Synthesis and Growth Mechanism of Net-like Titanate Nanowire Films via Low-temperature and Low-alkali-concentration Route
Corresponding Author: Zongjian Liu
Nano-Micro Letters,
Vol. 5 No. 2 (2013), Article Number: 93-100
Abstract
Net-like titanate nanowire films can be grown on Ti substrates by non-hydrothermal treatment of Ti foils in alkali-H2O2 aqueous solutions with a low alkali concentration of 2 M at 60–80°C. The growth mechanism of such films has been investigated by identifying the role of both H2O2 and alkali in the nanowire formation and capturing the film morphology at early growth stages. It is found that the presence of H2O2 is necessary for the nanowire growth, and sufficient amount of H2O2 is needed to produce well-shaped nanowires. The nanowire growth is also strongly dependant on the alkali used, and nanowire films are formed only when metal hydroxides which can react with TiO2 to form layer-structured titanates are chosen. Our results have also revealed that the heterogeneous deposition of titanate on Ti substrate results in the growth of titanate sheets, and the nanowire formation is via a splitting process by which each titanate sheet gradually evolves into nanowire thin layer. Based on the experimental results, a detailed mechanism is proposed for the growth of titanate nanowire films in alkali-H2O2 aqueous solutions at low temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. K. Lee, M. D. Lyu, S. S Liu and H. C. Chen, “The synthetic parameters for the preparation of nanotubular titanate with highly photocatalytic activity”, J. Taiwan Inst. Chem. Engrs. 40(4), 463–470 (2009). http://dx.doi.org/10.1016/j.jtice.2008.12.007
- Y. C. Pu, Y. C. Chen and Y. J. Hsu, “Au-decorated NaxH2-xTi3O7 nanobelts exhibiting remarkable photocatalytic properties under visible-light illumination”, Appl. Catal. B 97(3-4), 389–397 (2010). http://dx.doi.org/10.1016/j.apcatb.2010.04.023
- X. G. Xu, X. Ding, Q. Chen and L. M. Peng, “Modification of electronic, optical, and magnetic properties of titanate nanotubes by metal intercalate”, Phys. Rev. B 75(3), 035423–035434 (2007). http://dx.doi.org/10.1103/PhysRevB.75.035423
- D. J. Yang, Z. F. Zheng, H. W. Liu, H. Y. Zhu, X. B. Ke, Y. Xu, D. Wu and Y. Sun, “Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water”, J. Phys. Chem. C 112(42), 16275–16280 (2008). http://dx.doi.org/10.1021/jp803826g
- L. Zhao, J. G. Yu, J. J. Fan, P. C. Zhai and S. M. Wang, “Dye-sensitized solar cells based on ordered titanate nanotube films fabricated by electrophoretic deposition method”, Electrochem. Comm. 11(10), 2052–2055 (2009). http://dx.doi.org/10.1016/j.elecom.2009.08.050
- H. Tokudome and M. Miyauchi, “Electrochromism of titanate-based nanotubes”, Angew. Chem. Int. Ed. 44(13), 1974–1977 (2005). http://dx.doi.org/10.1002/anie.200462448
- S. Bela, A. S. W. Wong and G. W. Ho, “Hydrolysis and ion exchange of titania nanoparticles towards large-scale titania and titanate nanobelts for gas sensing applications”, J. Phys. D 43(3), 035401–035406 (2010). http://dx.doi.org/10.1088/0022-3727/43/3/035401
- D. Wu, J. Liu, X. N. Zhao, A. D. Li, Y. F. Chen and N. B. Ming, “Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts”, Chem. Mater. 18(2), 547–553 (2006). http://dx.doi.org/10.1021/cm0519075
- E. Horvath, A. Kukovecz, Z. Konya and I. Kiricsi, “Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave”, Chem. Mater. 19(4), 927–931 (2007). http://dx.doi.org/10.1021/cm062413q
- C. W. Peng, M. Richard-Plouet, T. Y. Ke, C. Y. Lee, H. T. Chiu, C. Marhic, E. Puzenat, F. Lemoigno and L. Brohan, “Chimie douce route to sodium hydroxo titanate nanowires with modulated structure and conversion to highly photoactive titanium dioxides”, Chem. Mater. 20(23), 7228–7236 (2008). http://dx.doi.org/10.1021/cm8007039
- J. Q. Huang, Y. G. Cao, Q. F. Huang, H. He, Y. Liu, W. Guo and M. C. Hong, “High-temperature formation of titanate nanotubes and the transformation mechanism of nanotubes into nanowires”, Cryst. Growth Design 9(8), 3632–3637 (2009). http://dx.doi.org/10.1021/cg900381h
- J. S. Xu, H. Zhang, W. B. Li, J. Zhang, X. Y. Liu, X. K. He, D. L. Xu, J. H. Qian and L. Liu, “Hydrothermal synthesis and characterisation of potassium/sodium titanate nanofibres at different temperatures”, Micro Nano Lett. 7(7), 654–657 (2012). http://dx.doi.org/10.1049/mnl.2012.0376
- M.-J. Li, Z.-Y. Chi and Y.-C. Wu, “Morphology, chemical composition and phase transformation of hydrothermal derived sodium titanate”, J. Am. Ceram. Soc. 95(10), 3297–3304 (2012). http://dx.doi.org/10.1111/j.1551-2916.2012.05330.x
- T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of titanium oxide nanotube”, Langmuir 14(12), 3160–3163 (1998). http://dx.doi.org/10.1021/la9713816
- J. I. Kim, S. Y. Lee and J. C. Pyun, “Characterization of photocatalytic activity of TiO2 nanowire synthesized from Ti-plate by wet corrosion process”, Current Appl. Phys. 9(4), e252–e255 (2009). http://dx.doi.org/10.1016/j.cap.2009.06.055
- M. Yada, Y. Inoue, M. Uota, T. Torikai, T. Watari, I. Noda and T. Hotokebuchi, “Plate, wire, mesh, microsphere, and microtube composed of sodium titanate nanotubes on a titanium metal template”, Langmuir 23(5), 2815–2823 (2007). http://dx.doi.org/10.1021/la062654c
- Y. Inoue, I. Noda, T. Torikai, T. Watari, T. Hotokebuchi and M. Yada, “TiO2 nanotube, nanowire, and rhomboid-shaped particle thin films fixed on a titanium metal plate”, J. Solid State Chem. 183(1), 57–64 (2010). http://dx.doi.org/10.1016/j.jssc.2009.10.028
- B. Chi, E. S. Victorio, T. Jin, B. Chi, E. S. Victorio and T. Jin, “Synthesis of TiO2-based nanotube on Ti substrate by hydrothermal treatment”, J. Nanosci. Nanotechol. 7(2), 668–672 (2007). http://dx.doi.org/10.1166/jnn.2007.147
- Y. P. Guo, N. H. Lee, H. J. Oh, C. R. Yoon, K. S. Park, H. G. Lee, K. S. Lee and S. J. Kim, “Structuretunable synthesis of titanate nanotube thin films via a simple hydrothermal process”, Nanotechnol. 18(29), 295608–295615 (2007). http://dx.doi.org/10.1088/0957-4484/18/29/295608
- M. Kitano, R. Mitsui, D. R. Eddy, Z. M. A. ElBahy, M. Matsuoka, M. Ueshima and M. Anpo, “Synthesis of nanowire TiO2 thin films by hydrothermal treatment and their photoelectrochemical properties”, Catal. Lett. 119(3-4), 217–221 (2007). http://dx.doi.org/10.1007/s10562-007-9243-1
- A. M. Hu, X. Zhang, K. D. Oakes, P. Peng, Y. N. Zhou and M. R. Servos, “Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals”, J. Hazard. Mater. 189(1-2), 278–285 (2011). http://dx.doi.org/10.1016/j.jhazmat.2011.02.033
- Y. F. Zhu, R. G. Du, W. Chen, H. Q. Qi and C. J. Lin, “Photocathodic protection properties of three-dimensional titanate nanowire net work films prepared by a combined solgel and hydrothermal method”, Electrochem. Comm. 12(11), 1626–1629 (2010). http://dx.doi.org/10.1016/j.elecom.2010.09.011
- Y. H. Wu, M. C. Long, W. M. Cai, S. D. Dai, C. Chen, D. Y. Wu and J. Bai, “Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate”, Nanotechnol. 20(18), 185703–185710 (2009). http://dx.doi.org/10.1088/0957-4484/20/18/185703
- X. P. Bao, Z. J. Liu and D. Y. Lu, “A study on TiO2-based nanowire thin films prepared by chemical oxidation”, J. Zhejiang Univ. (Sci. edition) 39, 407–410 (2012).
- P. Tengvall, H. Elwing and I. Lundstrom, “Titanium gel made from metallic titanium and hydrogen peroxide”, J. Colloid Interface Sci. 130(2), 405–413 (1989). http://dx.doi.org/10.1016/0021-9797(89)90117-3
- J. M. Wu and T. W. Zhang, “Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity”, Langmuir 21(15), 6995–7002 (2005). http://dx.doi.org/10.1021/la0500272
References
C. K. Lee, M. D. Lyu, S. S Liu and H. C. Chen, “The synthetic parameters for the preparation of nanotubular titanate with highly photocatalytic activity”, J. Taiwan Inst. Chem. Engrs. 40(4), 463–470 (2009). http://dx.doi.org/10.1016/j.jtice.2008.12.007
Y. C. Pu, Y. C. Chen and Y. J. Hsu, “Au-decorated NaxH2-xTi3O7 nanobelts exhibiting remarkable photocatalytic properties under visible-light illumination”, Appl. Catal. B 97(3-4), 389–397 (2010). http://dx.doi.org/10.1016/j.apcatb.2010.04.023
X. G. Xu, X. Ding, Q. Chen and L. M. Peng, “Modification of electronic, optical, and magnetic properties of titanate nanotubes by metal intercalate”, Phys. Rev. B 75(3), 035423–035434 (2007). http://dx.doi.org/10.1103/PhysRevB.75.035423
D. J. Yang, Z. F. Zheng, H. W. Liu, H. Y. Zhu, X. B. Ke, Y. Xu, D. Wu and Y. Sun, “Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water”, J. Phys. Chem. C 112(42), 16275–16280 (2008). http://dx.doi.org/10.1021/jp803826g
L. Zhao, J. G. Yu, J. J. Fan, P. C. Zhai and S. M. Wang, “Dye-sensitized solar cells based on ordered titanate nanotube films fabricated by electrophoretic deposition method”, Electrochem. Comm. 11(10), 2052–2055 (2009). http://dx.doi.org/10.1016/j.elecom.2009.08.050
H. Tokudome and M. Miyauchi, “Electrochromism of titanate-based nanotubes”, Angew. Chem. Int. Ed. 44(13), 1974–1977 (2005). http://dx.doi.org/10.1002/anie.200462448
S. Bela, A. S. W. Wong and G. W. Ho, “Hydrolysis and ion exchange of titania nanoparticles towards large-scale titania and titanate nanobelts for gas sensing applications”, J. Phys. D 43(3), 035401–035406 (2010). http://dx.doi.org/10.1088/0022-3727/43/3/035401
D. Wu, J. Liu, X. N. Zhao, A. D. Li, Y. F. Chen and N. B. Ming, “Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts”, Chem. Mater. 18(2), 547–553 (2006). http://dx.doi.org/10.1021/cm0519075
E. Horvath, A. Kukovecz, Z. Konya and I. Kiricsi, “Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave”, Chem. Mater. 19(4), 927–931 (2007). http://dx.doi.org/10.1021/cm062413q
C. W. Peng, M. Richard-Plouet, T. Y. Ke, C. Y. Lee, H. T. Chiu, C. Marhic, E. Puzenat, F. Lemoigno and L. Brohan, “Chimie douce route to sodium hydroxo titanate nanowires with modulated structure and conversion to highly photoactive titanium dioxides”, Chem. Mater. 20(23), 7228–7236 (2008). http://dx.doi.org/10.1021/cm8007039
J. Q. Huang, Y. G. Cao, Q. F. Huang, H. He, Y. Liu, W. Guo and M. C. Hong, “High-temperature formation of titanate nanotubes and the transformation mechanism of nanotubes into nanowires”, Cryst. Growth Design 9(8), 3632–3637 (2009). http://dx.doi.org/10.1021/cg900381h
J. S. Xu, H. Zhang, W. B. Li, J. Zhang, X. Y. Liu, X. K. He, D. L. Xu, J. H. Qian and L. Liu, “Hydrothermal synthesis and characterisation of potassium/sodium titanate nanofibres at different temperatures”, Micro Nano Lett. 7(7), 654–657 (2012). http://dx.doi.org/10.1049/mnl.2012.0376
M.-J. Li, Z.-Y. Chi and Y.-C. Wu, “Morphology, chemical composition and phase transformation of hydrothermal derived sodium titanate”, J. Am. Ceram. Soc. 95(10), 3297–3304 (2012). http://dx.doi.org/10.1111/j.1551-2916.2012.05330.x
T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of titanium oxide nanotube”, Langmuir 14(12), 3160–3163 (1998). http://dx.doi.org/10.1021/la9713816
J. I. Kim, S. Y. Lee and J. C. Pyun, “Characterization of photocatalytic activity of TiO2 nanowire synthesized from Ti-plate by wet corrosion process”, Current Appl. Phys. 9(4), e252–e255 (2009). http://dx.doi.org/10.1016/j.cap.2009.06.055
M. Yada, Y. Inoue, M. Uota, T. Torikai, T. Watari, I. Noda and T. Hotokebuchi, “Plate, wire, mesh, microsphere, and microtube composed of sodium titanate nanotubes on a titanium metal template”, Langmuir 23(5), 2815–2823 (2007). http://dx.doi.org/10.1021/la062654c
Y. Inoue, I. Noda, T. Torikai, T. Watari, T. Hotokebuchi and M. Yada, “TiO2 nanotube, nanowire, and rhomboid-shaped particle thin films fixed on a titanium metal plate”, J. Solid State Chem. 183(1), 57–64 (2010). http://dx.doi.org/10.1016/j.jssc.2009.10.028
B. Chi, E. S. Victorio, T. Jin, B. Chi, E. S. Victorio and T. Jin, “Synthesis of TiO2-based nanotube on Ti substrate by hydrothermal treatment”, J. Nanosci. Nanotechol. 7(2), 668–672 (2007). http://dx.doi.org/10.1166/jnn.2007.147
Y. P. Guo, N. H. Lee, H. J. Oh, C. R. Yoon, K. S. Park, H. G. Lee, K. S. Lee and S. J. Kim, “Structuretunable synthesis of titanate nanotube thin films via a simple hydrothermal process”, Nanotechnol. 18(29), 295608–295615 (2007). http://dx.doi.org/10.1088/0957-4484/18/29/295608
M. Kitano, R. Mitsui, D. R. Eddy, Z. M. A. ElBahy, M. Matsuoka, M. Ueshima and M. Anpo, “Synthesis of nanowire TiO2 thin films by hydrothermal treatment and their photoelectrochemical properties”, Catal. Lett. 119(3-4), 217–221 (2007). http://dx.doi.org/10.1007/s10562-007-9243-1
A. M. Hu, X. Zhang, K. D. Oakes, P. Peng, Y. N. Zhou and M. R. Servos, “Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals”, J. Hazard. Mater. 189(1-2), 278–285 (2011). http://dx.doi.org/10.1016/j.jhazmat.2011.02.033
Y. F. Zhu, R. G. Du, W. Chen, H. Q. Qi and C. J. Lin, “Photocathodic protection properties of three-dimensional titanate nanowire net work films prepared by a combined solgel and hydrothermal method”, Electrochem. Comm. 12(11), 1626–1629 (2010). http://dx.doi.org/10.1016/j.elecom.2010.09.011
Y. H. Wu, M. C. Long, W. M. Cai, S. D. Dai, C. Chen, D. Y. Wu and J. Bai, “Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate”, Nanotechnol. 20(18), 185703–185710 (2009). http://dx.doi.org/10.1088/0957-4484/20/18/185703
X. P. Bao, Z. J. Liu and D. Y. Lu, “A study on TiO2-based nanowire thin films prepared by chemical oxidation”, J. Zhejiang Univ. (Sci. edition) 39, 407–410 (2012).
P. Tengvall, H. Elwing and I. Lundstrom, “Titanium gel made from metallic titanium and hydrogen peroxide”, J. Colloid Interface Sci. 130(2), 405–413 (1989). http://dx.doi.org/10.1016/0021-9797(89)90117-3
J. M. Wu and T. W. Zhang, “Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity”, Langmuir 21(15), 6995–7002 (2005). http://dx.doi.org/10.1021/la0500272