Synthesis, Optical Properties and Photovoltaic Application of the SnS Quasi-one-dimensional Nanostructures
Corresponding Author: G. H. Yue
Nano-Micro Letters,
Vol. 5 No. 1 (2013), Article Number: 1-6
Abstract
Low-toxicity single crystal SnS nanowires had been successfully synthesized by the catalyst-assistant chemical vapor deposition. Au nanoparticles were applied on the ITO surface as the catalysis, using SnS powder and S powder as forerunners. The structure, morphology and optical properties of the prepared SnS nanowires were characterized. The experimental results show the as-synthesized nanowires are single crystalline with a preferential orientation. The synthesized SnS nanowires show strong absorption in the visible and near-infrared spectral region, and the direct energy band gap of SnS nanowires is 1.46 eV.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. K. Reddy, Y. B. Hahn, M. Devika, H. R. Sumana and K. R. Gunasekhar, “Temperature-dependent structural and optical properties of SnS films”, J Appl. Phys. 101, 093522–093528 (2007). http://dx.doi.org/10.1063/1.2729450
- G. H. Yue, D. L. Peng and P. X. Yan, “Structure and optical properties of SnS thin film prepared by pulse electrodeposition”, J. Alloys Compd. 468(1–2), 254–257 (2009). http://dx.doi.org/10.1016/j.jallcom.2008.01.047
- C. W. Wolfe, “Physical properties of semiconductors”, Prentice-Hall, Englewood Cliffs, NJ (1989).
- M. Devika, N. K. Reddy and K. Ramesh, “Low resistive micrometer-thick SnS: Ag films for optoelectronic applications”, J. Electrochem. Soc. 153(8), G727–G733 (2006). http://dx.doi.org/10.1149/1.2204870
- A. Ghazali, Z. Zainal, M. Z. Hussein and A. Kassim, “Cathodic electrodeposition of SnS in the presence of EDTA in aqueous media”, Sol. Energ. Mat. Sol. C. 55(3), 237–249 (1998). http://dx.doi.org/10.1016/S0927-0248(98)00106-8
- G. H. Yue and W. Wang, “The effect of anneal tem- perature on physical properties of SnS films”, J. Al- loy. Compd. 474(1–2), 445–449 (2009). http://dx.doi.org/10.1016/j.jallcom.2008.06.105
- M. Parenteau and C. Carlone, “Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors”, Phys. Rev. B 41(8), 5227–5234 (1990). http://dx.doi.org/10.1103/PhysRevB. 41.5227
- B. Subramanian, C. Sanjeeviraja and M. Jayachandran, “Photoelectrochemical characteristics of brush plated tin sulfide thin films”, Sol. Energ. Mat. Sol. C. 79(1), 57–65 (2003). http://dx.doi.org/10.1016/ S0927-0248(02)00366-5
- B. Thangaraju and P. Kaliannan, “Spray pyrolytic deposition and characterization of SnS and SnS2 thin films”, J. Phys. D: Appl. Phys. 33, 1054–1059 (2000). http://dx.doi.org/10.1088/0022-3727/33/9/304
- L. S. Price, I. P. Parkin and M. N. Field, “Atmospheric pressure chemical vapour deposition of tin(II) sulfide films on glass substrates from Bun3SnO2CCF3 with hydrogen sulfide”, J. Mater. Chem. 10(2), 527–530 (2000). http://dx.doi.org/10.1039/a907939d
- A. Tanusevski, “Optical and photoelectric properties of SnS thin films prepared by chemical bath deposition”, Semicond. Sci. Technol. 18, 501–505 (2003). http://dx.doi.org/10.1088/0268-1242/18/6/318
- D. S. Koktysh, J. R. McBride and S. J. Rosenthal, “Synthesis of SnS nanocrystals by the solvothermal decomposition of a single source precursor”, Nanoscale Res. Lett. 2, 144–148 (2007). http://dx.doi.org/10. 1007/s11671-007-9045-9
- Y. K. Liu, D. D. Hou and G. H. Wang, “Synthesis and characterization of SnS nanowires in cetyltrimethylammoniumbromide (CTAB) aqueous solution”, Chem. Phys. Lett. 379(1–2), 67–73 (2003). http://dx.doi.org/10.1016/j.cplett.2003.08.014
- S. Biswas, S. Kar and S. Chaudhuri, “Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets”, Appl. Surf. Sci. 253(23), 9259–9266 (2007). http://dx.doi.org/10. 1016/j.apsusc.2007.05.053
- S. K. Panda, A. Datta, A. Dev, S. Gorai and S. Chaudhuri, “Surfactant-assisted synthesis of SnS nanowires grown on tin foils”, Cryst. Growth Des. 6(9), 2177–2181 (2006). http://dx.doi.org/10.1021/cg0602156
- J. Kang, J. Park and D. Kim, “Superior rate capabilities of SnS nanosheet electrodes for Li ion batteries”, Electrochem. Commun. 12(2), 307–310 (2010). http://dx.doi.org/10.1016/j.elecom.2009.12.025
- G. H. Yue, L. S. Wang, X. Wang, Y. Z. Chen and D. L. Peng, “Characterization and optical properties of the single crystalline SnS nanowire arrays”, Nanoscale Res. Lett. 4, 359–363 (2009). http://dx.doi.org/10. 1007/s11671-009-9253-6
- J. Z. Liu, P. X. Yan, G. H. Yue, J. B. Chang, R. F. Zhuo and D. M. Qu, “Controllable synthesis of undoped/Cd-doped ZnO nanostructures”, Mater. Lett. 60(25–26), 3122–3125 (2006). http://dx.doi.org/10.1016/j.matlet.2006.02.056
- G. H. Yue, Y. D. Lin and X. Wen, “Synthesis and characterization of the SnS nanowires via chemical vapor deposition”, Appl. Phys. A Mater. Sci. Process. 106(1), 87–91 (2012). http://dx.doi.org/10.1007/ s00339-011-6560-4
- D. Avellaneda, G. Delgado, M. T. S. Nair and P. K. Nair, “Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells”, Thin Solid Films 515(15), 5771–5776 (2007). http://dx.doi.org/10.1016/j.tsf.2006.12.078
- H. Tang, G. Y. Xu, L. Q. Weng, L. J. Pan and L. Wang, “Luminescence and photophysical properties of colloidal ZnS nanoparticles”, Acta Mater. 52(6), 1489–1494 (2004). http://dx.doi.org/ 10.1016/j.actamat.2003.11.030
- T. Takagahara, “Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots”, Phys. Rev. B 47(8), 4569–4584 (1993). http://dx.doi.org/10. 1103/PhysRevB.47.4569
References
N. K. Reddy, Y. B. Hahn, M. Devika, H. R. Sumana and K. R. Gunasekhar, “Temperature-dependent structural and optical properties of SnS films”, J Appl. Phys. 101, 093522–093528 (2007). http://dx.doi.org/10.1063/1.2729450
G. H. Yue, D. L. Peng and P. X. Yan, “Structure and optical properties of SnS thin film prepared by pulse electrodeposition”, J. Alloys Compd. 468(1–2), 254–257 (2009). http://dx.doi.org/10.1016/j.jallcom.2008.01.047
C. W. Wolfe, “Physical properties of semiconductors”, Prentice-Hall, Englewood Cliffs, NJ (1989).
M. Devika, N. K. Reddy and K. Ramesh, “Low resistive micrometer-thick SnS: Ag films for optoelectronic applications”, J. Electrochem. Soc. 153(8), G727–G733 (2006). http://dx.doi.org/10.1149/1.2204870
A. Ghazali, Z. Zainal, M. Z. Hussein and A. Kassim, “Cathodic electrodeposition of SnS in the presence of EDTA in aqueous media”, Sol. Energ. Mat. Sol. C. 55(3), 237–249 (1998). http://dx.doi.org/10.1016/S0927-0248(98)00106-8
G. H. Yue and W. Wang, “The effect of anneal tem- perature on physical properties of SnS films”, J. Al- loy. Compd. 474(1–2), 445–449 (2009). http://dx.doi.org/10.1016/j.jallcom.2008.06.105
M. Parenteau and C. Carlone, “Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors”, Phys. Rev. B 41(8), 5227–5234 (1990). http://dx.doi.org/10.1103/PhysRevB. 41.5227
B. Subramanian, C. Sanjeeviraja and M. Jayachandran, “Photoelectrochemical characteristics of brush plated tin sulfide thin films”, Sol. Energ. Mat. Sol. C. 79(1), 57–65 (2003). http://dx.doi.org/10.1016/ S0927-0248(02)00366-5
B. Thangaraju and P. Kaliannan, “Spray pyrolytic deposition and characterization of SnS and SnS2 thin films”, J. Phys. D: Appl. Phys. 33, 1054–1059 (2000). http://dx.doi.org/10.1088/0022-3727/33/9/304
L. S. Price, I. P. Parkin and M. N. Field, “Atmospheric pressure chemical vapour deposition of tin(II) sulfide films on glass substrates from Bun3SnO2CCF3 with hydrogen sulfide”, J. Mater. Chem. 10(2), 527–530 (2000). http://dx.doi.org/10.1039/a907939d
A. Tanusevski, “Optical and photoelectric properties of SnS thin films prepared by chemical bath deposition”, Semicond. Sci. Technol. 18, 501–505 (2003). http://dx.doi.org/10.1088/0268-1242/18/6/318
D. S. Koktysh, J. R. McBride and S. J. Rosenthal, “Synthesis of SnS nanocrystals by the solvothermal decomposition of a single source precursor”, Nanoscale Res. Lett. 2, 144–148 (2007). http://dx.doi.org/10. 1007/s11671-007-9045-9
Y. K. Liu, D. D. Hou and G. H. Wang, “Synthesis and characterization of SnS nanowires in cetyltrimethylammoniumbromide (CTAB) aqueous solution”, Chem. Phys. Lett. 379(1–2), 67–73 (2003). http://dx.doi.org/10.1016/j.cplett.2003.08.014
S. Biswas, S. Kar and S. Chaudhuri, “Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets”, Appl. Surf. Sci. 253(23), 9259–9266 (2007). http://dx.doi.org/10. 1016/j.apsusc.2007.05.053
S. K. Panda, A. Datta, A. Dev, S. Gorai and S. Chaudhuri, “Surfactant-assisted synthesis of SnS nanowires grown on tin foils”, Cryst. Growth Des. 6(9), 2177–2181 (2006). http://dx.doi.org/10.1021/cg0602156
J. Kang, J. Park and D. Kim, “Superior rate capabilities of SnS nanosheet electrodes for Li ion batteries”, Electrochem. Commun. 12(2), 307–310 (2010). http://dx.doi.org/10.1016/j.elecom.2009.12.025
G. H. Yue, L. S. Wang, X. Wang, Y. Z. Chen and D. L. Peng, “Characterization and optical properties of the single crystalline SnS nanowire arrays”, Nanoscale Res. Lett. 4, 359–363 (2009). http://dx.doi.org/10. 1007/s11671-009-9253-6
J. Z. Liu, P. X. Yan, G. H. Yue, J. B. Chang, R. F. Zhuo and D. M. Qu, “Controllable synthesis of undoped/Cd-doped ZnO nanostructures”, Mater. Lett. 60(25–26), 3122–3125 (2006). http://dx.doi.org/10.1016/j.matlet.2006.02.056
G. H. Yue, Y. D. Lin and X. Wen, “Synthesis and characterization of the SnS nanowires via chemical vapor deposition”, Appl. Phys. A Mater. Sci. Process. 106(1), 87–91 (2012). http://dx.doi.org/10.1007/ s00339-011-6560-4
D. Avellaneda, G. Delgado, M. T. S. Nair and P. K. Nair, “Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells”, Thin Solid Films 515(15), 5771–5776 (2007). http://dx.doi.org/10.1016/j.tsf.2006.12.078
H. Tang, G. Y. Xu, L. Q. Weng, L. J. Pan and L. Wang, “Luminescence and photophysical properties of colloidal ZnS nanoparticles”, Acta Mater. 52(6), 1489–1494 (2004). http://dx.doi.org/ 10.1016/j.actamat.2003.11.030
T. Takagahara, “Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots”, Phys. Rev. B 47(8), 4569–4584 (1993). http://dx.doi.org/10. 1103/PhysRevB.47.4569