Vapor Phase Polymerization Deposition Conducting Polymer Nanocomposites on Porous Dielectric Surface as High Performance Electrode Materials
Corresponding Author: Shibin Li
Nano-Micro Letters,
Vol. 5 No. 1 (2013), Article Number: 40-46
Abstract
We report chemical vapor phase polymerization (VPP) deposition of poly(3,4-ethylenedioxythiophene) (PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide (Ta2O5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta2O5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta2O5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance (ESR) ca. 12Ω and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. J. Heeger, “Semiconducting and metallic polymers: the fourth generation of polymeric materials (nobel lecture)”, Angew. Chem. Int. Ed. 40(14), 2591–261 (2001). http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0
- E. E. Tanriverdi, A. T. Uzumcu, H. Kavas, A. Demir, A. Baykal, “Conductivity study of polyaniline-cobalt ferrite (PANI-CoFe2O4) nanocomposite”, Nano-Micro Lett. 3(2), 99–107 (2011). http://dx.doi.org/10.3786/nml.v3i2.p99-107
- S. Guenes, H. Neugebauer and N. S. Sariciftci, “Conjugated polymer-based organic solar cells”, Chem. Rev. 107(4), 1324–1338 (2007). http://dx.doi.org/10.1021/cr050149z
- I. S. Chronakis, S. Grapenson and A. Jakob, “Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties”, Polymer 47(5), 1597–1603 (2006). http://dx.doi.org/10.1016/j.polymer.2006.01.032
- V. Khomenko, E. Frackowiak and F. F. Béguin, “Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations”, Electrochim. Acta 50(12), 2499–2506 (2005). http://dx.doi.org/10.1016/j.electacta.2004.10.078
- A. Graeme, P. K. Snook and S. B. Adam, “Conducting-polymer-based supercapacitor devices and electrodes”, J. Power Sources 196(1), 1–12 (2011). http://dx.doi.org/10.1016/j.jpowsour.2010.06.084
- H. W. Gerhard and J. Friedrich, “Poly(alkylenedioxythiophene)s—new, very stable conducting polymers”, Adv. Mater. 4(2), 116–118 (1992). http://dx.doi.org/10.1002/adma.19920040213
- Y. Kudoh, K. Akami and Y. Matsuya, “Solid electrolytic capacitor with highly stable conducting polymer as a counter electrode”, Synth. Met. 102(1), 973–974 (1999). http://dx.doi.org/10.1016/S0379-6779(98)01012-1
- L. Ci, J. Suhr, V. Pushparaj, X. Zhang and P. M. Ajayan, “Continuous carbon nanotube reinforced composites”, Nano Lett. 8(12), 2762–2766 (2008). http://dx.doi.org/10.1021/nl8012715
- T. L. Kelly, K. Yano and M. O. Wolf, “Supercapacitive properties of PEDOT and carbon colloidal microspheres”, ACS Appl. Mater. Interfaces 1(11), 2536–2543 (2009). http://dx.doi.org/10.1021/am900575v
- O. Fichet, T. V. Francois, T. Dominique and C. Chevrot, “Interfacial polymerization of a 3,4-ethylenedioxythiophene derivative using langmuir-blodgett technique. Spectroscopic and electrochemical characterizations”, Thin Solid Films 411(2), 280–288 (2002). http://dx.doi.org/10.1016/S0040-6090(02)00271-7
- M. H. Jung and H. Y. Lee, “Patterning of conducting polymers using charged self-assembled monolayers”, Langmuir 24(17), 9825–9831 (2008). http://dx.doi.org/10.1021/la8014207
- Y. Wang, H. D. Tran and R. B. Kaner, “Templatefree growth of highly aligned conducting polymer nanowires”, J. Phys. Chem. C 113(24), 10346–10349 (2009). http://dx.doi.org/10.1021/jp903583e
- W. E. Tenhaeff and K. K. Gleason, “Initiated and oxidative chemical vapor deposition of polymeric thin films: ICVD and OCVD”, Adv. Funct. Mater. 18(7), 979–992 (2008). http://dx.doi.org/10.1002/adfm.200701479
- L. D. Acqua, C. Tonina, A. Varesanoa, M. Canettib, W. Porziob and M. Catellani, “Vapour phase polymerisation of pyrrole on cellulose-based textile substrates”, Synth. Met. 156(5), 379–386 (2006). http://dx.doi.org/10.1016/j.synthmet.2005.12.021
- R. Sreenivasan and K. K. Gleason, “Overview of strategies for the CVD of organic films and functional polymer layers”, Chem. Vap. Deposition 15(4), 77–90 (2009). http://dx.doi.org/10.1002/cvde.200800040
- B. W. Jensen, J. Chen, K. West and G. Wallace, “Vapor phase polymerization of pyrrole and thiophene using iron(III) sulfonates as oxidizing agents”, Macromolecules 37(16), 5930–5935 (2004). http://dx.doi.org/10.1021/ma049365k
- A. Malinauskas, “Chemical deposition of conducting polymers”, Polymer 42(9), 3957–3972 (2001). http://dx.doi.org/10.1016/S0032-3861(00)00800-4
- B. W. Jensen and K. West, “Vapor-phase polymerization of 3,4-ethylenedioxythiophene: a route to highly conducting polymer surface layers”, Macromolecules 37(12), 4538–4543 (2004). http://dx.doi.org/10.1021/ma049864l
- J. Y. Kim, M. H. Kwon, Y. K. Min, S. Kwon and D. W. Ihm, “Self-assembly and crystalline growth of poly(3,4-ethylenedioxythiophene) nanofilms”, Adv. Mater. 19(21), 3501–3506 (2007). http://dx.doi.org/10.1002/adma.200602163
- L. Alexis and R. Lucie, “Production of conductive PEDOT nanofibers by the combination of electrospinning and vapor-phase polymerization”, Macromolecules 43(9), 4194–4200 (2010). http://dx.doi.org/10.1021/ma9027678
References
A. J. Heeger, “Semiconducting and metallic polymers: the fourth generation of polymeric materials (nobel lecture)”, Angew. Chem. Int. Ed. 40(14), 2591–261 (2001). http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0
E. E. Tanriverdi, A. T. Uzumcu, H. Kavas, A. Demir, A. Baykal, “Conductivity study of polyaniline-cobalt ferrite (PANI-CoFe2O4) nanocomposite”, Nano-Micro Lett. 3(2), 99–107 (2011). http://dx.doi.org/10.3786/nml.v3i2.p99-107
S. Guenes, H. Neugebauer and N. S. Sariciftci, “Conjugated polymer-based organic solar cells”, Chem. Rev. 107(4), 1324–1338 (2007). http://dx.doi.org/10.1021/cr050149z
I. S. Chronakis, S. Grapenson and A. Jakob, “Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties”, Polymer 47(5), 1597–1603 (2006). http://dx.doi.org/10.1016/j.polymer.2006.01.032
V. Khomenko, E. Frackowiak and F. F. Béguin, “Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations”, Electrochim. Acta 50(12), 2499–2506 (2005). http://dx.doi.org/10.1016/j.electacta.2004.10.078
A. Graeme, P. K. Snook and S. B. Adam, “Conducting-polymer-based supercapacitor devices and electrodes”, J. Power Sources 196(1), 1–12 (2011). http://dx.doi.org/10.1016/j.jpowsour.2010.06.084
H. W. Gerhard and J. Friedrich, “Poly(alkylenedioxythiophene)s—new, very stable conducting polymers”, Adv. Mater. 4(2), 116–118 (1992). http://dx.doi.org/10.1002/adma.19920040213
Y. Kudoh, K. Akami and Y. Matsuya, “Solid electrolytic capacitor with highly stable conducting polymer as a counter electrode”, Synth. Met. 102(1), 973–974 (1999). http://dx.doi.org/10.1016/S0379-6779(98)01012-1
L. Ci, J. Suhr, V. Pushparaj, X. Zhang and P. M. Ajayan, “Continuous carbon nanotube reinforced composites”, Nano Lett. 8(12), 2762–2766 (2008). http://dx.doi.org/10.1021/nl8012715
T. L. Kelly, K. Yano and M. O. Wolf, “Supercapacitive properties of PEDOT and carbon colloidal microspheres”, ACS Appl. Mater. Interfaces 1(11), 2536–2543 (2009). http://dx.doi.org/10.1021/am900575v
O. Fichet, T. V. Francois, T. Dominique and C. Chevrot, “Interfacial polymerization of a 3,4-ethylenedioxythiophene derivative using langmuir-blodgett technique. Spectroscopic and electrochemical characterizations”, Thin Solid Films 411(2), 280–288 (2002). http://dx.doi.org/10.1016/S0040-6090(02)00271-7
M. H. Jung and H. Y. Lee, “Patterning of conducting polymers using charged self-assembled monolayers”, Langmuir 24(17), 9825–9831 (2008). http://dx.doi.org/10.1021/la8014207
Y. Wang, H. D. Tran and R. B. Kaner, “Templatefree growth of highly aligned conducting polymer nanowires”, J. Phys. Chem. C 113(24), 10346–10349 (2009). http://dx.doi.org/10.1021/jp903583e
W. E. Tenhaeff and K. K. Gleason, “Initiated and oxidative chemical vapor deposition of polymeric thin films: ICVD and OCVD”, Adv. Funct. Mater. 18(7), 979–992 (2008). http://dx.doi.org/10.1002/adfm.200701479
L. D. Acqua, C. Tonina, A. Varesanoa, M. Canettib, W. Porziob and M. Catellani, “Vapour phase polymerisation of pyrrole on cellulose-based textile substrates”, Synth. Met. 156(5), 379–386 (2006). http://dx.doi.org/10.1016/j.synthmet.2005.12.021
R. Sreenivasan and K. K. Gleason, “Overview of strategies for the CVD of organic films and functional polymer layers”, Chem. Vap. Deposition 15(4), 77–90 (2009). http://dx.doi.org/10.1002/cvde.200800040
B. W. Jensen, J. Chen, K. West and G. Wallace, “Vapor phase polymerization of pyrrole and thiophene using iron(III) sulfonates as oxidizing agents”, Macromolecules 37(16), 5930–5935 (2004). http://dx.doi.org/10.1021/ma049365k
A. Malinauskas, “Chemical deposition of conducting polymers”, Polymer 42(9), 3957–3972 (2001). http://dx.doi.org/10.1016/S0032-3861(00)00800-4
B. W. Jensen and K. West, “Vapor-phase polymerization of 3,4-ethylenedioxythiophene: a route to highly conducting polymer surface layers”, Macromolecules 37(12), 4538–4543 (2004). http://dx.doi.org/10.1021/ma049864l
J. Y. Kim, M. H. Kwon, Y. K. Min, S. Kwon and D. W. Ihm, “Self-assembly and crystalline growth of poly(3,4-ethylenedioxythiophene) nanofilms”, Adv. Mater. 19(21), 3501–3506 (2007). http://dx.doi.org/10.1002/adma.200602163
L. Alexis and R. Lucie, “Production of conductive PEDOT nanofibers by the combination of electrospinning and vapor-phase polymerization”, Macromolecules 43(9), 4194–4200 (2010). http://dx.doi.org/10.1021/ma9027678