Hydrothermal Synthesis and Characterization of Europium-doped Barium Titanate Nanocrystallites
Corresponding Author: Margarita García-Hernández
Nano-Micro Letters,
Vol. 5 No. 1 (2013), Article Number: 57-65
Abstract
Barium titanate nanocrystallites were synthesized by a hydrothermal technique from barium chloride and tetrabutyl titanate. Single-crystalline cubic perovskite BaTiO3 consisting of spherical particles with diameters ranging from 10 to 30 nm was easily achieved by this route. In order to study the influence of the synthesis process on the morphology and the optical properties, barium titanate was also prepared by a solid-state reaction. In this case, only the tetragonal phase which crystallizes above 900° was observed. High-temperature X-ray diffraction measurements were performed to investigate the crystallization temperatures as well as the particle sizes via the Scherrer formula. The lattice vibrations were evidenced by infrared spectroscopy. Eu3+ was used as a structural probe, and the luminescence properties recorded from BaTiO3:Eu3+and elaborated by a solid-state reaction and hydrothermal process were compared. The reddish emission of the europium is increased by the nanometric particles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Xu, L. Gao and J. Guo, “Hydrothermal synthesis of tetragonal barium titanate from barium chloride and titanium tetrachloride under moderate conditions”, J. Am. Ceram. Soc. 85(3), 727–729 (2002). http://dx.doi.org/10.1111/j.1151-2916.2002.tb00163.x
- Mohammed A. Alam, Leonard Zuga and Michael G. Pecht, “Economics of rare earth elements in ceramic capacitors”, Ceram. Inter. 38(8), 6091–6098 (2012). http://dx.doi.org/10.1016/j.ceramint.2012.05.068
- R. Pazik, D. Hreniak, W. Strek, V. G. Kessler and G. A. Seisenbaeva, “Photoluminescence investigations of Eu3+ doped BaTiO3 nanopowders fabricated using heterometallic tetranuclear alkoxide complexes”, J. Alloys Comp. 451(1–2), 557–562 (2008). http://dx.doi.org/10.1016/j.jallcom.2007.04.232
- J. Amami, D. Hreniak, Y. Guyot, R. Pazik, C. Goutaudier, G. Boulon, M. Ayadi and W. Strek, “Second harmonic generation and Yb3+ cooperative emission used as structural probes in size-driven cubic-tetragonal phase transition in BaTiO3 sol-gel nanocrystals”, J. Lumin. 119–120, 383–387 (2006). http://dx.doi.org/10.1016/j.jlumin.2006.01.021
- J. Amami, D. Hreniak, Y. Guyot, R. Pazik, W. Strek, C. Goutaudier and G. Boulon, “New optical tools used for characterization of phase transitions in nonlinear nano-crystals. Example of Yb3+-doped BaTiO3”, J. Phys. Condens. Matter. 19(9), 1 (2007). http://dx.doi.org/10.1088/0953-8984/19/9/096204
- L. Chen, X. Wei and X. Fu, “Effect of Er substituting sites on upconversion luminescence of Er3+- doped BaTiO3 films”, T. Nonferr. Metal. Soc. 22(5), 1156–1160 (2012). http://dx.doi.org/10.1016/S1003-6326 (11)61299-5
- D. Hennings, G. Rosenstein and H. Schreinemacher, “Hydrothermal preparation of barium titanate from barium-titanium acetate gel precursors”, J. Eur. Ceram. Soc. 8(2), 107–115 (1991). http://dx.doi.org/10.1016/0955-2219 (91)90116-H
- T. Kimura, Q. Dong, S. Yin, T. Hashimoto and A. Sasaki, T. Sato. “Synthesis and piezoelectric properties of Li-doped BaTiO3 by a solvothermal approach”, J. Eur. Ceram. Soc. 33(5), 1009–1015 (2013). http://dx.doi.org/10.1016/j.jeurceramsoc.2012.11.007
- W. W. Lee, W.-H. Chung, W-S. Huang, W.-C. Lin, W.-Y. Lin, Y.-R. Jiang and C.-C. Chen, “Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method”, J. Taiwan Inst. Chem. Eng. (2013). http://dx.doi.org/10.1016/j.jtice.2013.01.005
- X. Zhu, J. Zhu, S. Zhou, Z. Liu and N. Ming, “Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method”, J. Crystal Growth 310(2), 434–441 (2008). http://dx.doi.org/10.1016/j.jcrysgro.2007.10.076
- E. Ciftci, M. N. Rahaman and M. Shumsky, “Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles”, J. Mater. Sci. 36(20), 4875–4882 (2001). http://dx.doi.org/10.1023/A:1011828018247
- J. Yuh, L. Perez, W. M. Sigmund and J. C. Nino, “Solgel based synthesis of complex oxide nanofibers”, J. Sol-Gel Sci. Technol. 42(3), 323–329 (2007). http://dx.doi.org/10.1007/s10971-007-0736-6
- Z. Xinle, M. Zhimei, X. Zuojiang and C. Guang, “Preparation and characterization on nano-sized barium titanate powder doped with lanthanum by sol-gel process”, J. Rare Earths 24(1), 82–85 (2006). http://dx.doi.org/10.1016/S1002-0721(07)60329-9
- M. Cernea, O. Monnereau, P. Llewellyn, L. Tortet and Carmen Galassi, “Sol-gel synthesis and characterization of Ce doped-BaTiO3”, J. Eur. Ceram. Soc. 26(15), 3241–3246 (2006). http://dx.doi.org/10.1016/j.jeurceramsoc.2005.09.039
- D. Hreniak, W. Strek, J. Chmielowiec, G. Pasciak, R. Pazik, S. Gierlotka and W. Lojkowski, “Preparation and conductivity measurement of Eu doped BaTiO3 nanoceramic”, J. Alloys Comp. 408–412, 637–640 (2006). http://dx.doi.org/10.1016/j.jallcom.2004.12.098
- M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldonado, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo and F. J. Carrillo-Romo, “Yb3+ quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+”, Opt. Mater. 31(2), 252–260 (2008). http://dx.doi.org/10.1016/j.optmat.2008.04.002
- L. Simon-Seveyrat, A. Hajjaji, Y. Emziane, B. Guiffard and D. Guyomar, “Re-investigation of synthesis of BaTiO3 by conventional solid-state reaction and oxalate coprecipitation route for piezoelectric applications”, Ceram. Inter. 33(1), 35–40 (2007). http://dx.doi.org/10.1016/j.ceramint.2005.07.019
- Y. Sakabe, Y. Yamashita and H. Yamamoto, “Dielectric properties of nano-crystalline BaTiO3 synthesized by micro-emulsion method”, J. Eur. Ceram. Soc. 25(12), 2739–2742 (2005). http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.226
- K. H. Felner, T. Muller, H. T. Langhammer and H. P. Abicht, “On the formation of BaTiO3 from BaCO3 and TiO2 by microwave and conventional heating”, Mater. Lett. 58(12–13), 1943–1947 (2004). http://dx.doi.org/10.1016/j.matlet.2003.11.037
- V. Vinothini, P. Singh and M. Balasubramanian, “Synthesis of barium titanate nanopowder using polymeric precursor method”, Ceram. Inter. 32(2), 99–103 (2006). http://dx.doi.org/10.1016/j.ceramint.2004.12.012
- Z. C. Hu, G. A. Miller, E. A. Payzant and C. J. Rawn, “Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles”, J. Mater. Sci. 35(12), 2927–2936 (2000). http://dx.doi.org/10.1023/A:1004718508280
- M. Yoshimura and K. Byrappa, “Hydrothermal processing of materials: past, present and future”, J. Mater. Sci. 43(7), 2085–2103 (2008). http://dx.doi.org/10.1007/s10853-007-1853-x
- D. E. Rase and R. Roy, “Phase equilibria in the system BaO-TiO2”, J. Am. Ceram. Soc. 38(3), 102–113. (1955). http://dx.doi.org/10.1111/j.1151-2916.1955.tb14585.x
- J.-H. Kim, W.-S. Jung, H.-T. Kim and D.-H. Yoon, “Properties of BaTiO3 synthesized from barium titanyl oxalate”, Ceram. Inter. 35(6), 2337–2342 (2009). http://dx.doi.org/10.1016/j.ceramint.2009.01.006
- K. Ishikawa, K. Yoshikawa and N. Okada, “Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles”, Phys. Rev. B 37(10), 5852–5855 (1988). http://dx.doi.org/10.1103/PhysRevB.37.5852
- S. Schlag and H. F. Eicke, “Size driven phase transition in nanocrystalline BaTiO3”, Solid State Commun. 91(11), 883–887 (1994). http://dx.doi.org/10.1016/0038-1098 (94)90007-8
- M. K. Rath, G. K. Prahdan, B. Pandey, H. C. Verma, B. K. Roul and S. Anand, “Synthesis, characterization and dielectric properties of europium-doped barium titanate nanopowders”, Mater. Lett. 62(14), 2136–2139 (2008). http://dx.doi.org/10.1016/j.matlet.2007.11.033
- R. Pazik, R. J. Wiglusz and W. Strek, “Luminescence properties of BaTiO3:Eu3+ obtained via microwave stimulated hydrothermal method”, Mater. Res. Bull. 44(6), 1328–1333 (2009). http://dx.doi.org/10.1016/j.materresbull.2008.12.010
- S. Zhang, F. Jiang, Gang Qu and C. Lin, “Synthesis of single-crystalline perovskite barium titanate nanorods by a combined route based on sol-gel and surfactanttemplated methods”, Mater. Lett. 62(15), 2225–2228 (2008). http://dx.doi.org/10.1016/j.matlet.2007.11.055
- A. L. Patterson, “The scherrer formula for X-ray particle size determination”, Phys. Rev. 56(10), 978–982 (1939). http://dx.doi.org/10.1103/PhysRev.56.978
- F. K. Detlev Hennings, C. Metzmacher and B. Seriyati Schreinemacher, “Defect chemistry and microstructure of hydrothermal barium titanate”, J. Am. Ceram. Soc. 84(1), 179–182 (2001). http://dx.doi.org/10.1111/j.1151-2916.2001.tb00627.x
- S.-W. Kwon and D.-H. Yoon. “Tetragonality of nanosized barium titanate powder prepared with growth inhibitors upon heat treatment”, J. Eur. Ceram. Soc. 27(1), 247–252 (2007). http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.031
- G. Arlt, D. Hennings and G. de With, “Dielectric properties of fine-grained barium titanate ceramics”, J. Appl. Phys. 58(4), 1619–1625 (1985). http://dx.doi.org/10.1063/1.336051
- J. Nowotny and M. Rekas, “Defect chemistry of BaTiO3”, Solid State Ionics 49, 135–154 (1991). http://dx.doi.org/10.1016/0167-2738 (91)90079-Q
- L. Li, Y. Chu, Y. Liu, L. Dong, L. Huo and F. Yang, “Microemulsion-based synthesis of BaCO3 nanobelts and nanorods”, Mater. Lett. 60(17–18), 2138–2142 (2006). http://dx.doi.org/10.1016/j.matlet.2005.12.087
- P. Yu, B. Cui and Q. Shi. “Preparation and characterization of BaTiO3 powders and ceramics by sol-gel process using oleic acid as surfactant”, Mater. Sci. Eng. A 473(1–2), 34–41 (2008). http://dx.doi.org/10.1016/j.msea.2007.03.051
- S. Ghosh, S. Dasgupta, A. Sen and H. S. Maiti. “Synthesis of barium titanate nanopowder by a soft chemical process”, Mater. Lett. 61(2), 538–541 (2007). http://dx.doi.org/10.1016/j.matlet.2006.05.006
- A. García Murillo, F. J. Carrillo Romo, M. García Hernández, J. Ramírez Salgado, M. A. Domínguez Crespo, S. A. Palomares Sánchez and H. Terrones, “Structural and morphological characteristics of polycrystalline BaTiO3:Er3+, Yb3+ ceramics synthesized by the sol-gel route: influence of chelating agents”, J Sol-Gel Sci. Technol. 53(1), 121 (2010). http://dx.doi.org/10.1007/s10971-009-2069-0
- Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa and K. Koumoto, “Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution”, J. Mater. Chem. 13, 608–613 (2003). http://dx.doi.org/10.1039/b208681f
- K. Sadhana, T. Krishnaveni, K. Praveena, S. Bharadwaj and S. R. Murthy, “Microwave sintering of nanobarium titanate”, Scripta Materialia 59(5), 495–498 (2008). http://dx.doi.org/10.1016/j.scriptamat.2008.04.036
- R. Cho, S. H. Kwun, T. W. Noh and M. S. Jang, “Electrical properties of sol-gel deposited BaTiO3 thin flms on Si(100) substrates”, Jpn. J. Appl. Phys. 36, 2196–2199 (1997). http://dx.doi.org/10.1143/JJAP.36.2196
- W. K. Kuo and Y. C. Ling, “Effects of monosubstituting chelating agents on BaTiO3 prepared by the sol-gel process”, J. Mater. Sci. 29(21), 5625–5630 (1994). http://dx.doi.org/10.1007/BF00349957
- L. Kaiser, M. D. Vaudin, G. Gillen, C. S. Hwang, L. H. Robins and L. D. Rotter, “Growth and characterization of barium titanate thin films prepared by metalorganic chemical vapor deposition”, J. Crystal Growth 137(1–2), 136–140 (1994). http://dx.doi.org/10.1016/0022-0248(94)91261-0
- C. J. Xiao, C. Q. Jin and X. H. Wang, “Crystal structure of dense nanocrystalline BaTiO3 ceramics”, Mater. Chem. Phys., 111(2–3), 209–212 (2008). http://dx.doi.org/10.1016/j.matchemphys.2008.01.020
- H. X. Zhang, C. H. Kam, Y. Zhou, X. Q. Han, Y. L. Lam, Y. C. Chan and K. Pita, “Optical and electrical properties of sol-gel derived BaTiO3 films on ITO coated glass”, Mater. Chem. Phys., 63(2), 174–177 (2000). http://dx.doi.org/10.1016/S0254-0584(99)00222-9
- C. H. Yan, L. D. Sun, C. S. Liao, Y. X. Zhang, Y. Q. Lu, S. H. Huang and S. Z. Lü, “Eu3+ ion as fluorescent probe for detecting the surface effect in nanocrystals”, Appl. Phys. Lett. 82(20), 3511–3513 (2003). http://dx.doi.org/10.1063/1.1575504
References
H. Xu, L. Gao and J. Guo, “Hydrothermal synthesis of tetragonal barium titanate from barium chloride and titanium tetrachloride under moderate conditions”, J. Am. Ceram. Soc. 85(3), 727–729 (2002). http://dx.doi.org/10.1111/j.1151-2916.2002.tb00163.x
Mohammed A. Alam, Leonard Zuga and Michael G. Pecht, “Economics of rare earth elements in ceramic capacitors”, Ceram. Inter. 38(8), 6091–6098 (2012). http://dx.doi.org/10.1016/j.ceramint.2012.05.068
R. Pazik, D. Hreniak, W. Strek, V. G. Kessler and G. A. Seisenbaeva, “Photoluminescence investigations of Eu3+ doped BaTiO3 nanopowders fabricated using heterometallic tetranuclear alkoxide complexes”, J. Alloys Comp. 451(1–2), 557–562 (2008). http://dx.doi.org/10.1016/j.jallcom.2007.04.232
J. Amami, D. Hreniak, Y. Guyot, R. Pazik, C. Goutaudier, G. Boulon, M. Ayadi and W. Strek, “Second harmonic generation and Yb3+ cooperative emission used as structural probes in size-driven cubic-tetragonal phase transition in BaTiO3 sol-gel nanocrystals”, J. Lumin. 119–120, 383–387 (2006). http://dx.doi.org/10.1016/j.jlumin.2006.01.021
J. Amami, D. Hreniak, Y. Guyot, R. Pazik, W. Strek, C. Goutaudier and G. Boulon, “New optical tools used for characterization of phase transitions in nonlinear nano-crystals. Example of Yb3+-doped BaTiO3”, J. Phys. Condens. Matter. 19(9), 1 (2007). http://dx.doi.org/10.1088/0953-8984/19/9/096204
L. Chen, X. Wei and X. Fu, “Effect of Er substituting sites on upconversion luminescence of Er3+- doped BaTiO3 films”, T. Nonferr. Metal. Soc. 22(5), 1156–1160 (2012). http://dx.doi.org/10.1016/S1003-6326 (11)61299-5
D. Hennings, G. Rosenstein and H. Schreinemacher, “Hydrothermal preparation of barium titanate from barium-titanium acetate gel precursors”, J. Eur. Ceram. Soc. 8(2), 107–115 (1991). http://dx.doi.org/10.1016/0955-2219 (91)90116-H
T. Kimura, Q. Dong, S. Yin, T. Hashimoto and A. Sasaki, T. Sato. “Synthesis and piezoelectric properties of Li-doped BaTiO3 by a solvothermal approach”, J. Eur. Ceram. Soc. 33(5), 1009–1015 (2013). http://dx.doi.org/10.1016/j.jeurceramsoc.2012.11.007
W. W. Lee, W.-H. Chung, W-S. Huang, W.-C. Lin, W.-Y. Lin, Y.-R. Jiang and C.-C. Chen, “Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method”, J. Taiwan Inst. Chem. Eng. (2013). http://dx.doi.org/10.1016/j.jtice.2013.01.005
X. Zhu, J. Zhu, S. Zhou, Z. Liu and N. Ming, “Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method”, J. Crystal Growth 310(2), 434–441 (2008). http://dx.doi.org/10.1016/j.jcrysgro.2007.10.076
E. Ciftci, M. N. Rahaman and M. Shumsky, “Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles”, J. Mater. Sci. 36(20), 4875–4882 (2001). http://dx.doi.org/10.1023/A:1011828018247
J. Yuh, L. Perez, W. M. Sigmund and J. C. Nino, “Solgel based synthesis of complex oxide nanofibers”, J. Sol-Gel Sci. Technol. 42(3), 323–329 (2007). http://dx.doi.org/10.1007/s10971-007-0736-6
Z. Xinle, M. Zhimei, X. Zuojiang and C. Guang, “Preparation and characterization on nano-sized barium titanate powder doped with lanthanum by sol-gel process”, J. Rare Earths 24(1), 82–85 (2006). http://dx.doi.org/10.1016/S1002-0721(07)60329-9
M. Cernea, O. Monnereau, P. Llewellyn, L. Tortet and Carmen Galassi, “Sol-gel synthesis and characterization of Ce doped-BaTiO3”, J. Eur. Ceram. Soc. 26(15), 3241–3246 (2006). http://dx.doi.org/10.1016/j.jeurceramsoc.2005.09.039
D. Hreniak, W. Strek, J. Chmielowiec, G. Pasciak, R. Pazik, S. Gierlotka and W. Lojkowski, “Preparation and conductivity measurement of Eu doped BaTiO3 nanoceramic”, J. Alloys Comp. 408–412, 637–640 (2006). http://dx.doi.org/10.1016/j.jallcom.2004.12.098
M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldonado, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo and F. J. Carrillo-Romo, “Yb3+ quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+”, Opt. Mater. 31(2), 252–260 (2008). http://dx.doi.org/10.1016/j.optmat.2008.04.002
L. Simon-Seveyrat, A. Hajjaji, Y. Emziane, B. Guiffard and D. Guyomar, “Re-investigation of synthesis of BaTiO3 by conventional solid-state reaction and oxalate coprecipitation route for piezoelectric applications”, Ceram. Inter. 33(1), 35–40 (2007). http://dx.doi.org/10.1016/j.ceramint.2005.07.019
Y. Sakabe, Y. Yamashita and H. Yamamoto, “Dielectric properties of nano-crystalline BaTiO3 synthesized by micro-emulsion method”, J. Eur. Ceram. Soc. 25(12), 2739–2742 (2005). http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.226
K. H. Felner, T. Muller, H. T. Langhammer and H. P. Abicht, “On the formation of BaTiO3 from BaCO3 and TiO2 by microwave and conventional heating”, Mater. Lett. 58(12–13), 1943–1947 (2004). http://dx.doi.org/10.1016/j.matlet.2003.11.037
V. Vinothini, P. Singh and M. Balasubramanian, “Synthesis of barium titanate nanopowder using polymeric precursor method”, Ceram. Inter. 32(2), 99–103 (2006). http://dx.doi.org/10.1016/j.ceramint.2004.12.012
Z. C. Hu, G. A. Miller, E. A. Payzant and C. J. Rawn, “Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles”, J. Mater. Sci. 35(12), 2927–2936 (2000). http://dx.doi.org/10.1023/A:1004718508280
M. Yoshimura and K. Byrappa, “Hydrothermal processing of materials: past, present and future”, J. Mater. Sci. 43(7), 2085–2103 (2008). http://dx.doi.org/10.1007/s10853-007-1853-x
D. E. Rase and R. Roy, “Phase equilibria in the system BaO-TiO2”, J. Am. Ceram. Soc. 38(3), 102–113. (1955). http://dx.doi.org/10.1111/j.1151-2916.1955.tb14585.x
J.-H. Kim, W.-S. Jung, H.-T. Kim and D.-H. Yoon, “Properties of BaTiO3 synthesized from barium titanyl oxalate”, Ceram. Inter. 35(6), 2337–2342 (2009). http://dx.doi.org/10.1016/j.ceramint.2009.01.006
K. Ishikawa, K. Yoshikawa and N. Okada, “Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles”, Phys. Rev. B 37(10), 5852–5855 (1988). http://dx.doi.org/10.1103/PhysRevB.37.5852
S. Schlag and H. F. Eicke, “Size driven phase transition in nanocrystalline BaTiO3”, Solid State Commun. 91(11), 883–887 (1994). http://dx.doi.org/10.1016/0038-1098 (94)90007-8
M. K. Rath, G. K. Prahdan, B. Pandey, H. C. Verma, B. K. Roul and S. Anand, “Synthesis, characterization and dielectric properties of europium-doped barium titanate nanopowders”, Mater. Lett. 62(14), 2136–2139 (2008). http://dx.doi.org/10.1016/j.matlet.2007.11.033
R. Pazik, R. J. Wiglusz and W. Strek, “Luminescence properties of BaTiO3:Eu3+ obtained via microwave stimulated hydrothermal method”, Mater. Res. Bull. 44(6), 1328–1333 (2009). http://dx.doi.org/10.1016/j.materresbull.2008.12.010
S. Zhang, F. Jiang, Gang Qu and C. Lin, “Synthesis of single-crystalline perovskite barium titanate nanorods by a combined route based on sol-gel and surfactanttemplated methods”, Mater. Lett. 62(15), 2225–2228 (2008). http://dx.doi.org/10.1016/j.matlet.2007.11.055
A. L. Patterson, “The scherrer formula for X-ray particle size determination”, Phys. Rev. 56(10), 978–982 (1939). http://dx.doi.org/10.1103/PhysRev.56.978
F. K. Detlev Hennings, C. Metzmacher and B. Seriyati Schreinemacher, “Defect chemistry and microstructure of hydrothermal barium titanate”, J. Am. Ceram. Soc. 84(1), 179–182 (2001). http://dx.doi.org/10.1111/j.1151-2916.2001.tb00627.x
S.-W. Kwon and D.-H. Yoon. “Tetragonality of nanosized barium titanate powder prepared with growth inhibitors upon heat treatment”, J. Eur. Ceram. Soc. 27(1), 247–252 (2007). http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.031
G. Arlt, D. Hennings and G. de With, “Dielectric properties of fine-grained barium titanate ceramics”, J. Appl. Phys. 58(4), 1619–1625 (1985). http://dx.doi.org/10.1063/1.336051
J. Nowotny and M. Rekas, “Defect chemistry of BaTiO3”, Solid State Ionics 49, 135–154 (1991). http://dx.doi.org/10.1016/0167-2738 (91)90079-Q
L. Li, Y. Chu, Y. Liu, L. Dong, L. Huo and F. Yang, “Microemulsion-based synthesis of BaCO3 nanobelts and nanorods”, Mater. Lett. 60(17–18), 2138–2142 (2006). http://dx.doi.org/10.1016/j.matlet.2005.12.087
P. Yu, B. Cui and Q. Shi. “Preparation and characterization of BaTiO3 powders and ceramics by sol-gel process using oleic acid as surfactant”, Mater. Sci. Eng. A 473(1–2), 34–41 (2008). http://dx.doi.org/10.1016/j.msea.2007.03.051
S. Ghosh, S. Dasgupta, A. Sen and H. S. Maiti. “Synthesis of barium titanate nanopowder by a soft chemical process”, Mater. Lett. 61(2), 538–541 (2007). http://dx.doi.org/10.1016/j.matlet.2006.05.006
A. García Murillo, F. J. Carrillo Romo, M. García Hernández, J. Ramírez Salgado, M. A. Domínguez Crespo, S. A. Palomares Sánchez and H. Terrones, “Structural and morphological characteristics of polycrystalline BaTiO3:Er3+, Yb3+ ceramics synthesized by the sol-gel route: influence of chelating agents”, J Sol-Gel Sci. Technol. 53(1), 121 (2010). http://dx.doi.org/10.1007/s10971-009-2069-0
Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa and K. Koumoto, “Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution”, J. Mater. Chem. 13, 608–613 (2003). http://dx.doi.org/10.1039/b208681f
K. Sadhana, T. Krishnaveni, K. Praveena, S. Bharadwaj and S. R. Murthy, “Microwave sintering of nanobarium titanate”, Scripta Materialia 59(5), 495–498 (2008). http://dx.doi.org/10.1016/j.scriptamat.2008.04.036
R. Cho, S. H. Kwun, T. W. Noh and M. S. Jang, “Electrical properties of sol-gel deposited BaTiO3 thin flms on Si(100) substrates”, Jpn. J. Appl. Phys. 36, 2196–2199 (1997). http://dx.doi.org/10.1143/JJAP.36.2196
W. K. Kuo and Y. C. Ling, “Effects of monosubstituting chelating agents on BaTiO3 prepared by the sol-gel process”, J. Mater. Sci. 29(21), 5625–5630 (1994). http://dx.doi.org/10.1007/BF00349957
L. Kaiser, M. D. Vaudin, G. Gillen, C. S. Hwang, L. H. Robins and L. D. Rotter, “Growth and characterization of barium titanate thin films prepared by metalorganic chemical vapor deposition”, J. Crystal Growth 137(1–2), 136–140 (1994). http://dx.doi.org/10.1016/0022-0248(94)91261-0
C. J. Xiao, C. Q. Jin and X. H. Wang, “Crystal structure of dense nanocrystalline BaTiO3 ceramics”, Mater. Chem. Phys., 111(2–3), 209–212 (2008). http://dx.doi.org/10.1016/j.matchemphys.2008.01.020
H. X. Zhang, C. H. Kam, Y. Zhou, X. Q. Han, Y. L. Lam, Y. C. Chan and K. Pita, “Optical and electrical properties of sol-gel derived BaTiO3 films on ITO coated glass”, Mater. Chem. Phys., 63(2), 174–177 (2000). http://dx.doi.org/10.1016/S0254-0584(99)00222-9
C. H. Yan, L. D. Sun, C. S. Liao, Y. X. Zhang, Y. Q. Lu, S. H. Huang and S. Z. Lü, “Eu3+ ion as fluorescent probe for detecting the surface effect in nanocrystals”, Appl. Phys. Lett. 82(20), 3511–3513 (2003). http://dx.doi.org/10.1063/1.1575504