Role of Contact and Contact Modification on Photo-response in a Charge Transfer Complex Single Nanowire Device
Corresponding Author: Rabaya Basori
Nano-Micro Letters,
Vol. 6 No. 1 (2014), Article Number: 63-69
Abstract
We investigated the feasibility of obtaining large photoresponse in metal-semiconductor-metal (MSM)type single nanowire device where one contact can be blocking type. We showed that suitable modification of the blocking contact by deposition of a capping metal using focused electron beam (FEB) can lead to considerable enhancement of the photoresponse. The work was done in a single Cu:TCNQ nanowire device fabricated by direct growth of nanowires (NW) from pre-patterned Cu electrode which makes the contact ohmic with the other contact made from Au. Analysis of the data shows that the large photoresponse of the devices arises predominantly due to reduction of the barriers at the Au/NW blocking contact on illumination. This is caused by the diffusion of the photo generated carriers from the nanowires to the contact region. When the barrier height is further reduced by treating the contact with FEB deposited Pt, this results in a large enhancement in the device photoresponse.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Fontana, Deppe T, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions”, Sci. Rep. 3, 1634–1634 (2013). http://dx.doi.org/10.1038/srep01634
- E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard and K. Kern, “Contact and edge effects in graphene devices”, Nat.Nanotechnol. 3(8), 486–490 (2008). http://dx.doi.org/10.1038/nnano.2008.172
- Y. Ahn, J. Dunning and J. Park, “Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors”, Nano Lett. 5(7), 1367–1370 (2005). http://dx.doi.org/10.1021/nl050631x
- R. Yu, C. Pan, J. Chen, G. Zhu and Z. L. Wang, “Enhanced performance of a ZnO nanowirebased self-powered glucose sensor by piezotronic effect”, Adv.Funct. Mater. 23(5), 5868–5874 (2013). http://dx.doi.org/10.1002/adfm.201300593
- Y. Liu, Q. Yang, Y. Zhang, Z. Yang and Z. L. Wang, “Nanowire piezo-phototronic photodetector: Theory and experimental design”, Adv. Mater. 24(11), 1410–1417 (2012). http://dx.doi.org/10.1002/adma.201104333
- R. H. Bube: Photoconductivity of Solids (Wiley, New York, 1960).
- Rose:Concepts in Photoconductivity and Allied Problems (Interscience, New York, 1963).
- W. Ruppel: II–VI Semiconducting Compounds, edited by D. G. Thomas (Benjamin, New York, 1967).
- Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Weiand Z. L. Wang, “Supersensitive, fast-response nanowire sensors by using Schottky contacts”, Adv. Mater. 22(30), 3327–3332 (2010). http://dx.doi.org/10.1002/adma.201000278
- H. Bao, X. Cui, C. M. Li, Y. Gan, J. Zhang and J. Guo, “Photoswitchable semiconductor Bismuth Sulfide (Bi2S3) nanowires and their selfsupported nanowire arrays”, J. Phys. Chem. C 111(33), 12279–12283 (2007). http://dx.doi.org/10.1021/jp073504t
- A. Maharjan, K. Pemasiri, P. Kumar, A. Wade, L. M. Smith, H. E. Jackson, J. M. Yarrison-Rice, A. Kogan, S. Paiman, Q. Gao, H. H. Tan and C. Jagadish, “Room temperature photocurrent spectroscopy of single zincblende and wurtzite InP nanowires”, Appl. Phys. Lett. 94(19), 193115 (2009). http://dx.doi.org/10.1063/1.3138137
- Y. Gu, E-S. Kwak, J-L. Lensch, J-E. Allen and T-W Odom, “Near-field scanning photocurrent microscopy of a nanowire photodetector”, Appl. Phys. Lett. 87(4), 043111 (2005). http://dx.doi.org/10.1063/1.1996851
- J. Xiao, Z. Yin, H. Li, Q. Zhang, F. Boey, H. Zhang and Q. Zhang, “Postchemistry of organic particles: when TTF microparticles meet TCNQ microstructures in aqueous solution”, J. Am. Chem. Soc. 132(20), 6926–6928 (2010). http://dx.doi.org/10.1021/ja102154b
- J. Xiao, H. Yang, Z. Yin, J. Guo, F. Boey, H. Zhang and Q. Zhang, “Preparation, characterization, and photoswitching/light-emitting behaviors of coronene nanowires”, J. Mater. Chem. 21(5), 1423–1427 (2011). http://dx.doi.org/10.1039/c0jm02350g
- B. Yang, J. Xiao, J. I. Wong, J. Guo, Y. Wu, L. Ong, L. L. Lao, F. Boey, H. Zhang, H. Y. Yang and Q. Zhang, “Large photoresponse of Cu:7,7,8,8-tetracyanoquinodimethane nanowire arrays formed as aligned nanobridges”, J. Phys. Chem. C 115(16), 7924–7927 (2011). http://dx.doi.org/10.1021/jp112195k
- A. Hefczyc, L. Beckmann, E. Becker, H-H. Johannes and W. Kowalsky, “Contact effect in Cu(TCNQ) memory devices”, Phys. Status Solidi A 205(3), 647–655 (2008). http://dx.doi.org/10.1002/pssa.200723418
- H. Norde, “A modified forward IV plot for Schottky diodes with high series resistance”, J.Appl.Phys. 50(7), 5052–5053 (1979). http://dx.doi.org/10.1063/1.325607
- K. B. Zheng, H. T. Shen, C. N. Ye, J. L. Li, D. L. Sunand G. R. Chen, “The electrical switching characteristics of single copper tetra-cyanoquinodimethane nanowire”, Nano-Micro Lett. 1(1), 23–26 (2009). http://dx.doi.org/10.5101/nml.v1i1.p23-26
- M. Mongillo, P. Spathis, G. Katsaros, P. Gentile and S. D. Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires”, Nano Lett. 12(7), 3074–3079 (2012). http://dx.doi.org/10.1021/nl300930m
- A. Zhang, H. Kim, J. Cheng and Y-H. Lo, “Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors”, Nano Lett. 10(6), 2117–2120 (2010). http://dx.doi.org/10.1021/nl1006432
- D. Diesing, M. Merschdorf, A. Thon and W. Pfeiffer, “Identification of multiphoton induced photocurrents in metal-insulator-metal junctions”, Appl. Phys.B-Lasers O. 78(3–4), 443–446 (2004). http://dx.doi.org/10.1007/s00340-003-1391-4
References
M. Fontana, Deppe T, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions”, Sci. Rep. 3, 1634–1634 (2013). http://dx.doi.org/10.1038/srep01634
E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard and K. Kern, “Contact and edge effects in graphene devices”, Nat.Nanotechnol. 3(8), 486–490 (2008). http://dx.doi.org/10.1038/nnano.2008.172
Y. Ahn, J. Dunning and J. Park, “Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors”, Nano Lett. 5(7), 1367–1370 (2005). http://dx.doi.org/10.1021/nl050631x
R. Yu, C. Pan, J. Chen, G. Zhu and Z. L. Wang, “Enhanced performance of a ZnO nanowirebased self-powered glucose sensor by piezotronic effect”, Adv.Funct. Mater. 23(5), 5868–5874 (2013). http://dx.doi.org/10.1002/adfm.201300593
Y. Liu, Q. Yang, Y. Zhang, Z. Yang and Z. L. Wang, “Nanowire piezo-phototronic photodetector: Theory and experimental design”, Adv. Mater. 24(11), 1410–1417 (2012). http://dx.doi.org/10.1002/adma.201104333
R. H. Bube: Photoconductivity of Solids (Wiley, New York, 1960).
Rose:Concepts in Photoconductivity and Allied Problems (Interscience, New York, 1963).
W. Ruppel: II–VI Semiconducting Compounds, edited by D. G. Thomas (Benjamin, New York, 1967).
Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Weiand Z. L. Wang, “Supersensitive, fast-response nanowire sensors by using Schottky contacts”, Adv. Mater. 22(30), 3327–3332 (2010). http://dx.doi.org/10.1002/adma.201000278
H. Bao, X. Cui, C. M. Li, Y. Gan, J. Zhang and J. Guo, “Photoswitchable semiconductor Bismuth Sulfide (Bi2S3) nanowires and their selfsupported nanowire arrays”, J. Phys. Chem. C 111(33), 12279–12283 (2007). http://dx.doi.org/10.1021/jp073504t
A. Maharjan, K. Pemasiri, P. Kumar, A. Wade, L. M. Smith, H. E. Jackson, J. M. Yarrison-Rice, A. Kogan, S. Paiman, Q. Gao, H. H. Tan and C. Jagadish, “Room temperature photocurrent spectroscopy of single zincblende and wurtzite InP nanowires”, Appl. Phys. Lett. 94(19), 193115 (2009). http://dx.doi.org/10.1063/1.3138137
Y. Gu, E-S. Kwak, J-L. Lensch, J-E. Allen and T-W Odom, “Near-field scanning photocurrent microscopy of a nanowire photodetector”, Appl. Phys. Lett. 87(4), 043111 (2005). http://dx.doi.org/10.1063/1.1996851
J. Xiao, Z. Yin, H. Li, Q. Zhang, F. Boey, H. Zhang and Q. Zhang, “Postchemistry of organic particles: when TTF microparticles meet TCNQ microstructures in aqueous solution”, J. Am. Chem. Soc. 132(20), 6926–6928 (2010). http://dx.doi.org/10.1021/ja102154b
J. Xiao, H. Yang, Z. Yin, J. Guo, F. Boey, H. Zhang and Q. Zhang, “Preparation, characterization, and photoswitching/light-emitting behaviors of coronene nanowires”, J. Mater. Chem. 21(5), 1423–1427 (2011). http://dx.doi.org/10.1039/c0jm02350g
B. Yang, J. Xiao, J. I. Wong, J. Guo, Y. Wu, L. Ong, L. L. Lao, F. Boey, H. Zhang, H. Y. Yang and Q. Zhang, “Large photoresponse of Cu:7,7,8,8-tetracyanoquinodimethane nanowire arrays formed as aligned nanobridges”, J. Phys. Chem. C 115(16), 7924–7927 (2011). http://dx.doi.org/10.1021/jp112195k
A. Hefczyc, L. Beckmann, E. Becker, H-H. Johannes and W. Kowalsky, “Contact effect in Cu(TCNQ) memory devices”, Phys. Status Solidi A 205(3), 647–655 (2008). http://dx.doi.org/10.1002/pssa.200723418
H. Norde, “A modified forward IV plot for Schottky diodes with high series resistance”, J.Appl.Phys. 50(7), 5052–5053 (1979). http://dx.doi.org/10.1063/1.325607
K. B. Zheng, H. T. Shen, C. N. Ye, J. L. Li, D. L. Sunand G. R. Chen, “The electrical switching characteristics of single copper tetra-cyanoquinodimethane nanowire”, Nano-Micro Lett. 1(1), 23–26 (2009). http://dx.doi.org/10.5101/nml.v1i1.p23-26
M. Mongillo, P. Spathis, G. Katsaros, P. Gentile and S. D. Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires”, Nano Lett. 12(7), 3074–3079 (2012). http://dx.doi.org/10.1021/nl300930m
A. Zhang, H. Kim, J. Cheng and Y-H. Lo, “Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors”, Nano Lett. 10(6), 2117–2120 (2010). http://dx.doi.org/10.1021/nl1006432
D. Diesing, M. Merschdorf, A. Thon and W. Pfeiffer, “Identification of multiphoton induced photocurrents in metal-insulator-metal junctions”, Appl. Phys.B-Lasers O. 78(3–4), 443–446 (2004). http://dx.doi.org/10.1007/s00340-003-1391-4