Conductive MOFs with Photophysical Properties: Applications and Thin-Film Fabrication
Corresponding Author: Dingxin Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 132
Abstract
Metal–organic frameworks (MOFs) are a class of hybrid materials with many promising applications. In recent years, lots of investigations have been oriented toward applications of MOFs in electronic and photoelectronic devices. While many high-quality reviews have focused on synthesis and mechanisms of electrically conductive MOFs, few of them focus on their photophysical properties. Herein, we provide an in-depth review on photoconductive and photoluminescent properties of conductive MOFs together with their corresponding applications in solar cells, luminescent sensing, light emitting, and so forth. For integration of MOFs with practical devices, recent advances in fabrication of photoactive MOF thin films are also summarized.
Highlights:
1 An overview on photophysical properties of conductive metal–organic frameworks (MOFs) including photoconductivity and photoluminescence is provided.
2 Miscellaneous applications of MOFs with photophysical properties are discussed.
3 Recent advances in integration of photoactive MOFs with practical devices are summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev. 112(2), 673–674 (2012). https://doi.org/10.1021/cr300014x
- J. Zheng, X. Cui, Q. Yang, Q. Ren, Y. Yang, H. Xing, Shaping of ultrahigh-loading mof pellet with a strongly anti-tearing binder for gas separation and storage. Chem. Eng. J. 354, 1075–1082 (2018). https://doi.org/10.1016/j.cej.2018.08.119
- A.H. Chughtai, N. Ahmad, H.A. Younus, A. Laypkov, F. Verpoort, Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 44(19), 6804–6849 (2015). https://doi.org/10.1039/C4CS00395K
- C. Wang, F.F. Liu, Z. Tan, Y.M. Chen, W.C. Hu, X.H. Xia, Fabrication of bio-inspired 2d mofs/paa hybrid membrane for asymmetric ion transport. Adv. Funct. Mater. 30(9), 1908804 (2019). https://doi.org/10.1002/adfm.201908804
- M. Ko, L. Mendecki, K.A. Mirica, Conductive two-dimensional metal-organic frameworks as multifunctional materials. Chem. Commun. 54(57), 7873–7891 (2018). https://doi.org/10.1039/C8CC02871K
- P.I. Scheurle, A. Mahringer, A.C. Jakowetz, P. Hosseini, A.F. Richter, G. Wittstock, D.D. Medina, T. Bein, A highly crystalline anthracene-based mof-74 series featuring electrical conductivity and luminescence. Nanoscale 11(43), 20949–20955 (2019). https://doi.org/10.1039/C9NR05431F
- V. Stavila, A.A. Talin, M.D. Allendorf, Mof-based electronic and opto-electronic devices. Chem. Soc. Rev. 43(16), 5994–6010 (2014). https://doi.org/10.1039/C4CS00096J
- X. Deng, J.Y. Hu, J. Luo, W.M. Liao, J. He, Conductive metal-organic frameworks: Mechanisms, design strategies and recent advances. Top Curr. Chem. 378(2), 27 (2020). https://doi.org/10.1007/s41061-020-0289-5
- C.W. Kung, P.C. Han, C.H. Chuang, K.C.W. Wu, Electronically conductive metal–organic framework-based materials. APL Mater. 7(11), 110902 (2019). https://doi.org/10.1063/1.5125487
- S.K. Bhardwaj, N. Bhardwaj, R. Kaur, J. Mehta, A.L. Sharma, K.H. Kim, A. Deep, An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof. J. Mater. Chem. A 6(31), 14992–15009 (2018). https://doi.org/10.1039/C8TA04220A
- P. Li, B. Wang, Recent development and application of conductive mofs. Isr. J. Chem. 58(9–10), 1010–1018 (2018). https://doi.org/10.1002/ijch.201800078
- E. Castaldelli, K.D.G. Imalka Jayawardena, D.C. Cox, G.J. Clarkson, R.I. Walton, L. Le-Quang, J. Chauvin, S.R.P. Silva, G.J. Demets, Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework. Nat. Commun. 8(1), 2139 (2017). https://doi.org/10.1038/s41467-017-02215-7
- Z.L. Wu, C.H. Wang, B. Zhao, J. Dong, F. Lu et al., A semi-conductive copper-organic framework with two types of photocatalytic activity. Angew. Chem. Int. Ed. 55(16), 4938–4942 (2016). https://doi.org/10.1002/anie.201508325
- X. Liu, M. Kozlowska, T. Okkali, D. Wagner, T. Higashino et al., Photoconductivity in metal-organic framework (MOF) thin films. Angew. Chem. Int. Ed. 58(28), 9590–9595 (2019). https://doi.org/10.1002/anie.201904475
- X. Yan, X. Qiu, Z. Yan, H. Li, Y. Gong, J. Lin, Configurations, band structures and photocurrent responses of 4-(4-oxopyridin-1(4 h)-yl)phthalic acid and its metal-organic frameworks. J. Solid State Chem. 237, 313–322 (2016). https://doi.org/10.1016/j.jssc.2016.02.041
- K. Leong, M.E. Foster, B.M. Wong, E.D. Spoerke, D. Van Gough, J.C. Deaton, M.D. Allendorf, Energy and charge transfer by donor–acceptor pairs confined in a metal–organic framework: a spectroscopic and computational investigation. J Mater. Chem. A 2(10), 3389–3398 (2014). https://doi.org/10.1039/C3TA14328G
- S. Wang, T. Kitao, N. Guillou, M. Wahiduzzaman, C. Martineau-Corcos et al., A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nat. Commun. 9(1), 1660 (2018). https://doi.org/10.1038/s41467-018-04034-w
- A. Mohammadpour, S. Farsinezhad, B.D. Wiltshire, K. Shankar, Majority carrier transport in single crystal rutile nanowire arrays. Phys. Status Solidi (RRL) Rapid Res. Lett. 8(6), 512–516 (2014). https://doi.org/10.1002/pssr.201308296
- C.C. Chueh, C.I. Chen, Y.A. Su, H. Konnerth, Y.J. Gu, C.W. Kung, K.C.W. Wu, Harnessing mof materials in photovoltaic devices: recent advances, challenges, and perspectives. J. Mater. Chem. A 7(29), 17079–17095 (2019). https://doi.org/10.1039/C9TA03595H
- R. Kaur, A. Rana, R.K. Singh, V.A. Chhabra, K.H. Kim, A. Deep, Efficient photocatalytic and photovoltaic applications with nanocomposites between CdTe QDs and an NTU-9 MOF. RSC Adv. 7(46), 29015–29024 (2017). https://doi.org/10.1039/C7RA04125J
- W. Zhang, W. Li, X. He, L. Zhao, H. Chen et al., Dendritic Fe-based polyoxometalates @ metal–organic framework (MOFs) combined with ZnO as a novel photoanode in solar cells. J. Mater. Sci.: Mater. Electron. 29(2), 1623–1629 (2017). https://doi.org/10.1007/s10854-017-8073-1
- R. Kaur, K.H. Kim, A. Deep, A convenient electrolytic assembly of graphene-mof composite thin film and its photoanodic application. Appl. Surf. Sci. 396, 1303–1309 (2017). https://doi.org/10.1016/j.apsusc.2016.11.150
- J. Liu, W. Zhou, J. Liu, I. Howard, G. Kilibarda et al., Photoinduced charge-carrier generation in epitaxial mof thin films: high efficiency as a result of an indirect electronic band gap? Angew. Chem. Int. Ed. 54(25), 7441–7445 (2015). https://doi.org/10.1002/anie.201501862
- L. Li, H. Zhang, C. Liu, P. Liang, N. Mitsuzaki, Z. Chen, Effect of co-based metal–organic framework prepared by an in situ growth method on the photoelectrochemical performance of electrodeposited hematite photoanode. Energy Technol. 7(5), 1801069 (2019). https://doi.org/10.1002/ente.201801069
- Z. Jiao, J. Zheng, C. Feng, Z. Wang, X. Wang, G. Lu, Y. Bi, Fe/w co-doped BiVO4 photoanodes with a metal-organic framework cocatalyst for improved photoelectrochemical stability and activity. Chemsuschem 9(19), 2824–2831 (2016). https://doi.org/10.1002/cssc.201600761
- W. Zhang, R. Li, X. Zhao, Z. Chen, A.W. Law, K. Zhou, A cobalt-based metal-organic framework as cocatalyst on bivo4 photoanode for enhanced photoelectrochemical water oxidation. Chemsuschem 11(16), 2710–2716 (2018). https://doi.org/10.1002/cssc.201801162
- Q. Zhanga, H. Wanga, Y. Donga, J. Yana, X. Keb, Q. Wua, S. Xue, In situ growth of ultrathin co-mof nanosheets on α-Fe2O3 hematite nanorods for efficient photoelectrochemical water oxidation. Sol. Energy 171, 388–396 (2018). https://doi.org/10.1016/j.solener.2018.06.086
- H. Yang, J. Bright, S. Kasani, P. Zheng, T. Musho, B. Chen, L. Huang, N. Wu, Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting. Nano Res. 12(3), 643–650 (2018). https://doi.org/10.1007/s12274-019-2272-4
- Y. Dou, J. Zhou, A. Zhou, J.R. Li, Z. Nie, Visible-light responsive mof encapsulation of noble-metal-sensitized semiconductors for high-performance photoelectrochemical water splitting. J. Mater. Chem. A 5(36), 19491–19498 (2017). https://doi.org/10.1039/C7TA06443H
- K. Natarajan, A.K. Gupta, S.N. Ansari, M. Saraf, S.M. Mobin, Mixed-ligand-architected 2d Co(ii)-MOF expressing a novel topology for an efficient photoanode for water oxidation using visible light. ACS Appl. Mater. Interfaces 11(14), 13295–13303 (2019). https://doi.org/10.1021/acsami.9b01754
- T. Song, L. Zhang, P. Zhang, J. Zeng, T. Wang, A. Alia, H. Zeng, Stable and improved visible-light photocatalytic hydrogen evolution using copper(ii)–organic frameworks: engineering the crystal structures. J. Mater. Chem. A 5, 6013–6018 (2017). https://doi.org/10.1039/C7TA00095B
- Z. Wang, H. Liu, S. Wang, Z. Rao, Y. Yang, A luminescent terbium-succinate mof thin film fabricated by electrodeposition for sensing of Cu2 + in aqueous environment. Sens. Actuator B 220, 779–787 (2015). https://doi.org/10.1016/j.snb.2015.05.129
- S. Let, P. Samanta, S. Dutta, S.K. Ghosh, A dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(iii) ions in water. Inorg. Chim. Acta 500, 119205 (2020). https://doi.org/10.1016/j.ica.2019.119205
- K.Y. Zhang, G. Zeng, L.X. Sun, Y.H. Xing, F.Y. Bai, Triazine poly(carboxylic acid) metal-organic frameworks and the fluorescent response with lead oxygen clusters: [Pb7(COO)12X2] by halogen tuning (X = Cl, Br, or I). Inorg. Chem. 58(23), 15898–15908 (2019). https://doi.org/10.1021/acs.inorgchem.9b02365
- Y. Sun, N. Zhang, Q.L. Guan, C.H. Liu, B. Li et al., Sensing of Fe3+ and Cr2O72– in water and white light: synthesis, characterization, and fluorescence properties of a crystalline bismuth-1,3,5-benzenetricarboxylic acid framework. Cryst. Growth Des. 19(12), 7217–7229 (2019). https://doi.org/10.1021/acs.cgd.9b01098
- A. Khatun, D.K. Panda, N. Sayresmith, M.G. Walter, S. Saha, Thiazolothiazole-based luminescent metal-organic frameworks with ligand-to-ligand energy transfer and Hg(2 +)-sensing capabilities. Inorg. Chem. 58(19), 12707–12715 (2019). https://doi.org/10.1021/acs.inorgchem.9b01595
- E.I. Koshevoy, D.G. Samsonenko, A.S. Berezin, V.P. Fedin, Metal-organic coordination polymers formed from γ-cyclodextrin and divalent metal ions. Eur. J. Inorg. Chem. 2019(39–40), 4321–4327 (2019). https://doi.org/10.1002/ejic.201900398
- W. Chen, J.Y. Wang, C. Chen, Q. Yue, H.M. Yuan, J.S. Chen, S.N. Wang, Photoluminescent metal–organic polymer constructed from trimetallic clusters and mixed carboxylates. Inorg. Chem. 42, 944–946 (2002). https://doi.org/10.1021/ic025871j
- K. Wu, J. Hu, X. Cheng, J. Li, C. Zhou, A superior luminescent metal-organic framework sensor for sensing trace Al3+ and picric acid via disparate charge transfer behaviors. J. Lumines. 219, 116908 (2020). https://doi.org/10.1016/j.jlumin.2019.116908
- J. Ni, K.J. Wei, Y. Min, Y. Chen, S. Zhan, D. Li, Y. Liu, Copper(i) coordination polymers of 2,2′-dipyridylamine derivatives: syntheses, structures, and luminescence. Dalton Trans. 41(17), 5280–5293 (2012). https://doi.org/10.1039/c2dt12032a
- P.F. Zhang, G.P. Yang, G.P. Li, F. Yang, W.N. Liu, J.Y. Li, Y.Y. Wang, Series of water-stable lanthanide metal-organic frameworks based on carboxylic acid imidazolium chloride: tunable luminescent emission and sensing. Inorg. Chem. 58(20), 13969–13978 (2019). https://doi.org/10.1021/acs.inorgchem.9b01954
- J. Ma, L.M. Zhao, C.Y. Jin, B. Yan, Luminescence responsive composites of rare earth metal-organic frameworks covalently linking microsphere resin. Dyes Pigm. 173, 107883 (2020). https://doi.org/10.1016/j.dyepig.2019.107883
- L. Shi, J. Wang, L. Zhou, Y. Chen, J. Yan, C. Dai, Facile in situ preparation of MAPbBr 3@UiO-66 composites for information encryption and decryption. J. Solid State Chem. 282, 121062 (2020). https://doi.org/10.1016/j.jssc.2019.121062
- X. Chen, H. Gao, M. Yang, L. Xing, W. Dong, A. Li, H. Zheng, G. Wang, Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials. Energy Storage Mater. 18, 349–355 (2019). https://doi.org/10.1016/j.ensm.2018.08.015
- F. Asadi, S.N. Azizi, M.J. Chaichi, Green synthesis of fluorescent PEG-ZnS QDs encapsulated into co-MOFs as an effective sensor for ultrasensitive detection of copper ions in tap water. Mater. Sci. Eng. C 105, 110058 (2019). https://doi.org/10.1016/j.msec.2019.110058
- J.F. Feng, S.Y. Gao, J. Shi, T.F. Liu, R. Cao, C-QDs@UiO-66-(COOH)2 composite film via electrophoretic deposition for temperature sensing. Inorg. Chem. 57(5), 2447–2454 (2018). https://doi.org/10.1021/acs.inorgchem.7b02595
- L.N. Wang, Y.H. Zhang, S. Jiang, Z.Z. Liu, Three coordination polymers based on 3-(3′,5′-dicarboxylphenoxy)phthalic acid and auxiliary n-donor ligands: syntheses, structures, and highly selective sensing for nitro explosives and Fe3+ ions. CrystEngComm 21(31), 4557–4567 (2019). https://doi.org/10.1039/C9CE00542K
- X.Y. Yao, Q. Wang, Q. Liu, M. Pang, X.M. Du, B. Zhao, Y. Li, W.J. Ruan, Ultrasensitive assay of alkaline phosphatase based on the fluorescent response difference of the metal-organic framework sensor. ACS Omega 5(1), 712–717 (2020). https://doi.org/10.1021/acsomega.9b03337
- S.M. Sheta, S.M. El-Sheikh, M.M. Abd-Elzaher, S.R. Salem, H.A. Moussa, R.M. Mohamed, I.A. Mkhalid, A novel biosensor for early diagnosis of liver cancer cases using smart nano-magnetic metal–organic framework. Appl. Organomet. Chem. 33(12), e5249 (2019). https://doi.org/10.1002/aoc.5249
- S.M. Sheta, S.M. El-Sheikh, M.M. Abd-Elzaher, Promising photoluminescence optical approach for triiodothyronine hormone determination based on smart copper metal-organic framework nanoparticles. Appl. Organomet. Chem. 33(9), e5069 (2019). https://doi.org/10.1002/aoc.5069
- S. Xian, H.L. Chen, W.L. Feng, X.Z. Yang, Y.Q. Wang, B.X. Li, Eu(iii) doped zinc metal organic framework material and its sensing detection for nitrobenzene. J. Solid State Chem. 280, 120984 (2019). https://doi.org/10.1016/j.jssc.2019.120984
- X. Qiao, Z. Ma, L. Si, W. Ding, G. Xu, Doping metal-organic framework with a series of europium-antenna cations: obviously improved spectral response for O2 gas via long-range energy roll-back procedure. Sens. Actuator B 299, 126978 (2019). https://doi.org/10.1016/j.snb.2019.126978
- X.L. Zhang, S.M. Li, S. Chen, F. Feng, J.Q. Bai, J.R. Li, Ammoniated MOF-74(Zn) derivatives as luminescent sensor for highly selective detection of tetrabromobisphenol a. Ecotox. Environ. Safe. 187, 109821 (2020). https://doi.org/10.1016/j.ecoenv.2019.109821
- A. Sousaraei, C. Queiros, F.G. Moscoso, T. Lopes-Costa, J.M. Pedrosa, A.M.G. Silva, L. Cunha-Silva, J. Cabanillas-Gonzalez, Subppm amine detection via absorption and luminescence turn-on caused by ligand exchange in metal organic frameworks. Anal. Chem. 91(24), 15853–15859 (2019). https://doi.org/10.1021/acs.analchem.9b04291
- S. Jensen, K. Tan, W.P. Lustig, D.S. Kilin, J. Li, Y.J. Chabal, T. Thonhauser, Structure-driven photoluminescence enhancement in a Zn-based metal–organic framework. Chem. Mater. 31(19), 7933–7940 (2019). https://doi.org/10.1021/acs.chemmater.9b02056
- K.Y. Wu, L. Qin, C. Fan, S.L. Cai, T.T. Zhang, W.H. Chen, X.Y. Tang, J.X. Chen, Sequential and recyclable sensing of Fe(3 +) and ascorbic acid in water with a terbium(iii)-based metal-organic framework. Dalton Trans. 48(24), 8911–8919 (2019). https://doi.org/10.1039/C9DT00871C
- W. Hua, T. Zhang, M. Wang, Y. Zhu, X. Wang, Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for effective recovery of terbium(iii) and europium(iii) ions and their photoluminescence performances. Chem. Eng. J. 370, 729–741 (2019). https://doi.org/10.1016/j.cej.2019.03.255
- T. Gao, B.X. Dong, Y. Sun, W.L. Liu, Y.L. Teng, Fabrication of a water-stable luminescent mof with an open lewis basic triazolyl group for the high-performance sensing of acetone and Fe3+ ions. J. Mater. Sci. 54(15), 10644–10655 (2019). https://doi.org/10.1007/s10853-019-03638-x
- Z.Q. Liu, Y. Zhao, X.H. Liu, X.D. Zhang, Y. Liu, W.Y. Sun, Synthesis, crystal structure and fluorescent sensing property of metal–organic frameworks with 1,3-di(1 h-imidazol-4-yl)benzene and 1,4-phenylenediacetate. Polyhedron 167, 33–38 (2019). https://doi.org/10.1016/j.poly.2019.04.007
- F. Zhang, J. Li, Z. Zhao, F. Wang, Y. Pu, H. Cheng, Mixed-lnmofs with tunable color and white light emission together with multi-functional fluorescence detection. J. Solid State Chem. 280, 120972 (2019). https://doi.org/10.1016/j.jssc.2019.120972
- C.Y. Sun, X.L. Wang, X. Zhang, C. Qin, P. Li et al., Efficient and tunable white-light emission of metal-organic frameworks by iridium-complex encapsulation. Nat. Commun. 4, 2717 (2013). https://doi.org/10.1038/ncomms3717
- X. Wang, Z. Li, W. Ying, D. Chen, P. Li, Z. Deng, X. Peng, Blue metal–organic framework encapsulated denatured r-phycoerythrin proteins for a white-light-emitting thin film. J. Mater. Chem. C 8(1), 240–246 (2020). https://doi.org/10.1039/C9TC05342E
- J. Othong, J. Boonmak, V. Promarak, F. Kielar, S. Youngme, Sonochemical synthesis of carbon dots/lanthanoid mofs hybrids for white light-emitting diodes with high color rendering. ACS Appl. Mater. Interfaces 11(47), 44421–44429 (2019). https://doi.org/10.1021/acsami.9b13814
- Y. Liu, M. Pan, Q.Y. Yang, L. Fu, K. Li, S.C. Wei, C.Y. Su, Dual-emission from a single-phase Eu–Ag metal–organic framework: an alternative way to get white-light phosphor. Chem. Mater. 24(10), 1954–1960 (2012). https://doi.org/10.1021/cm3008254
- J. Liu, Y. Zhao, X. Li, J. Wu, Y. Han, X. Zhang, Y. Xu, Dual-emissive CsPbBr 3@Eu-BTC composite for self-calibrating temperature sensing application. Cryst. Growth Des. 20(1), 454–459 (2019). https://doi.org/10.1021/acs.cgd.9b01374
- Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu et al., A luminescent mixed-lanthanide metal-organic framework thermometer. J. Am. Chem. Soc. 134(9), 3979–3982 (2012). https://doi.org/10.1021/ja2108036
- V. Rubio-Gimenez, S. Tatay, F. Volatron, F.J. Martinez-Casado, C. Marti-Gastaldo, E. Coronado, High-quality metal-organic framework ultrathin films for electronically active interfaces. J. Am. Chem. Soc. 138(8), 2576–2584 (2016). https://doi.org/10.1021/jacs.5b09784
- I.F. Chen, C.F. Lu, W.F. Su, Highly conductive 2D metal–organic framework thin film fabricated by liquid–liquid interfacial reaction using one-pot-synthesized benzenehexathiol. Langmuir 34(51), 15754–15762 (2018). https://doi.org/10.1021/acs.langmuir.8b03938
- S. Goswami, I. Hod, J.D. Duan, C.W. Kung, M. Rimoldi et al., Anisotropic redox conductivity within a metal-organic framework material. J. Am. Chem. Soc. 141(44), 17696–17702 (2019). https://doi.org/10.1021/jacs.9b07658
- H. Liu, H. Wang, T. Chu, M. Yu, Y. Yang, An electrodeposited lanthanide mof thin film as a luminescent sensor for carbonate detection in aqueous solution. J. Mater. Chem. C 2(41), 8683–8690 (2014). https://doi.org/10.1039/C4TC01551G
- H. Liu, T. Chu, Z. Rao, S. Wang, Y. Yang, W.T. Wong, The tunable white-light and multicolor emission in an electrodeposited thin film of mixed lanthanide coordination polymers. Adv. Opt. Mater. 3(11), 1545–1550 (2015). https://doi.org/10.1002/adom.201500203
- J.L. Hauser, M. Tso, K. Fitchmun, S.R.J. Oliver, Anodic electrodeposition of several metal organic framework thin films on indium tin oxide glass. Cryst. Growth Des. 19(4), 2358–2365 (2019). https://doi.org/10.1021/acs.cgd.9b00054
- N. Campagnol, T.R.C. Van Assche, M. Li, L. Stappers, M. Dincă et al., On the electrochemical deposition of metal–organic frameworks. J. Mater. Chem. A 4(10), 3914–3925 (2016). https://doi.org/10.1039/C5TA10782B
- E. Shi, X. Zou, J. Liu, H. Lin, F. Zhang et al., Electrochemical fabrication of copper-containing metal-organic framework films as amperometric detectors for bromate determination. Dalton Trans. 45(18), 7728–7736 (2016). https://doi.org/10.1039/C5DT04229A
- F. Zhang, T. Zhang, X. Zou, X. Liang, G. Zhu, F. Qu, Electrochemical synthesis of metal organic framework films with proton conductive property. Solid State Ionics 301, 125–132 (2017). https://doi.org/10.1016/j.ssi.2017.01.022
- I. Hod, W. Bury, D.M. Karlin, P. Deria, C.W. Kung et al., Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition. Adv. Mater. 26(36), 6295–6300 (2014). https://doi.org/10.1002/adma.201401940
- J.F. Feng, X. Yang, S.Y. Gao, J. Shi, R. Cao, Facile and rapid growth of nanostructured ln-BTC metal-organic framework films by electrophoretic deposition for explosives sensing in gas and Cr (3 +) detection in solution. Langmuir 33(50), 14238–14243 (2017). https://doi.org/10.1021/acs.langmuir.7b03170
- J.F. Feng, S.Y. Gao, T.F. Liu, J. Shi, R. Cao, Preparation of dual-emitting ln@UiO-66-hybrid films via electrophoretic deposition for ratiometric temperature sensing. ACS Appl. Mater. Interfaces 10(6), 6014–6023 (2018). https://doi.org/10.1021/acsami.7b17947
- S. Li, W. Shi, G. Lu, S. Li, S.C. Loo, F. Huo, Unconventional nucleation and oriented growth of ZIF-8 crystals on non-polar surface. Adv. Mater. 24(44), 5954–5958 (2012). https://doi.org/10.1002/adma.201201996
- D.H. Chen, R. Haldar, B.L. Neumeier, Z.H. Fu, C. Feldmann, C. Wöll, E. Redel, Tunable emission in heteroepitaxial ln-surmofs. Adv. Funct. Mater. 29(37), 1903086 (2019). https://doi.org/10.1002/adfm.201903086
- Y. Wang, G. Zhang, F. Zhang, T. Chu, Y. Yang, A novel lanthanide mof thin film: the highly performance self-calibrating luminescent sensor for detecting formaldehyde as an illegal preservative in aquatic product. Sens. Actuator B 251, 667–673 (2017). https://doi.org/10.1016/j.snb.2017.05.063
- S.E. Crawford, K.J. Kim, Y. Yu, P.R. Ohodnicki, Rapid, selective, ambient growth and optimization of copper benzene-1,3,5-tricarboxylate (Cu–BTC) metal–organic framework thin films on a conductive metal oxide. Cryst. Growth Des. 18(5), 2924–2931 (2018). https://doi.org/10.1021/acs.cgd.8b00016
- G.M. Segovia, J.S. Tuninetti, S. Moya, A.S. Picco, M.R. Ceolín, O. Azzaroni, M. Rafti, Cysteamine-modified ZIF-8 colloidal building blocks: direct assembly of nanoparticulate mof films on gold surfaces via thiol chemistry. Mater. Today Chem. 8, 29–35 (2018). https://doi.org/10.1016/j.mtchem.2018.02.002
- M.A. Gordillo, D.K. Panda, S. Saha, Efficient mof-sensitized solar cells featuring solvothermally grown [100]-oriented pillared porphyrin framework-11 films on zno/fto surfaces. ACS Appl. Mater. Interfaces 11(3), 3196–3206 (2019). https://doi.org/10.1021/acsami.8b17807
- Y. Wang, F. Zhang, Z. Fang, M. Yu, Y. Yang, K.L. Wong, Tb(iii) postsynthetic functional coordination polymer coatings on ZnO micronanoarrays and their application in small molecule sensing. J. Mater. Chem. C 4(36), 8466–8472 (2016). https://doi.org/10.1039/C6TC01511E
- Y.M. Zhu, C.H. Zeng, T.S. Chu, H.M. Wang, Y.Y. Yang, Y.X. Tong, C.Y. Su, W.T. Wong, A novel highly luminescent lnmof film: a convenient sensor for Hg2+ detecting. J. Mater. Chem. A 1(37), 11312–11319 (2013). https://doi.org/10.1039/c3ta11925d
- J. Zhang, D. Yue, T. Xia, Y. Cui, Y. Yang, G. Qian, A luminescent metal-organic framework film fabricated on porous Al2O3 substrate for sensitive detecting ammonia. Microporous Mesoporous Mat. 253, 146–150 (2017). https://doi.org/10.1016/j.micromeso.2017.06.053
- V. Rubio-Giménez, M. Galbiati, J. Castells-Gil, N. Almora-Barrios, J. Navarro-Sánchez et al., Bottom-up fabrication of semiconductive metal-organic framework ultrathin films. Adv. Mater. 30(10), 1704291 (2018). https://doi.org/10.1002/adma.201704291
- Y.N. Li, S. Wang, Y. Zhou, X.J. Bai, G.S. Song et al., Fabrication of metal-organic framework and infinite coordination polymer nanosheets by the spray technique. Langmuir 33(4), 1060–1065 (2017). https://doi.org/10.1021/acs.langmuir.6b04353
- X.J. Bai, D. Chen, L.L. Li, L. Shao, W.X. He et al., Fabrication of mof thin films at miscible liquid-liquid interface by spray method. ACS Appl. Mater. Interfaces 10(31), 25960–25966 (2018). https://doi.org/10.1021/acsami.8b09812
- J.U. Balderas, D. Navarro, V. Vargas, M.M. Tellez-Cruz, S. Carmona, C. Falcony, Ultrasonic spray deposition as a new route to luminescent MOF film synthesis. J. Lumines. 212, 322–327 (2019). https://doi.org/10.1016/j.jlumin.2019.04.051
- B.H. Wang, B. Yan, Tunable multi-color luminescence and white emission in lanthanide ion functionalized polyoxometalate-based metal–organic frameworks hybrids and fabricated thin films. J. Alloy. Compd. 777, 415–422 (2019). https://doi.org/10.1016/j.jallcom.2018.10.406
- B.H. Wang, B. Yan, Polyoxometalate-based metal–organic framework nenu-5 hybrid materials for photoluminescence tuning by introducing lanthanide ions and their functionalized soft ionogel/thin film. CrystEngComm 21(7), 1186–1192 (2019). https://doi.org/10.1039/C8CE01979G
- K.M. Ishihara, F. Tian, Semiconducting langmuir-blodgett films of porphyrin paddle-wheel frameworks for photoelectric conversion. Langmuir 34(51), 15689–15699 (2018). https://doi.org/10.1021/acs.langmuir.8b03236
- J. Li, X. Yuan, Y.N. Wu, X. Ma, F. Li, B. Zhang, Y. Wang, Z. Lei, Z. Zhang, From powder to cloth: facile fabrication of dense MOF-76(Tb) coating onto natural silk fiber for feasible detection of copper ions. Chem. Eng. J. 350, 637–644 (2018). https://doi.org/10.1016/j.cej.2018.05.144
- H. Wang, S. Han, J. Wang, L. Dun, B. Zhang, X. Chen, W. Li, C. Li, Crystal structure, thermal behavior and luminescence of a new manganese(ii) coordination polymer constructed with 1, 10-phenanthroline-5, 6-dione and 2, 5-dihydroxyl-1, 4-terephthalic acid. J. Mol. Struct. 1204, 127466 (2020). https://doi.org/10.1016/j.molstruc.2019.127466
- Y. Sun, B.X. Dong, W.L. Liu, An adjustable dual-emission fluorescent metal-organic framework: effective detection of multiple metal ions, nitro-based molecules and DMA. Spectrochim. Acta A 223, 117283 (2019). https://doi.org/10.1016/j.saa.2019.117283
- R.Q. Miao, Q.Q. Zhou, S.Q. Wang, X.Y. Cheng, D.F. Wang, R.B. Huang, Solvent-induced Zn(ii) coordination polymers with 1, 3, 5-benzenetricarboxylic acid. J. Mol. Struct. 1184, 219–224 (2019). https://doi.org/10.1016/j.molstruc.2019.02.015
- X. Liu, B. Fu, L. Li, Y.F. Jian, S. Shu, Synthesis, crystal structure and photoluminescence of a three-dimensional zinc coordination compound with nbo-type topology. Acta Crystallogr. C 75(Pt 3), 277–282 (2019). https://doi.org/10.1107/S205322961900189X
- W. Xu, H. Chen, Z. Xia, C. Ren, J. Han et al., A robust Tb(iii)-MOF for ultrasensitive detection of trinitrophenol: matched channel dimensions and strong host-guest interactions. Inorg. Chem. 58(12), 8198–8207 (2019). https://doi.org/10.1021/acs.inorgchem.9b01008
- X. Shi, Y. Fan, J. Xu, H. Qi, J. Chai et al., Layer-structured lanthanide coordination polymers constructed from 3,5-bis(3,5-dicarboxylphenyl)-pyridine ligand as fluorescent probe for nitroaromatics and metal ions. Inorg. Chim. Acta 483, 473–479 (2018). https://doi.org/10.1016/j.ica.2018.08.050
- L.N. Zheng, F.H. Wei, H.M. Hu, C. Bai, X.L. Yang, X. Wang, G. Xue, Lanthanide coordination polymers constructed from the asymmetrical n-heterocyclic rigid carboxylate: synthesis, crystal structures, luminescence properties and magnetic properties. Polyhedron 161, 47–55 (2019). https://doi.org/10.1016/j.poly.2018.12.030
- R.R.F. Fonseca, R.D.L. Gaspar, I.M. Raimundo, P.P. Luz, Photoluminescent Tb3+-based metal-organic framework as a sensor for detection of methanol in ethanol fuel. J. Rare Earths 37(3), 225–231 (2019). https://doi.org/10.1016/j.jre.2018.07.006
- R.F. Mendes, D. Ananias, L.D. Carlos, J. Rocha, F.A.A. Paz, Photoluminescent lanthanide-organic framework based on a tetraphosphonic acid linker. Cryst. Growth Des. 17(10), 5191–5199 (2017). https://doi.org/10.1021/acs.cgd.7b00667
- M. Kumar, L.H. Wu, M. Kariem, A. Franconetti, H.N. Sheikh, S.J. Liu, S.C. Sahoo, A. Frontera, A series of lanthanide-based metal-organic frameworks derived from furan-2,5-dicarboxylate and glutarate: structure-corroborated density functional theory study, magnetocaloric effect, slow relaxation of magnetization, and luminescent properties. Inorg. Chem. 58(12), 7760–7774 (2019). https://doi.org/10.1021/acs.inorgchem.9b00219
- S.G.F. de Assis, G.C. Santos, A.B.S. Santos, E.H.L. Falcão, R. da Silva Viana, S.A. Junior, Design of new europium-doped luminescent mofs for UV radiation dosimetric sensing. J. Solid State Chem. 276, 309–318 (2019). https://doi.org/10.1016/j.jssc.2019.05.008
- F.H. Zhao, W.Y. Guo, S.Y. Li, Z.L. Li, X.Q. Yan, X.M. Jia, L.W. Huang, J.M. You, Two entangled photoluminescent mofs of naphthalenedisulfonate and bis(benzimidazole) ligands for selective sensing of Fe3+. J. Solid State Chem. 278, 120926 (2019). https://doi.org/10.1016/j.jssc.2019.120926
- Z. Dou, J. Yu, Y. Cui, Y. Yang, Z. Wang, D. Yang, G. Qian, Luminescent metal-organic framework films as highly sensitive and fast-response oxygen sensors. J. Am. Chem. Soc. 136(15), 5527–5530 (2014). https://doi.org/10.1021/ja411224j
- B. Yang, X. Li, J. An, H. Zhang, M. Liu, Y. Cheng, B. Ding, Y. Li, Designing an “off-on” fluorescence sensor based on cluster-based Ca(ii)-metal-organic frameworks for detection of l-cysteine in biological fluids. Langmuir 35(30), 9885–9895 (2019). https://doi.org/10.1021/acs.langmuir.9b01479
- T. Mondal, D. Haldar, A. Ghosh, U.K. Ghorai, S.K. Saha, A MOF functionalized with CdTe quantum dots as an efficient white light emitting phosphor material for applications in displays. New J. Chem. 44(1), 55–63 (2020). https://doi.org/10.1039/C9NJ04304G
- X.Y. Liu, K. Xing, Y. Li, C.K. Tsung, J. Li, Three models to encapsulate multicomponent dyes into nanocrystal pores: a new strategy for generating high-quality white light. J. Am. Chem. Soc. 141(37), 14807–14813 (2019). https://doi.org/10.1021/jacs.9b07236
- J.X. Li, Q.L. Guan, Y. Wang, Z.X. You, Y.H. Xing, F.Y. Bai, L.X. Sun, A lanthanide–organic crystalline framework material encapsulating 1,3,6,8-tetrakis(p-benzoic acid)pyrene: selective sensing of Fe3+, Cr2O72− and colchicine and white-light emission. New J. Chem. 44(4), 1446–1454 (2020). https://doi.org/10.1039/C9NJ05175A
- Y.H. Luo, A.D. Xie, W.C. Chen, D. Shen, D.E. Zhang, Z.W. Tong, C.S. Lee, Multifunctional anionic indium–organic frameworks for organic dye separation, white-light emission and dual-emitting Fe3+ sensing. J. Mater. Chem. C 7(47), 14897–14903 (2019). https://doi.org/10.1039/C9TC05113A
- Y. Tang, T. Xia, T. Song, Y. Cui, Y. Yang, G. Qian, Efficient energy transfer within dyes encapsulated metal–organic frameworks to achieve high performance white light-emitting diodes. Adv. Opt. Mater. 6(24), 1800968 (2018). https://doi.org/10.1002/adom.201800968
- Y.P. Xia, C.X. Wang, L.C. An, D.S. Zhang, T.L. Hu, J. Xu, Z. Chang, X.H. Bu, Utilizing an effective framework to dye energy transfer in a carbazole-based metal–organic framework for high performance white light emission tuning. Inorg. Chem. Front. 5(11), 2868–2874 (2018). https://doi.org/10.1039/C8QI00747K
- A. Wang, Y.L. Hou, F. Kang, F. Lyu, Y. Xiong et al., Rare earth-free composites of carbon dots/metal–organic frameworks as white light emitting phosphors. J. Mater. Chem. C 7(8), 2207–2211 (2019). https://doi.org/10.1039/C8TC04171G
References
H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev. 112(2), 673–674 (2012). https://doi.org/10.1021/cr300014x
J. Zheng, X. Cui, Q. Yang, Q. Ren, Y. Yang, H. Xing, Shaping of ultrahigh-loading mof pellet with a strongly anti-tearing binder for gas separation and storage. Chem. Eng. J. 354, 1075–1082 (2018). https://doi.org/10.1016/j.cej.2018.08.119
A.H. Chughtai, N. Ahmad, H.A. Younus, A. Laypkov, F. Verpoort, Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 44(19), 6804–6849 (2015). https://doi.org/10.1039/C4CS00395K
C. Wang, F.F. Liu, Z. Tan, Y.M. Chen, W.C. Hu, X.H. Xia, Fabrication of bio-inspired 2d mofs/paa hybrid membrane for asymmetric ion transport. Adv. Funct. Mater. 30(9), 1908804 (2019). https://doi.org/10.1002/adfm.201908804
M. Ko, L. Mendecki, K.A. Mirica, Conductive two-dimensional metal-organic frameworks as multifunctional materials. Chem. Commun. 54(57), 7873–7891 (2018). https://doi.org/10.1039/C8CC02871K
P.I. Scheurle, A. Mahringer, A.C. Jakowetz, P. Hosseini, A.F. Richter, G. Wittstock, D.D. Medina, T. Bein, A highly crystalline anthracene-based mof-74 series featuring electrical conductivity and luminescence. Nanoscale 11(43), 20949–20955 (2019). https://doi.org/10.1039/C9NR05431F
V. Stavila, A.A. Talin, M.D. Allendorf, Mof-based electronic and opto-electronic devices. Chem. Soc. Rev. 43(16), 5994–6010 (2014). https://doi.org/10.1039/C4CS00096J
X. Deng, J.Y. Hu, J. Luo, W.M. Liao, J. He, Conductive metal-organic frameworks: Mechanisms, design strategies and recent advances. Top Curr. Chem. 378(2), 27 (2020). https://doi.org/10.1007/s41061-020-0289-5
C.W. Kung, P.C. Han, C.H. Chuang, K.C.W. Wu, Electronically conductive metal–organic framework-based materials. APL Mater. 7(11), 110902 (2019). https://doi.org/10.1063/1.5125487
S.K. Bhardwaj, N. Bhardwaj, R. Kaur, J. Mehta, A.L. Sharma, K.H. Kim, A. Deep, An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof. J. Mater. Chem. A 6(31), 14992–15009 (2018). https://doi.org/10.1039/C8TA04220A
P. Li, B. Wang, Recent development and application of conductive mofs. Isr. J. Chem. 58(9–10), 1010–1018 (2018). https://doi.org/10.1002/ijch.201800078
E. Castaldelli, K.D.G. Imalka Jayawardena, D.C. Cox, G.J. Clarkson, R.I. Walton, L. Le-Quang, J. Chauvin, S.R.P. Silva, G.J. Demets, Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework. Nat. Commun. 8(1), 2139 (2017). https://doi.org/10.1038/s41467-017-02215-7
Z.L. Wu, C.H. Wang, B. Zhao, J. Dong, F. Lu et al., A semi-conductive copper-organic framework with two types of photocatalytic activity. Angew. Chem. Int. Ed. 55(16), 4938–4942 (2016). https://doi.org/10.1002/anie.201508325
X. Liu, M. Kozlowska, T. Okkali, D. Wagner, T. Higashino et al., Photoconductivity in metal-organic framework (MOF) thin films. Angew. Chem. Int. Ed. 58(28), 9590–9595 (2019). https://doi.org/10.1002/anie.201904475
X. Yan, X. Qiu, Z. Yan, H. Li, Y. Gong, J. Lin, Configurations, band structures and photocurrent responses of 4-(4-oxopyridin-1(4 h)-yl)phthalic acid and its metal-organic frameworks. J. Solid State Chem. 237, 313–322 (2016). https://doi.org/10.1016/j.jssc.2016.02.041
K. Leong, M.E. Foster, B.M. Wong, E.D. Spoerke, D. Van Gough, J.C. Deaton, M.D. Allendorf, Energy and charge transfer by donor–acceptor pairs confined in a metal–organic framework: a spectroscopic and computational investigation. J Mater. Chem. A 2(10), 3389–3398 (2014). https://doi.org/10.1039/C3TA14328G
S. Wang, T. Kitao, N. Guillou, M. Wahiduzzaman, C. Martineau-Corcos et al., A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nat. Commun. 9(1), 1660 (2018). https://doi.org/10.1038/s41467-018-04034-w
A. Mohammadpour, S. Farsinezhad, B.D. Wiltshire, K. Shankar, Majority carrier transport in single crystal rutile nanowire arrays. Phys. Status Solidi (RRL) Rapid Res. Lett. 8(6), 512–516 (2014). https://doi.org/10.1002/pssr.201308296
C.C. Chueh, C.I. Chen, Y.A. Su, H. Konnerth, Y.J. Gu, C.W. Kung, K.C.W. Wu, Harnessing mof materials in photovoltaic devices: recent advances, challenges, and perspectives. J. Mater. Chem. A 7(29), 17079–17095 (2019). https://doi.org/10.1039/C9TA03595H
R. Kaur, A. Rana, R.K. Singh, V.A. Chhabra, K.H. Kim, A. Deep, Efficient photocatalytic and photovoltaic applications with nanocomposites between CdTe QDs and an NTU-9 MOF. RSC Adv. 7(46), 29015–29024 (2017). https://doi.org/10.1039/C7RA04125J
W. Zhang, W. Li, X. He, L. Zhao, H. Chen et al., Dendritic Fe-based polyoxometalates @ metal–organic framework (MOFs) combined with ZnO as a novel photoanode in solar cells. J. Mater. Sci.: Mater. Electron. 29(2), 1623–1629 (2017). https://doi.org/10.1007/s10854-017-8073-1
R. Kaur, K.H. Kim, A. Deep, A convenient electrolytic assembly of graphene-mof composite thin film and its photoanodic application. Appl. Surf. Sci. 396, 1303–1309 (2017). https://doi.org/10.1016/j.apsusc.2016.11.150
J. Liu, W. Zhou, J. Liu, I. Howard, G. Kilibarda et al., Photoinduced charge-carrier generation in epitaxial mof thin films: high efficiency as a result of an indirect electronic band gap? Angew. Chem. Int. Ed. 54(25), 7441–7445 (2015). https://doi.org/10.1002/anie.201501862
L. Li, H. Zhang, C. Liu, P. Liang, N. Mitsuzaki, Z. Chen, Effect of co-based metal–organic framework prepared by an in situ growth method on the photoelectrochemical performance of electrodeposited hematite photoanode. Energy Technol. 7(5), 1801069 (2019). https://doi.org/10.1002/ente.201801069
Z. Jiao, J. Zheng, C. Feng, Z. Wang, X. Wang, G. Lu, Y. Bi, Fe/w co-doped BiVO4 photoanodes with a metal-organic framework cocatalyst for improved photoelectrochemical stability and activity. Chemsuschem 9(19), 2824–2831 (2016). https://doi.org/10.1002/cssc.201600761
W. Zhang, R. Li, X. Zhao, Z. Chen, A.W. Law, K. Zhou, A cobalt-based metal-organic framework as cocatalyst on bivo4 photoanode for enhanced photoelectrochemical water oxidation. Chemsuschem 11(16), 2710–2716 (2018). https://doi.org/10.1002/cssc.201801162
Q. Zhanga, H. Wanga, Y. Donga, J. Yana, X. Keb, Q. Wua, S. Xue, In situ growth of ultrathin co-mof nanosheets on α-Fe2O3 hematite nanorods for efficient photoelectrochemical water oxidation. Sol. Energy 171, 388–396 (2018). https://doi.org/10.1016/j.solener.2018.06.086
H. Yang, J. Bright, S. Kasani, P. Zheng, T. Musho, B. Chen, L. Huang, N. Wu, Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting. Nano Res. 12(3), 643–650 (2018). https://doi.org/10.1007/s12274-019-2272-4
Y. Dou, J. Zhou, A. Zhou, J.R. Li, Z. Nie, Visible-light responsive mof encapsulation of noble-metal-sensitized semiconductors for high-performance photoelectrochemical water splitting. J. Mater. Chem. A 5(36), 19491–19498 (2017). https://doi.org/10.1039/C7TA06443H
K. Natarajan, A.K. Gupta, S.N. Ansari, M. Saraf, S.M. Mobin, Mixed-ligand-architected 2d Co(ii)-MOF expressing a novel topology for an efficient photoanode for water oxidation using visible light. ACS Appl. Mater. Interfaces 11(14), 13295–13303 (2019). https://doi.org/10.1021/acsami.9b01754
T. Song, L. Zhang, P. Zhang, J. Zeng, T. Wang, A. Alia, H. Zeng, Stable and improved visible-light photocatalytic hydrogen evolution using copper(ii)–organic frameworks: engineering the crystal structures. J. Mater. Chem. A 5, 6013–6018 (2017). https://doi.org/10.1039/C7TA00095B
Z. Wang, H. Liu, S. Wang, Z. Rao, Y. Yang, A luminescent terbium-succinate mof thin film fabricated by electrodeposition for sensing of Cu2 + in aqueous environment. Sens. Actuator B 220, 779–787 (2015). https://doi.org/10.1016/j.snb.2015.05.129
S. Let, P. Samanta, S. Dutta, S.K. Ghosh, A dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(iii) ions in water. Inorg. Chim. Acta 500, 119205 (2020). https://doi.org/10.1016/j.ica.2019.119205
K.Y. Zhang, G. Zeng, L.X. Sun, Y.H. Xing, F.Y. Bai, Triazine poly(carboxylic acid) metal-organic frameworks and the fluorescent response with lead oxygen clusters: [Pb7(COO)12X2] by halogen tuning (X = Cl, Br, or I). Inorg. Chem. 58(23), 15898–15908 (2019). https://doi.org/10.1021/acs.inorgchem.9b02365
Y. Sun, N. Zhang, Q.L. Guan, C.H. Liu, B. Li et al., Sensing of Fe3+ and Cr2O72– in water and white light: synthesis, characterization, and fluorescence properties of a crystalline bismuth-1,3,5-benzenetricarboxylic acid framework. Cryst. Growth Des. 19(12), 7217–7229 (2019). https://doi.org/10.1021/acs.cgd.9b01098
A. Khatun, D.K. Panda, N. Sayresmith, M.G. Walter, S. Saha, Thiazolothiazole-based luminescent metal-organic frameworks with ligand-to-ligand energy transfer and Hg(2 +)-sensing capabilities. Inorg. Chem. 58(19), 12707–12715 (2019). https://doi.org/10.1021/acs.inorgchem.9b01595
E.I. Koshevoy, D.G. Samsonenko, A.S. Berezin, V.P. Fedin, Metal-organic coordination polymers formed from γ-cyclodextrin and divalent metal ions. Eur. J. Inorg. Chem. 2019(39–40), 4321–4327 (2019). https://doi.org/10.1002/ejic.201900398
W. Chen, J.Y. Wang, C. Chen, Q. Yue, H.M. Yuan, J.S. Chen, S.N. Wang, Photoluminescent metal–organic polymer constructed from trimetallic clusters and mixed carboxylates. Inorg. Chem. 42, 944–946 (2002). https://doi.org/10.1021/ic025871j
K. Wu, J. Hu, X. Cheng, J. Li, C. Zhou, A superior luminescent metal-organic framework sensor for sensing trace Al3+ and picric acid via disparate charge transfer behaviors. J. Lumines. 219, 116908 (2020). https://doi.org/10.1016/j.jlumin.2019.116908
J. Ni, K.J. Wei, Y. Min, Y. Chen, S. Zhan, D. Li, Y. Liu, Copper(i) coordination polymers of 2,2′-dipyridylamine derivatives: syntheses, structures, and luminescence. Dalton Trans. 41(17), 5280–5293 (2012). https://doi.org/10.1039/c2dt12032a
P.F. Zhang, G.P. Yang, G.P. Li, F. Yang, W.N. Liu, J.Y. Li, Y.Y. Wang, Series of water-stable lanthanide metal-organic frameworks based on carboxylic acid imidazolium chloride: tunable luminescent emission and sensing. Inorg. Chem. 58(20), 13969–13978 (2019). https://doi.org/10.1021/acs.inorgchem.9b01954
J. Ma, L.M. Zhao, C.Y. Jin, B. Yan, Luminescence responsive composites of rare earth metal-organic frameworks covalently linking microsphere resin. Dyes Pigm. 173, 107883 (2020). https://doi.org/10.1016/j.dyepig.2019.107883
L. Shi, J. Wang, L. Zhou, Y. Chen, J. Yan, C. Dai, Facile in situ preparation of MAPbBr 3@UiO-66 composites for information encryption and decryption. J. Solid State Chem. 282, 121062 (2020). https://doi.org/10.1016/j.jssc.2019.121062
X. Chen, H. Gao, M. Yang, L. Xing, W. Dong, A. Li, H. Zheng, G. Wang, Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials. Energy Storage Mater. 18, 349–355 (2019). https://doi.org/10.1016/j.ensm.2018.08.015
F. Asadi, S.N. Azizi, M.J. Chaichi, Green synthesis of fluorescent PEG-ZnS QDs encapsulated into co-MOFs as an effective sensor for ultrasensitive detection of copper ions in tap water. Mater. Sci. Eng. C 105, 110058 (2019). https://doi.org/10.1016/j.msec.2019.110058
J.F. Feng, S.Y. Gao, J. Shi, T.F. Liu, R. Cao, C-QDs@UiO-66-(COOH)2 composite film via electrophoretic deposition for temperature sensing. Inorg. Chem. 57(5), 2447–2454 (2018). https://doi.org/10.1021/acs.inorgchem.7b02595
L.N. Wang, Y.H. Zhang, S. Jiang, Z.Z. Liu, Three coordination polymers based on 3-(3′,5′-dicarboxylphenoxy)phthalic acid and auxiliary n-donor ligands: syntheses, structures, and highly selective sensing for nitro explosives and Fe3+ ions. CrystEngComm 21(31), 4557–4567 (2019). https://doi.org/10.1039/C9CE00542K
X.Y. Yao, Q. Wang, Q. Liu, M. Pang, X.M. Du, B. Zhao, Y. Li, W.J. Ruan, Ultrasensitive assay of alkaline phosphatase based on the fluorescent response difference of the metal-organic framework sensor. ACS Omega 5(1), 712–717 (2020). https://doi.org/10.1021/acsomega.9b03337
S.M. Sheta, S.M. El-Sheikh, M.M. Abd-Elzaher, S.R. Salem, H.A. Moussa, R.M. Mohamed, I.A. Mkhalid, A novel biosensor for early diagnosis of liver cancer cases using smart nano-magnetic metal–organic framework. Appl. Organomet. Chem. 33(12), e5249 (2019). https://doi.org/10.1002/aoc.5249
S.M. Sheta, S.M. El-Sheikh, M.M. Abd-Elzaher, Promising photoluminescence optical approach for triiodothyronine hormone determination based on smart copper metal-organic framework nanoparticles. Appl. Organomet. Chem. 33(9), e5069 (2019). https://doi.org/10.1002/aoc.5069
S. Xian, H.L. Chen, W.L. Feng, X.Z. Yang, Y.Q. Wang, B.X. Li, Eu(iii) doped zinc metal organic framework material and its sensing detection for nitrobenzene. J. Solid State Chem. 280, 120984 (2019). https://doi.org/10.1016/j.jssc.2019.120984
X. Qiao, Z. Ma, L. Si, W. Ding, G. Xu, Doping metal-organic framework with a series of europium-antenna cations: obviously improved spectral response for O2 gas via long-range energy roll-back procedure. Sens. Actuator B 299, 126978 (2019). https://doi.org/10.1016/j.snb.2019.126978
X.L. Zhang, S.M. Li, S. Chen, F. Feng, J.Q. Bai, J.R. Li, Ammoniated MOF-74(Zn) derivatives as luminescent sensor for highly selective detection of tetrabromobisphenol a. Ecotox. Environ. Safe. 187, 109821 (2020). https://doi.org/10.1016/j.ecoenv.2019.109821
A. Sousaraei, C. Queiros, F.G. Moscoso, T. Lopes-Costa, J.M. Pedrosa, A.M.G. Silva, L. Cunha-Silva, J. Cabanillas-Gonzalez, Subppm amine detection via absorption and luminescence turn-on caused by ligand exchange in metal organic frameworks. Anal. Chem. 91(24), 15853–15859 (2019). https://doi.org/10.1021/acs.analchem.9b04291
S. Jensen, K. Tan, W.P. Lustig, D.S. Kilin, J. Li, Y.J. Chabal, T. Thonhauser, Structure-driven photoluminescence enhancement in a Zn-based metal–organic framework. Chem. Mater. 31(19), 7933–7940 (2019). https://doi.org/10.1021/acs.chemmater.9b02056
K.Y. Wu, L. Qin, C. Fan, S.L. Cai, T.T. Zhang, W.H. Chen, X.Y. Tang, J.X. Chen, Sequential and recyclable sensing of Fe(3 +) and ascorbic acid in water with a terbium(iii)-based metal-organic framework. Dalton Trans. 48(24), 8911–8919 (2019). https://doi.org/10.1039/C9DT00871C
W. Hua, T. Zhang, M. Wang, Y. Zhu, X. Wang, Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for effective recovery of terbium(iii) and europium(iii) ions and their photoluminescence performances. Chem. Eng. J. 370, 729–741 (2019). https://doi.org/10.1016/j.cej.2019.03.255
T. Gao, B.X. Dong, Y. Sun, W.L. Liu, Y.L. Teng, Fabrication of a water-stable luminescent mof with an open lewis basic triazolyl group for the high-performance sensing of acetone and Fe3+ ions. J. Mater. Sci. 54(15), 10644–10655 (2019). https://doi.org/10.1007/s10853-019-03638-x
Z.Q. Liu, Y. Zhao, X.H. Liu, X.D. Zhang, Y. Liu, W.Y. Sun, Synthesis, crystal structure and fluorescent sensing property of metal–organic frameworks with 1,3-di(1 h-imidazol-4-yl)benzene and 1,4-phenylenediacetate. Polyhedron 167, 33–38 (2019). https://doi.org/10.1016/j.poly.2019.04.007
F. Zhang, J. Li, Z. Zhao, F. Wang, Y. Pu, H. Cheng, Mixed-lnmofs with tunable color and white light emission together with multi-functional fluorescence detection. J. Solid State Chem. 280, 120972 (2019). https://doi.org/10.1016/j.jssc.2019.120972
C.Y. Sun, X.L. Wang, X. Zhang, C. Qin, P. Li et al., Efficient and tunable white-light emission of metal-organic frameworks by iridium-complex encapsulation. Nat. Commun. 4, 2717 (2013). https://doi.org/10.1038/ncomms3717
X. Wang, Z. Li, W. Ying, D. Chen, P. Li, Z. Deng, X. Peng, Blue metal–organic framework encapsulated denatured r-phycoerythrin proteins for a white-light-emitting thin film. J. Mater. Chem. C 8(1), 240–246 (2020). https://doi.org/10.1039/C9TC05342E
J. Othong, J. Boonmak, V. Promarak, F. Kielar, S. Youngme, Sonochemical synthesis of carbon dots/lanthanoid mofs hybrids for white light-emitting diodes with high color rendering. ACS Appl. Mater. Interfaces 11(47), 44421–44429 (2019). https://doi.org/10.1021/acsami.9b13814
Y. Liu, M. Pan, Q.Y. Yang, L. Fu, K. Li, S.C. Wei, C.Y. Su, Dual-emission from a single-phase Eu–Ag metal–organic framework: an alternative way to get white-light phosphor. Chem. Mater. 24(10), 1954–1960 (2012). https://doi.org/10.1021/cm3008254
J. Liu, Y. Zhao, X. Li, J. Wu, Y. Han, X. Zhang, Y. Xu, Dual-emissive CsPbBr 3@Eu-BTC composite for self-calibrating temperature sensing application. Cryst. Growth Des. 20(1), 454–459 (2019). https://doi.org/10.1021/acs.cgd.9b01374
Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu et al., A luminescent mixed-lanthanide metal-organic framework thermometer. J. Am. Chem. Soc. 134(9), 3979–3982 (2012). https://doi.org/10.1021/ja2108036
V. Rubio-Gimenez, S. Tatay, F. Volatron, F.J. Martinez-Casado, C. Marti-Gastaldo, E. Coronado, High-quality metal-organic framework ultrathin films for electronically active interfaces. J. Am. Chem. Soc. 138(8), 2576–2584 (2016). https://doi.org/10.1021/jacs.5b09784
I.F. Chen, C.F. Lu, W.F. Su, Highly conductive 2D metal–organic framework thin film fabricated by liquid–liquid interfacial reaction using one-pot-synthesized benzenehexathiol. Langmuir 34(51), 15754–15762 (2018). https://doi.org/10.1021/acs.langmuir.8b03938
S. Goswami, I. Hod, J.D. Duan, C.W. Kung, M. Rimoldi et al., Anisotropic redox conductivity within a metal-organic framework material. J. Am. Chem. Soc. 141(44), 17696–17702 (2019). https://doi.org/10.1021/jacs.9b07658
H. Liu, H. Wang, T. Chu, M. Yu, Y. Yang, An electrodeposited lanthanide mof thin film as a luminescent sensor for carbonate detection in aqueous solution. J. Mater. Chem. C 2(41), 8683–8690 (2014). https://doi.org/10.1039/C4TC01551G
H. Liu, T. Chu, Z. Rao, S. Wang, Y. Yang, W.T. Wong, The tunable white-light and multicolor emission in an electrodeposited thin film of mixed lanthanide coordination polymers. Adv. Opt. Mater. 3(11), 1545–1550 (2015). https://doi.org/10.1002/adom.201500203
J.L. Hauser, M. Tso, K. Fitchmun, S.R.J. Oliver, Anodic electrodeposition of several metal organic framework thin films on indium tin oxide glass. Cryst. Growth Des. 19(4), 2358–2365 (2019). https://doi.org/10.1021/acs.cgd.9b00054
N. Campagnol, T.R.C. Van Assche, M. Li, L. Stappers, M. Dincă et al., On the electrochemical deposition of metal–organic frameworks. J. Mater. Chem. A 4(10), 3914–3925 (2016). https://doi.org/10.1039/C5TA10782B
E. Shi, X. Zou, J. Liu, H. Lin, F. Zhang et al., Electrochemical fabrication of copper-containing metal-organic framework films as amperometric detectors for bromate determination. Dalton Trans. 45(18), 7728–7736 (2016). https://doi.org/10.1039/C5DT04229A
F. Zhang, T. Zhang, X. Zou, X. Liang, G. Zhu, F. Qu, Electrochemical synthesis of metal organic framework films with proton conductive property. Solid State Ionics 301, 125–132 (2017). https://doi.org/10.1016/j.ssi.2017.01.022
I. Hod, W. Bury, D.M. Karlin, P. Deria, C.W. Kung et al., Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition. Adv. Mater. 26(36), 6295–6300 (2014). https://doi.org/10.1002/adma.201401940
J.F. Feng, X. Yang, S.Y. Gao, J. Shi, R. Cao, Facile and rapid growth of nanostructured ln-BTC metal-organic framework films by electrophoretic deposition for explosives sensing in gas and Cr (3 +) detection in solution. Langmuir 33(50), 14238–14243 (2017). https://doi.org/10.1021/acs.langmuir.7b03170
J.F. Feng, S.Y. Gao, T.F. Liu, J. Shi, R. Cao, Preparation of dual-emitting ln@UiO-66-hybrid films via electrophoretic deposition for ratiometric temperature sensing. ACS Appl. Mater. Interfaces 10(6), 6014–6023 (2018). https://doi.org/10.1021/acsami.7b17947
S. Li, W. Shi, G. Lu, S. Li, S.C. Loo, F. Huo, Unconventional nucleation and oriented growth of ZIF-8 crystals on non-polar surface. Adv. Mater. 24(44), 5954–5958 (2012). https://doi.org/10.1002/adma.201201996
D.H. Chen, R. Haldar, B.L. Neumeier, Z.H. Fu, C. Feldmann, C. Wöll, E. Redel, Tunable emission in heteroepitaxial ln-surmofs. Adv. Funct. Mater. 29(37), 1903086 (2019). https://doi.org/10.1002/adfm.201903086
Y. Wang, G. Zhang, F. Zhang, T. Chu, Y. Yang, A novel lanthanide mof thin film: the highly performance self-calibrating luminescent sensor for detecting formaldehyde as an illegal preservative in aquatic product. Sens. Actuator B 251, 667–673 (2017). https://doi.org/10.1016/j.snb.2017.05.063
S.E. Crawford, K.J. Kim, Y. Yu, P.R. Ohodnicki, Rapid, selective, ambient growth and optimization of copper benzene-1,3,5-tricarboxylate (Cu–BTC) metal–organic framework thin films on a conductive metal oxide. Cryst. Growth Des. 18(5), 2924–2931 (2018). https://doi.org/10.1021/acs.cgd.8b00016
G.M. Segovia, J.S. Tuninetti, S. Moya, A.S. Picco, M.R. Ceolín, O. Azzaroni, M. Rafti, Cysteamine-modified ZIF-8 colloidal building blocks: direct assembly of nanoparticulate mof films on gold surfaces via thiol chemistry. Mater. Today Chem. 8, 29–35 (2018). https://doi.org/10.1016/j.mtchem.2018.02.002
M.A. Gordillo, D.K. Panda, S. Saha, Efficient mof-sensitized solar cells featuring solvothermally grown [100]-oriented pillared porphyrin framework-11 films on zno/fto surfaces. ACS Appl. Mater. Interfaces 11(3), 3196–3206 (2019). https://doi.org/10.1021/acsami.8b17807
Y. Wang, F. Zhang, Z. Fang, M. Yu, Y. Yang, K.L. Wong, Tb(iii) postsynthetic functional coordination polymer coatings on ZnO micronanoarrays and their application in small molecule sensing. J. Mater. Chem. C 4(36), 8466–8472 (2016). https://doi.org/10.1039/C6TC01511E
Y.M. Zhu, C.H. Zeng, T.S. Chu, H.M. Wang, Y.Y. Yang, Y.X. Tong, C.Y. Su, W.T. Wong, A novel highly luminescent lnmof film: a convenient sensor for Hg2+ detecting. J. Mater. Chem. A 1(37), 11312–11319 (2013). https://doi.org/10.1039/c3ta11925d
J. Zhang, D. Yue, T. Xia, Y. Cui, Y. Yang, G. Qian, A luminescent metal-organic framework film fabricated on porous Al2O3 substrate for sensitive detecting ammonia. Microporous Mesoporous Mat. 253, 146–150 (2017). https://doi.org/10.1016/j.micromeso.2017.06.053
V. Rubio-Giménez, M. Galbiati, J. Castells-Gil, N. Almora-Barrios, J. Navarro-Sánchez et al., Bottom-up fabrication of semiconductive metal-organic framework ultrathin films. Adv. Mater. 30(10), 1704291 (2018). https://doi.org/10.1002/adma.201704291
Y.N. Li, S. Wang, Y. Zhou, X.J. Bai, G.S. Song et al., Fabrication of metal-organic framework and infinite coordination polymer nanosheets by the spray technique. Langmuir 33(4), 1060–1065 (2017). https://doi.org/10.1021/acs.langmuir.6b04353
X.J. Bai, D. Chen, L.L. Li, L. Shao, W.X. He et al., Fabrication of mof thin films at miscible liquid-liquid interface by spray method. ACS Appl. Mater. Interfaces 10(31), 25960–25966 (2018). https://doi.org/10.1021/acsami.8b09812
J.U. Balderas, D. Navarro, V. Vargas, M.M. Tellez-Cruz, S. Carmona, C. Falcony, Ultrasonic spray deposition as a new route to luminescent MOF film synthesis. J. Lumines. 212, 322–327 (2019). https://doi.org/10.1016/j.jlumin.2019.04.051
B.H. Wang, B. Yan, Tunable multi-color luminescence and white emission in lanthanide ion functionalized polyoxometalate-based metal–organic frameworks hybrids and fabricated thin films. J. Alloy. Compd. 777, 415–422 (2019). https://doi.org/10.1016/j.jallcom.2018.10.406
B.H. Wang, B. Yan, Polyoxometalate-based metal–organic framework nenu-5 hybrid materials for photoluminescence tuning by introducing lanthanide ions and their functionalized soft ionogel/thin film. CrystEngComm 21(7), 1186–1192 (2019). https://doi.org/10.1039/C8CE01979G
K.M. Ishihara, F. Tian, Semiconducting langmuir-blodgett films of porphyrin paddle-wheel frameworks for photoelectric conversion. Langmuir 34(51), 15689–15699 (2018). https://doi.org/10.1021/acs.langmuir.8b03236
J. Li, X. Yuan, Y.N. Wu, X. Ma, F. Li, B. Zhang, Y. Wang, Z. Lei, Z. Zhang, From powder to cloth: facile fabrication of dense MOF-76(Tb) coating onto natural silk fiber for feasible detection of copper ions. Chem. Eng. J. 350, 637–644 (2018). https://doi.org/10.1016/j.cej.2018.05.144
H. Wang, S. Han, J. Wang, L. Dun, B. Zhang, X. Chen, W. Li, C. Li, Crystal structure, thermal behavior and luminescence of a new manganese(ii) coordination polymer constructed with 1, 10-phenanthroline-5, 6-dione and 2, 5-dihydroxyl-1, 4-terephthalic acid. J. Mol. Struct. 1204, 127466 (2020). https://doi.org/10.1016/j.molstruc.2019.127466
Y. Sun, B.X. Dong, W.L. Liu, An adjustable dual-emission fluorescent metal-organic framework: effective detection of multiple metal ions, nitro-based molecules and DMA. Spectrochim. Acta A 223, 117283 (2019). https://doi.org/10.1016/j.saa.2019.117283
R.Q. Miao, Q.Q. Zhou, S.Q. Wang, X.Y. Cheng, D.F. Wang, R.B. Huang, Solvent-induced Zn(ii) coordination polymers with 1, 3, 5-benzenetricarboxylic acid. J. Mol. Struct. 1184, 219–224 (2019). https://doi.org/10.1016/j.molstruc.2019.02.015
X. Liu, B. Fu, L. Li, Y.F. Jian, S. Shu, Synthesis, crystal structure and photoluminescence of a three-dimensional zinc coordination compound with nbo-type topology. Acta Crystallogr. C 75(Pt 3), 277–282 (2019). https://doi.org/10.1107/S205322961900189X
W. Xu, H. Chen, Z. Xia, C. Ren, J. Han et al., A robust Tb(iii)-MOF for ultrasensitive detection of trinitrophenol: matched channel dimensions and strong host-guest interactions. Inorg. Chem. 58(12), 8198–8207 (2019). https://doi.org/10.1021/acs.inorgchem.9b01008
X. Shi, Y. Fan, J. Xu, H. Qi, J. Chai et al., Layer-structured lanthanide coordination polymers constructed from 3,5-bis(3,5-dicarboxylphenyl)-pyridine ligand as fluorescent probe for nitroaromatics and metal ions. Inorg. Chim. Acta 483, 473–479 (2018). https://doi.org/10.1016/j.ica.2018.08.050
L.N. Zheng, F.H. Wei, H.M. Hu, C. Bai, X.L. Yang, X. Wang, G. Xue, Lanthanide coordination polymers constructed from the asymmetrical n-heterocyclic rigid carboxylate: synthesis, crystal structures, luminescence properties and magnetic properties. Polyhedron 161, 47–55 (2019). https://doi.org/10.1016/j.poly.2018.12.030
R.R.F. Fonseca, R.D.L. Gaspar, I.M. Raimundo, P.P. Luz, Photoluminescent Tb3+-based metal-organic framework as a sensor for detection of methanol in ethanol fuel. J. Rare Earths 37(3), 225–231 (2019). https://doi.org/10.1016/j.jre.2018.07.006
R.F. Mendes, D. Ananias, L.D. Carlos, J. Rocha, F.A.A. Paz, Photoluminescent lanthanide-organic framework based on a tetraphosphonic acid linker. Cryst. Growth Des. 17(10), 5191–5199 (2017). https://doi.org/10.1021/acs.cgd.7b00667
M. Kumar, L.H. Wu, M. Kariem, A. Franconetti, H.N. Sheikh, S.J. Liu, S.C. Sahoo, A. Frontera, A series of lanthanide-based metal-organic frameworks derived from furan-2,5-dicarboxylate and glutarate: structure-corroborated density functional theory study, magnetocaloric effect, slow relaxation of magnetization, and luminescent properties. Inorg. Chem. 58(12), 7760–7774 (2019). https://doi.org/10.1021/acs.inorgchem.9b00219
S.G.F. de Assis, G.C. Santos, A.B.S. Santos, E.H.L. Falcão, R. da Silva Viana, S.A. Junior, Design of new europium-doped luminescent mofs for UV radiation dosimetric sensing. J. Solid State Chem. 276, 309–318 (2019). https://doi.org/10.1016/j.jssc.2019.05.008
F.H. Zhao, W.Y. Guo, S.Y. Li, Z.L. Li, X.Q. Yan, X.M. Jia, L.W. Huang, J.M. You, Two entangled photoluminescent mofs of naphthalenedisulfonate and bis(benzimidazole) ligands for selective sensing of Fe3+. J. Solid State Chem. 278, 120926 (2019). https://doi.org/10.1016/j.jssc.2019.120926
Z. Dou, J. Yu, Y. Cui, Y. Yang, Z. Wang, D. Yang, G. Qian, Luminescent metal-organic framework films as highly sensitive and fast-response oxygen sensors. J. Am. Chem. Soc. 136(15), 5527–5530 (2014). https://doi.org/10.1021/ja411224j
B. Yang, X. Li, J. An, H. Zhang, M. Liu, Y. Cheng, B. Ding, Y. Li, Designing an “off-on” fluorescence sensor based on cluster-based Ca(ii)-metal-organic frameworks for detection of l-cysteine in biological fluids. Langmuir 35(30), 9885–9895 (2019). https://doi.org/10.1021/acs.langmuir.9b01479
T. Mondal, D. Haldar, A. Ghosh, U.K. Ghorai, S.K. Saha, A MOF functionalized with CdTe quantum dots as an efficient white light emitting phosphor material for applications in displays. New J. Chem. 44(1), 55–63 (2020). https://doi.org/10.1039/C9NJ04304G
X.Y. Liu, K. Xing, Y. Li, C.K. Tsung, J. Li, Three models to encapsulate multicomponent dyes into nanocrystal pores: a new strategy for generating high-quality white light. J. Am. Chem. Soc. 141(37), 14807–14813 (2019). https://doi.org/10.1021/jacs.9b07236
J.X. Li, Q.L. Guan, Y. Wang, Z.X. You, Y.H. Xing, F.Y. Bai, L.X. Sun, A lanthanide–organic crystalline framework material encapsulating 1,3,6,8-tetrakis(p-benzoic acid)pyrene: selective sensing of Fe3+, Cr2O72− and colchicine and white-light emission. New J. Chem. 44(4), 1446–1454 (2020). https://doi.org/10.1039/C9NJ05175A
Y.H. Luo, A.D. Xie, W.C. Chen, D. Shen, D.E. Zhang, Z.W. Tong, C.S. Lee, Multifunctional anionic indium–organic frameworks for organic dye separation, white-light emission and dual-emitting Fe3+ sensing. J. Mater. Chem. C 7(47), 14897–14903 (2019). https://doi.org/10.1039/C9TC05113A
Y. Tang, T. Xia, T. Song, Y. Cui, Y. Yang, G. Qian, Efficient energy transfer within dyes encapsulated metal–organic frameworks to achieve high performance white light-emitting diodes. Adv. Opt. Mater. 6(24), 1800968 (2018). https://doi.org/10.1002/adom.201800968
Y.P. Xia, C.X. Wang, L.C. An, D.S. Zhang, T.L. Hu, J. Xu, Z. Chang, X.H. Bu, Utilizing an effective framework to dye energy transfer in a carbazole-based metal–organic framework for high performance white light emission tuning. Inorg. Chem. Front. 5(11), 2868–2874 (2018). https://doi.org/10.1039/C8QI00747K
A. Wang, Y.L. Hou, F. Kang, F. Lyu, Y. Xiong et al., Rare earth-free composites of carbon dots/metal–organic frameworks as white light emitting phosphors. J. Mater. Chem. C 7(8), 2207–2211 (2019). https://doi.org/10.1039/C8TC04171G