Nanobiocomposite Electrochemical Biosensor Utilizing Synergic Action of Neutral Red Functionalized Carbon Nanotubes
Corresponding Author: S. Sriman Narayanan
Nano-Micro Letters,
Vol. 4 No. 4 (2012), Article Number: 220-227
Abstract
An amperometric hydrogen peroxide biosensor using a nanobiocomposite based on neutral red modified carbon nanotubes and co-immobilized glucose oxidase and horseradish peroxidase is reported. Modification of the nanobiocomposite electrode with neutral red resulted in a sensitive, low-cost and reliable H2O2 sensor. The use of carbon nanotubes, as the conductive part of the composite, facilitated fast electron transfer rates. The biosensor was characterized for the influence of pH, potential and temperature. A remarkable feature of the biosensor is the detection of H2O2 at low applied potentials where the noise level and interferences are minimal. The sensor has a fast steady-state measuring time of 10 s with a quick response (2 s). The biosensor showed a linear range from 15 nM to 45 mM of H2O2 and a detection limit of 5 nM. Nafion, which is used as a binder, makes the determination free from other electroactive substances. The repeatability, reproducibility, stability and analytical performance of the sensor are very good.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. L. Luo, A. Morrin, A. J. Killard and M. R. Smyth, Electroanalysis 18, 319 (2006). http://dx.doi.org/10.1002/elan.200503415
- Furkan Yalçiner, Emre Çevik, Mehmet Şnel and Abdülhadi Baykal, Nano-Micro Lett. 3, 91 (2011). http://dx.doi.org/10.3786/nml.v3i2.p91-98
- Y. Zhang, R. Yuan, Y. Chai, Y. Xiang, C. Hong and X. Ran, Biochem. Eng. J. l 51, 102 (2010). http://dx.doi.org/10.1016/j.bej.2010.06.001
- T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, J. Phys. Chem. B. 104, 2794 (2000). http://dx.doi.org/10.1021/jp993592k
- K. Balasubramanian and M. J. Burghard, Mater. Chem. 18, 3071 (2008). http://dx.doi.org/10.1039/b718262g
- X. Kang, J. Wang, Z. Tang, H. Wu and Y. Lin, Talanta 78, 120 (2009). http://dx.doi.org/10.1016/j.talanta.2008.10.063
- E. Suprun, V. Shumyantseva, T. Bulko, S. Rachmetova, S. Rad’ko, N. Bodoev and A. Archakov. Biosens. Bioelectron. 24, 825 (2008). http://dx.doi.org/10.1016/j.bios.2008.07.008
- E. Horozova, T. Dodevska and N. Dimcheva, Bioelectrochemistry 74, 260 (2009). http://dx.doi.org/10.1016/j.bioelechem.2008.09.003
- T. J. Ohara, M. S. Vreeke, F. Battaglini and A. Heller, Electroanalysis 5, 825 (1993). http://dx.doi.org/10.1002/elan.1140050917
- J. Diehl-Faxon, A. L. Ghindilis, P. Atanasov and E. Wilkins, Sens. Actuators B: Chem. 36, 448 (1996). http://dx.doi.org/10.1016/S0925-4005(97)80112-8
- A. Merkoc, M. Pumera, X. Llopis, B. P’erez, M del Valle and S. Alegret, TrAC. 24, 826 (2005).
- J. Wang, Analyst 130, 421 (2005). http://dx.doi.org/10.1039/b414248a
- G. G. Wildgoose, C. E. Banks, H. C. Leventis and R. G. Compton, Microchim. Acta. 152, 187 (2006). http://dx.doi.org/10.1007/s00604-005-0449-x
- Q. Xu, C. Mao, N. N. Liu, J. J. Zhu and J. Sheng, Biosensors Bioelectron. 22, 768 (2006). http://dx.doi.org/10.1016/j.bios.2006.02.010
- J. Wang and M. Musameh, Anal. Chem. 75, 2075 (2003). http://dx.doi.org/10.1021/ac030007+
- J. Wang, P. V. A. Pamidi and K. R. Rogers, Anal. Chem. 70, 1171 (1998). http://dx.doi.org/10.1021/ac971093e
- D. P. Tang, R. Yuan and Y. Q. Chai, Anal. Chim. Acta, 564, 158 (2006). http://dx.doi.org/10.1016/j.aca.2006.01.094
- E. Katz and I. Willner, Chem. Phys. Chem. 5, 1084 (2004). http://dx.doi.org/10.1002/cphc.200400193
- D. P. Tang, R. Yuan and Y. Q. Chai, Electroanalysis 18, 259 (2006). http://dx.doi.org/10.1002/elan.200503397
- A. A. Karyakin, E. E. Karyakina and H. L. Schmidt, Electroanalysis. 11, 149 (1999). http://dx.doi.org/10.1002/(SICI)1521-4109(199903)11:3<149::AID-ELAN149>3.0.CO;2-G
- M. Zhang and W. Gorski, J. Am. Chem. Soc. 127, 2058 (2005). http://dx.doi.org/10.1021/ja044764g
- D. R. S. Jeykumari and S. S. Narayanan, Biosens. Bioelectron. 23, 1404 (2008). http://dx.doi.org/10.1016/j.bios.2007.12.007
- J. Li, P. K. Dasgupta and G. A. Tarver, Anal. Chem. 75, 1203 (2003). http://dx.doi.org/10.1021/ac026234d
- A. C. Pappas, C. D. Stalikas, Y. C. Fiamegos and M. I. Karayannis, Anal. Chim. Acta. 455, 305 (2002). http://dx.doi.org/10.1016/S0003-2670(01)01600-2
- J. Lu, C. Lau, M. Morizono, K. Ohta and M. Kai, Anal. Chem. 73, 5979 (2001). http://dx.doi.org/10.1021/ac010688d
- X. Kang, J. Wang, Z. Tang, H. Wu and Y. Lin, Talanta. 78, 120 (2009). http://dx.doi.org/10.1016/j.talanta.2008.10.063
- G. Scrivano, A. Piacentino and F. Cardona, Renewable Energy 34, 634 (2009). http://dx.doi.org/10.1016/j.renene.2008.05.034
- J. R. Kim, G. C. Premier, F. R. Hawkes, R. M. Dinsdale and A. J. Guwy, J. Power Sources 187, 393 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.11.020
- L. Ma, R. Yuan, Y. Chai and S. Chen, J. Mol. Catal. B: Enzymatic 56, 215 (2009). http://dx.doi.org/10. 1016/j.molcatb.2008.05.007
- M. M. Shaijumon, N. Bejoy and S. Ramaprabhu, Appl. Surf. Sci. 242, 192 (2005). http://dx.doi.org/10.1016/j.apsusc.2004.08.014
- I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski, J. L. Margrave, R. E. Smalley and R. H. Hauge, J. Phys. Chem. B 105, 8297 (2001). http://dx.doi.org/10.1021/jp0114891
- D. R. Shobha Jeykumari and S. S. Narayanan, Nanotechnology. 18, 125501 (2007). http://dx.doi.org/10.1088/0957-4484/18/12/125501
- R. Wilson and A. P. F. Turner, Biosens. Bioelectron. 7, 165 (1992). http://dx.doi.org/10.1016/0956-5663(92)87013-F
- T. Ruzgas, L. Gorton, J. Emneus and G. M. Varga, J. Electroanal. Chem. 391, 41 (1995). http://dx.doi.org/10.1016/0022-0728(95)03930-F
- F. Yalçiner, E. Çevik, M. Şenel and A. Baykal, Nano- Micro Lett. 3, 91 (2011). doi:10.3786/nml.v3i2.p91-98
- I. C. Popescu, G. Zetterberg and L. Gorton, Biosens. Bioelectron. 10, 443 (1995). http://dx.doi.org/10.1016/0956-5663(95)96891-2
- I. L. de Mattos, L. V. Lukachova, L. Gorton, T. Laurell and A. A. Karyakin, Talanta 54, 963 (2001).
- J. D. Qiu, H. Z. Peng, R. P. Liang, J. Li and X. H. Xia, Langmuir 23, 2133 (2007). http://dx.doi.org/10.1021/la062788q
- D. Zhang, K. Zhang, Y.L. Yao, X. H. Xia and H. Y. Chen, Langmuir 20, 7303 (2004). http://dx.doi.org/10.1021/la049667f
- W. Zhao, J. J. Xu, C. G. Shi and H. Y. Chen, Langmuir 21, 9630 (2005). http://dx.doi.org/10.1021/la051370+
- F. Pariente, F. Tobalina, G. Moreno, L. Hernandez, E. Lorenzo and H. D. Abruna, Anal. Chem. 69, 4065 (1997). http://dx.doi.org/10.1021/ac970445e
References
X. L. Luo, A. Morrin, A. J. Killard and M. R. Smyth, Electroanalysis 18, 319 (2006). http://dx.doi.org/10.1002/elan.200503415
Furkan Yalçiner, Emre Çevik, Mehmet Şnel and Abdülhadi Baykal, Nano-Micro Lett. 3, 91 (2011). http://dx.doi.org/10.3786/nml.v3i2.p91-98
Y. Zhang, R. Yuan, Y. Chai, Y. Xiang, C. Hong and X. Ran, Biochem. Eng. J. l 51, 102 (2010). http://dx.doi.org/10.1016/j.bej.2010.06.001
T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, J. Phys. Chem. B. 104, 2794 (2000). http://dx.doi.org/10.1021/jp993592k
K. Balasubramanian and M. J. Burghard, Mater. Chem. 18, 3071 (2008). http://dx.doi.org/10.1039/b718262g
X. Kang, J. Wang, Z. Tang, H. Wu and Y. Lin, Talanta 78, 120 (2009). http://dx.doi.org/10.1016/j.talanta.2008.10.063
E. Suprun, V. Shumyantseva, T. Bulko, S. Rachmetova, S. Rad’ko, N. Bodoev and A. Archakov. Biosens. Bioelectron. 24, 825 (2008). http://dx.doi.org/10.1016/j.bios.2008.07.008
E. Horozova, T. Dodevska and N. Dimcheva, Bioelectrochemistry 74, 260 (2009). http://dx.doi.org/10.1016/j.bioelechem.2008.09.003
T. J. Ohara, M. S. Vreeke, F. Battaglini and A. Heller, Electroanalysis 5, 825 (1993). http://dx.doi.org/10.1002/elan.1140050917
J. Diehl-Faxon, A. L. Ghindilis, P. Atanasov and E. Wilkins, Sens. Actuators B: Chem. 36, 448 (1996). http://dx.doi.org/10.1016/S0925-4005(97)80112-8
A. Merkoc, M. Pumera, X. Llopis, B. P’erez, M del Valle and S. Alegret, TrAC. 24, 826 (2005).
J. Wang, Analyst 130, 421 (2005). http://dx.doi.org/10.1039/b414248a
G. G. Wildgoose, C. E. Banks, H. C. Leventis and R. G. Compton, Microchim. Acta. 152, 187 (2006). http://dx.doi.org/10.1007/s00604-005-0449-x
Q. Xu, C. Mao, N. N. Liu, J. J. Zhu and J. Sheng, Biosensors Bioelectron. 22, 768 (2006). http://dx.doi.org/10.1016/j.bios.2006.02.010
J. Wang and M. Musameh, Anal. Chem. 75, 2075 (2003). http://dx.doi.org/10.1021/ac030007+
J. Wang, P. V. A. Pamidi and K. R. Rogers, Anal. Chem. 70, 1171 (1998). http://dx.doi.org/10.1021/ac971093e
D. P. Tang, R. Yuan and Y. Q. Chai, Anal. Chim. Acta, 564, 158 (2006). http://dx.doi.org/10.1016/j.aca.2006.01.094
E. Katz and I. Willner, Chem. Phys. Chem. 5, 1084 (2004). http://dx.doi.org/10.1002/cphc.200400193
D. P. Tang, R. Yuan and Y. Q. Chai, Electroanalysis 18, 259 (2006). http://dx.doi.org/10.1002/elan.200503397
A. A. Karyakin, E. E. Karyakina and H. L. Schmidt, Electroanalysis. 11, 149 (1999). http://dx.doi.org/10.1002/(SICI)1521-4109(199903)11:3<149::AID-ELAN149>3.0.CO;2-G
M. Zhang and W. Gorski, J. Am. Chem. Soc. 127, 2058 (2005). http://dx.doi.org/10.1021/ja044764g
D. R. S. Jeykumari and S. S. Narayanan, Biosens. Bioelectron. 23, 1404 (2008). http://dx.doi.org/10.1016/j.bios.2007.12.007
J. Li, P. K. Dasgupta and G. A. Tarver, Anal. Chem. 75, 1203 (2003). http://dx.doi.org/10.1021/ac026234d
A. C. Pappas, C. D. Stalikas, Y. C. Fiamegos and M. I. Karayannis, Anal. Chim. Acta. 455, 305 (2002). http://dx.doi.org/10.1016/S0003-2670(01)01600-2
J. Lu, C. Lau, M. Morizono, K. Ohta and M. Kai, Anal. Chem. 73, 5979 (2001). http://dx.doi.org/10.1021/ac010688d
X. Kang, J. Wang, Z. Tang, H. Wu and Y. Lin, Talanta. 78, 120 (2009). http://dx.doi.org/10.1016/j.talanta.2008.10.063
G. Scrivano, A. Piacentino and F. Cardona, Renewable Energy 34, 634 (2009). http://dx.doi.org/10.1016/j.renene.2008.05.034
J. R. Kim, G. C. Premier, F. R. Hawkes, R. M. Dinsdale and A. J. Guwy, J. Power Sources 187, 393 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.11.020
L. Ma, R. Yuan, Y. Chai and S. Chen, J. Mol. Catal. B: Enzymatic 56, 215 (2009). http://dx.doi.org/10. 1016/j.molcatb.2008.05.007
M. M. Shaijumon, N. Bejoy and S. Ramaprabhu, Appl. Surf. Sci. 242, 192 (2005). http://dx.doi.org/10.1016/j.apsusc.2004.08.014
I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski, J. L. Margrave, R. E. Smalley and R. H. Hauge, J. Phys. Chem. B 105, 8297 (2001). http://dx.doi.org/10.1021/jp0114891
D. R. Shobha Jeykumari and S. S. Narayanan, Nanotechnology. 18, 125501 (2007). http://dx.doi.org/10.1088/0957-4484/18/12/125501
R. Wilson and A. P. F. Turner, Biosens. Bioelectron. 7, 165 (1992). http://dx.doi.org/10.1016/0956-5663(92)87013-F
T. Ruzgas, L. Gorton, J. Emneus and G. M. Varga, J. Electroanal. Chem. 391, 41 (1995). http://dx.doi.org/10.1016/0022-0728(95)03930-F
F. Yalçiner, E. Çevik, M. Şenel and A. Baykal, Nano- Micro Lett. 3, 91 (2011). doi:10.3786/nml.v3i2.p91-98
I. C. Popescu, G. Zetterberg and L. Gorton, Biosens. Bioelectron. 10, 443 (1995). http://dx.doi.org/10.1016/0956-5663(95)96891-2
I. L. de Mattos, L. V. Lukachova, L. Gorton, T. Laurell and A. A. Karyakin, Talanta 54, 963 (2001).
J. D. Qiu, H. Z. Peng, R. P. Liang, J. Li and X. H. Xia, Langmuir 23, 2133 (2007). http://dx.doi.org/10.1021/la062788q
D. Zhang, K. Zhang, Y.L. Yao, X. H. Xia and H. Y. Chen, Langmuir 20, 7303 (2004). http://dx.doi.org/10.1021/la049667f
W. Zhao, J. J. Xu, C. G. Shi and H. Y. Chen, Langmuir 21, 9630 (2005). http://dx.doi.org/10.1021/la051370+
F. Pariente, F. Tobalina, G. Moreno, L. Hernandez, E. Lorenzo and H. D. Abruna, Anal. Chem. 69, 4065 (1997). http://dx.doi.org/10.1021/ac970445e