y
P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker and M. Grätzel, J. Phys. Chem. B 107, 14336 (2003). http://dx.doi.org/10.1021/jp0365965
K. D. Benkstein, N. Kopidakis, J. van de Lagemaat and A. J. Frank, J. Phys. Chem. B 107, 7759 (2003). http://dx.doi.org/10.1021/jp022681l
W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao and Y. Lin, Electrochim. Acta 54, 4467 (2009). http://dx.doi.org/10.1016/j.electacta.2009.03.037
K. D. A. T. Geoprey Meacock, Michael J Knowles and Aristoteles Himonides, J. Sci. Food Agric. 73, 221 (1997).
D. P. Macwan, P. Dave and S. Chaturvedi, J. Mater. Sci. 46, 3669 (2011). http://dx.doi.org/10.1007/s10853-011-5378-y
X. Tang, J. Qian, Z. Wang, H. Wang, Q. Feng and G. Liu, Colloid Interf. Sci. 330, 386 (2009). http://dx.doi.org/10.1016/j.jcis.2008.10.072
L. W. Fan Zuo, Tao Wu, Zhenyu Zhang, Dan Borchardt and Pingyun Feng, J. Am. Chem. Soc. 132, 11856 (2010).
Y. Masuda and K. Kato, Thin Solid Films 516, 2547 (2008). http://dx.doi.org/10.1016/j.tsf.2007.04.063
M. Gratzel, Nature 414, 338 (2001). http://dx.doi.org/10.1038/35104607
A. Hagfeldt and M. Gratzel, Acc. Chem. Res. 33, 269 (2000). http://dx.doi.org/10.1021/ar980112j
P. Wang, S. M. Zakeeruddin, J. E. Moser, M.K. Nazeeruddin, T. Sekiguchi and M. Gratzel, Nat. Mater. 2, 402 (2003). http://dx.doi.org/10.1038/nmat904
S. Pelet, J. E. Moser and M. Grätzel, J. Phys. Chem. B 104, 1791 (2000). http://dx.doi.org/10.1021/jp9934477
A. Hagfeldt and M. Grätzel, Acc. Chem. Res. 33, 269 (2000). http://dx.doi.org/10.1021/ar980112j
V. S. Shelly D. Burnside, Christophe Barbé, Pascal Comte, Francine Arendse, Keith Brooks and Michael Grätzel, Chem. Mater. 10, 2419 (1998).
M. Grätzel, J. Photochem. Photobiol. C. 4, 145 (2003). http://dx.doi.org/10.1016/S1389-5567(03)00026-1
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev. 110, 6595 (2010). http://dx.doi.org/10.1021/cr900356p
X. Chen, S. S. Mao, Chem. Rev. 107, 2891 (2007). http://dx.doi.org/10.1021/cr0500535
M. Gratzel, J. Colloid Interf. Sci. 4, 314 (1999). http://dx.doi.org/10.1016/S1359-0294(99)90013-4
O. K. Varghese and C. A. Grimes, J. Nanosci. Nanotechnol. 3, 277 (2003). http://dx.doi.org/10.1166/jnn.2003.158
Y. G. Guo, J. S. Hu, H. P. Liang, L. J. Wan and C. L. Bai, Adv. Funct. Mater. 15, 196 (2005). http://dx.doi.org/10.1002/adfm.200305098
Hoda Hafez, Zhang Lan, Qinghua Li, Jihuai Wu and H. Hafez, Nanotechnology, Science and Applications 3, 45 (2010). http://dx.doi.org/10.2147/NSA.S11350
S. J. Limmer, S. Seraji, Y. Wu, T. P. Chou, C. Nguyen and G. Z. Cao, Adv. Funct. Mater. 12, 59 (2002). http://dx.doi.org/10.1002/1616-3028(20020101)12:1<59::AID-ADFM59>3.0.CO;2-B
M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska and M. Gratzel, Nano Lett. 5, 1789 (2005). http://dx.doi.org/10.1021/nl051401l
P. Roy, S. Berger and P. Schmuki, Angewandte Chemie 50, 2904 (2011). http://dx.doi.org/10.1002/anie.201001374
P. Roy, D. Kim, K. Lee, E. Spiecker and P. Schmuki, Nanoscale 2, 45 (2010). http://dx.doi.org/10.1039/b9nr00131j
J. Nelson, Phys. Rev. B 59, 15374 (1999). http://dx.doi.org/10.1103/PhysRevB.59.15374
J. Bisquert, Phys. Rev. Lett. 91, 010602 (2003). http://dx.doi.org/10.1103/PhysRevLett.91.010602
A. G. James R. Jennings, Laurence M. Peter, Patrik Schmuki and Alison B. Walker, J. Am. Chem. Soc. 130, 13364 (2008).
Y. S. S. Nakade, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, J. Phys. Chem. B 107, 8607 (2003). http://dx.doi.org/10.1021/jp034773w
J. Bai, B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao and L. Zou, J. Mater. Sci. 43, 1880 (2008). http://dx.doi.org/10.1007/s10853-007-2418-8
Y. Liu, B. Zhou, B. Xiong, J. Bai and L. Li, Chin. Sci. Bull. 52, 1585 (2007). http://dx.doi.org/10.1007/s11434-007-0254-5
A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C. A. Schiller, P. Falaras and P. Schmuki, Chem. Asian J. 4, 520 (2009). http://dx.doi.org/10.1002/asia.200800441
D. Kim, A. Ghicov and P. Schmuki, Electrochem. Commun. 10, 1835 (2008). http://dx.doi.org/10.1016/j.elecom.2008.09.029
S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon and Y. E. Sung, Adv. Mater. 20, 54 (2008). http://dx.doi.org/10.1002/adma.200701819
S. Pavasupree, S. Ngamsinlapasathian, Y. Suzuki and S. Yoshikawa, J. Nanosci. Nanotechnol. 6, 3685 (2006). http://dx.doi.org/10.1166/jnn.2006.612
K. Zhu, T. B. Vinzant, N. R. Neale and A. J. Frank, Nano Lett. 7, 3739 (2007). http://dx.doi.org/10.1021/nl072145a
J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki and A. B. Walker, J. Am. Chem. Soc. 130, 13364 (2008). http://dx.doi.org/10.1021/ja804852z
P. Charoensirithavorn, Y. Ogomi, T. Sagawa, S. Hayase and S. Yoshikawa, J. Electrochem. Soc. 157, B354 (2010). http://dx.doi.org/10.1149/1.3280229
H. H. Ou and S. L. Lo, Sep. Purif. Technol. 58, 179 (2007). http://dx.doi.org/10.1016/j.seppur.2007.07.017
G. R. Patzke, F. Krumeich and R. Nesper, Angew. Chem. Int. Ed. 41, 2446 (2002). http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K
D. V. Bavykin, J. M. Friedrich and F. C. Walsh, Adv. Mater. 18, 2807 (2006). http://dx.doi.org/10.1002/adma.200502696
J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, Curr. Opin. Solid State Mater. Sci. 11, 3 (2007). http://dx.doi.org/10.1016/j.cossms.2007.08.004
V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin and M. Aucouturier, Surf. Interface Anal. 27, 629 (1999). http://dx.doi.org/10.1002/(SICI)1096-9918(199907)27:7<629:: AID-SIA551>3.0.CO;2-0
R. Beranek, H. Hildebrand and P. Schmuki, Electrochem. Solid-State Lett. 6, B12 (2003). http://dx.doi.org/10.1149/1.1545192
J. M. Macak, K. Sirotna and P. Schmuki, Electrochim. Acta. 50, 3679 (2005). http://dx.doi.org/10.1016/j.electacta.2005.01.014
J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova and P. Schmuki, Angew. Chem. Int. Ed. 44, 7463 (2005). http://dx.doi.org/10.1002/anie.200502781
J. M. Macák, H. Tsuchiya and P. Schmuki, Angew. Chem. Int. Ed. 44, 2100 (2005). http://dx.doi.org/10.1002/anie.200462459
M. Adachi, Y. Murata, I. Okada and S. Yoshikawa, J. Electrochem. Soc. 150, G488 (2003). http://dx.doi.org/10.1149/1.1589763
J. M. Macak, F. Schmidt-Stein and P. Schmuki, Electrochem. Commun. 9, 1783 (2007). http://dx.doi.org/10.1016/j.elecom.2007.04.002
Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida, Phys. Chem. Chem. Phys. 7, 4157 (2005). http://dx.doi.org/10.1039/b511016e
G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Lett. 6, 215 (2006). http://dx.doi.org/10.1021/nl052099j
M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin and C. A. Grimes, Nanotech. 17, 1446 (2006). http://dx.doi.org/10.1088/0957-4484/17/5/046
L. L. Li, C. Y. Tsai, H. P. Wu, C. C. Chen and E. W. G. Diau, J. Mater. Chem. 20, 2753 (2010). http://dx.doi.org/10.1039/b922003h
J. D. Berrigan, T. S. Kang, Y. Cai, J. R. Deneault, M. F. Durstock and K. H. Sandhage, Adv. Funct. Mater. 21, 1693 (2011). http://dx.doi.org/10.1002/adfm.201002676
J. J. Hill, N. Banks, K. Haller, M. E. Orazem and K. J. Ziegler, J. Am. Chem. Soc. 133, 18663 (2011). http://dx.doi.org/10.1021/ja2044216
L. Sun, S. Zhang, X. Wang, X. W. Sun, D. Y. Ong and A. K. Ko Kyaw, Energy Environ. Sci. 4, 2240 (2011).
K. L. Li, Z. B. Xie and S. Adams, Electrochim. Acta 62, 116 (2012). http://dx.doi.org/10.1016/j.electacta.2011.11.118
Qing Zheng, Hosung Kang, Jongju Yun, Jiyong Lee, Jong Hyeok Park and Seunghyun Baik, ACS Nano 5, 5088 (2011). http://dx.doi.org/10.1021/nn201169u
Q. Zhang and G. Cao, Nano Today 6, 91 (2011). http://dx.doi.org/10.1016/j.nantod.2010.12.007
Xinjian Feng, Karthik Shankar, Oomman K. Varghese, Maggie Paulose, Thomas J. Latempa and Craig A. Grimes, Nano Lett. 8, 3781 (2008).
Bin Liu and Eray S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009). http://dx.doi.org/10.1021/ja8078972
L. Sun, S. Zhang, X. Wang, X. W. Sun, D. Y. Ong, X. Wang and D. Zhao, Chem. Phys. Chem. 12, 3634 (2011). http://dx.doi.org/10.1002/cphc.201100450
E. H. N. Tetreault, T. Moehl, J. Brillet, R. Smajda, S. Bungener, N. Cai, P. Wang, S. M. Zakeeruddin, L. Forro, A. Magrez and Graetzel, ACS Nano 4, 7644 (2010). http://dx.doi.org/10.1021/nn1024434
M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater. 4, 455 (2005). http://dx.doi.org/10.1038/nmat1387
X. L. Jijun Qiu, Fuwei Zhuge, Xiaoyan Gan, Xiangdong Gao, Weizhen He Se-Jeong Park, Hyung-Kook Kim and Yoon-Hwae Hwang, Nanotechnology 21, 195602 (2010).
H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa and M. Tachiya, J. Phys. Chem. B 107, 2570 (2003). http://dx.doi.org/10.1021/jp0220027
Z. Wei, R. Li, T. Huang and A. Yu, Electrochim. Acta, 56, 7696 (2011). http://dx.doi.org/10.1016/j.electacta.2011.06.038
X. Feng, J. Zhai and L. Jiang, Angew. Chem. Inter. Ed. 44, 5115 (2005).
Qinghong Zhang and Lian Gao, Langmuir 19, 967 (2003). http://dx.doi.org/10.1021/la020310q
Q. Huang and L. Gao, Chem. Lett. 32, 638 (2003). http://dx.doi.org/10.1246/cl.2003.638
R. S. Chen, C. A. Chen, et al., Appl. Phys. Lett. 100, 123108 (2012). http://dx.doi.org/10.1063/1.3694926
T. Y. Tsai and S. Y. Lu, J. Electrochem. Soc. 158, B1306 (2011). http://dx.doi.org/10.1149/2.023111jes
G. Melcarne, L. De Marco, E. Carlino, F. Martina, M. Manca, R. Cingolani, G. Gigli and G. Ciccarella, J. Mater. Chem. 20, 7248 (2010). http://dx.doi.org/10.1039/c0jm01167c
A. E. Shalan, M. M. Rashad, Y. Yu, M. Lira-Cantú, M. S. A. Abdel-Mottaleb, Appl. Phys. A (2012). http://dx.doi.org/10.1007/s00339-012-7368-6
J. Kim, J. K. Koh, B. Kim, J. H. Kim and E. Kim, Angew. Chem. Inter. Ed. 51, 6864 (2012).
S. H. T. Stefan Guldin, Matthias Kolle, Mark E. Welland, Peter Müller-Buschbaum, Richard H. Friend, Ullrich Steiner and Nicolas Tétreault, Nano Lett. 10, 2303 (2010).