Controlling the Cassie-to-Wenzel Transition: an Easy Route towards the Realization of Tridimensional Arrays of Biological Objects
Corresponding Author: M.De Spirito
Nano-Micro Letters,
Vol. 6 No. 3 (2014), Article Number: 280-286
Abstract
In this paper we provide evidence that the Cassie-to-Wenzel transition, despite its detrimental effects on the wetting properties of superhydrophobic surfaces, can be exploited as an effective micro-fabrication strategy to obtain highly ordered arrays of biological objects. To this purpose we fabricated a patterned surface wetted in the Cassie state, where we deposited a droplet containing genomic DNA. We observed that, when the droplet wets the surface in the Cassie state, an array of DNA filaments pinned on the top edges between pillars is formed. Conversely, when the Cassie-to-Wenzel transition occurs, DNA can be pinned at different height between pillars. These results open the way to the realization of tridimensional arrays of biological objects.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta Med. 202(1), 1–8 (1997). http://dx.doi.org/10.1007/s004250050096
- T. Wagner, C. Neinhuis and W. Barthlott, “Wettability and contaminability of insect wings as a function of their surface sculptures”, Acta Zoologica. 77(3), 213–225 (1996). http://dx.doi.org/10.1111/j.1463-6395.1996.tb01265.x
- X. M. Li, D. Reinhoudt and M. Crego-Calama, “What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces”, Chem. Soc. Rev. 36(8), 1350–1368 (2007). http://dx.doi.org/10.1039/B602486F
- X. Deng, L. Mammen, Y. Zhao, P. Lellig, K. Müllen, C. Li and D. Vollmer, “Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules”, Adv. Mater. 23(26), 2962–2965 (2011). http://dx.doi.org/10.1002/adma.201100410
- C. I. Park, H. E. Jeong, S. H. Lee, H. S. Cho and K. Y. Suh, “Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials”, J. Colloid Interface Sci. 336(1), 298–303 (2009). http://dx.doi.org/10.1016/j.jcis.2009.04.022
- E Greco, M. B. Santucci, M. Sali, F. R. De Angelis, M. Papi, M. De Spirito, G. Delogu, V. Colizzi and M. Fraziano, “Natural lysophospholipids reduce mycobacterium tuberculosis-induced cytotoxicity and induce anti-mycobacterial activity by a phagolysosome maturation-dependent mechanism in A549 type II alveolar epithelial cells”, Immunology 129 (1), 125–132 (2010). http://dx.doi.org/10.1111/j.1365-2567.2009.03145.x
- Z. Burton and B. Bhushan, “Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro-and nanoelectromechanical systems”, Nano Lett. 5(8), 1607–1613 (2005). http://dx.doi.org/10.1021/nl050861b
- H. Ren, R. B. Fair, M. G. Pollack and E. J. Shaughnessy, “Dynamics of electro-wetting droplet transport”, Sens.Actuators B: Chemical 87(1), 201–206 (2002). http://dx.doi.org/10.1016/S0925-4005(02)00223-X
- M. Reyssat, J. M. Yeomans and D. Quéré, “Impalement of fakir drops”, Europhys. Lett. 81(2), 26006 (2008). http://dx.doi.org/10.1209/0295-5075/81/26006
- H. Kusumaatmaja, M. L. Blow, A. Dupuis and J. M. Yeomans, “The collapse transition on superhydrophobic surfaces”, Europhy. Lett. 81(3), 36003 (2008). http://dx.doi.org/10.1209/0295-5075/81/36003
- G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton and H. Y. Erbil, “Analysis of droplet evaporation on a superhydrophobic surface”, Langmuir 21(24), 11053–11060 (2005). http://dx.doi.org/10.1021/la0518795
- D. H. Kwon and S. J. Lee, “Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces”, Appl. Phys. Lett. 100(17), 171601 (2012). http://dx.doi.org/10.1063/1.4705296
- C. W. Extrand, “Model for contact angles and hysteresis on rough and ultraphobic surfaces”, Langmuir 18(21), 7991–7999 (2002). http://dx.doi.org/10.1021/la025769z
- J. Kijlstra, K. Reihs and A. Klamt, “Roughness and topology of ultra-hydrophobic surfaces”, Colloids Surf. A 206(1–3), 521–529 (2002). http://dx.doi.org/10.1016/S0927-7757(02)00089-4
- Y. C. Jung and B. Bhushan, “Contact angle, adhesion and friction properties of micro- and nanopatterned polymers for superhydrophobicity”, Nanotechnology 17(19), 4970 (2006). http://dx.doi.org/10.1088/0957-4484/17/19/033
- A. Cavalli, P. Bøggild and F. Okkels, “Topology optimization of robust superhydrophobic surfaces”, Soft Matter 9(7), 2234–2238 (2013). http://dx.doi.org/10.1039/C2SM27214H
- P. Papadopoulos, L. Mammen, X. Deng, D, Vollmer and H. J. Butt, “How superhydrophobicity breaks down”, Proc. Natl. Acad. Sci. 110(9), 3254–3258 (2013). http://dx.doi.org/10.1073/pnas.1218673110
- G. Ciasca, L. Businaro, A. De Ninno, A. Cedola, A. Notargiacomo, G. Campi and A. Gerardino, “Wet sample confinement by superhydrophobic patterned surfaces for combined X-ray fluorescence and X-ray phase contrast imaging”, Microelectron. Eng. 111, 304–309 (2013). http://dx.doi.org/10.1016/j.mee.2013.02.020
- G. Ciasca, L. Businaro, M. Papi, A. Notargiacomo, M. Chiarpotto, A. De Ninno and M. De Spirito, “Self-assembling of large ordered DNA arrays using superhydrophobic patterned surfaces”, Nanotechnology 24(49), 495302 (2013). http://dx.doi.org/10.1088/0957-4484/24/49/495302
- F. Gentile, M. Moretti, T. Limongi, A. Falqui, G. Bertoni, A. Scarpellini and E. di Fabrizio, “Direct imaging of dnafibers: the visage of double helix”, Nano Lett. 12(12), 6453–6458 (2012). http://dx.doi.org/10.1021/nl3039162
- F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonicnanofocusing SERS structures”, Nature Photonics 5 (11), 682–687 (2011). http://dx.doi.org/10.1038/nphoton.2011.222
- B. Su, S. Wang, J. Ma, Y. Wu, X. Chen, Y. Song and L. Jiang, “Elaborate positioning of nanowire arrays contributed by highly adhesive superhydrophobic pillar-structured substrates” Adv. Mater. 24(4), 559–564 (2012). http://dx.doi.org/10.1002/adma.201104019
- Y. C. Jung and B. Bhushan, “Wetting transition of water droplets on superhydrophobic patterned surfaces”, Scripta Materialia 57, 1057–1060 (2007). http://dx.doi.org/10.1016/j.scriptamat.2007.09.004
- K. K. Varanasi, T. Deng, M. F. Hsu and N. Bhate, “Design of superhydrophobic surfaces for optimum roll-off and droplet impact resistance”, American Society of Mechanical EngineersIMECE2008-67808, 637–645 (2008). http://dx.doi.org/10.1115/IMECE2008-67808
- B. Bhushan and Y. C. Jung, “Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction”, Progress in Materials Science 56(1), 1–108 (2011). http://dx.doi.org/10.1016/j.pmatsci.2010.04.003
- J. Guan and L. J. Lee, “Generating highly ordered DNA nanostrand arrays”, Proc. Natl. Acad. Sci. U.S.A. 102(51), 18321–18325 (2005). http://dx.doi.org/10.1073/pnas.0506902102
- A. D. Chepelianskii, D. Klinov, A. Kasumov, S. Guéron, O. Pietrement, S. Lyonnais and H. Bouchiat, “Long range electronic transport in DNA molecules deposited across a disconnected array of metallic nanoparticles”, ComptesRendus Physique 13(9-10), 967–992 (2012). http://dx.doi.org/10.1016/j.crhy.2012.10.007
- D. S. Hopkins, D. Pekker, P. M. Goldbart and A. Bezryadin, “Quantum interference device made by DNA templating of superconducting nanowires”, Science 308(5729), 1762–1765 (2005). http://dx.doi.org/10.1126/science.1111307
- F. Patolsky, G. Zheng and C. M. Lieber, “Nanowirebased biosensors”, Anal. Chem. 78(13), 4260–4269 (2006). http://dx.doi.org/10.1021/ac069419j
- M. De Spirito, R. Brunelli, G. Mei, F. R. Bertani, G. Ciasca, G. Greco, M. Papi, G. Arcovito, F. Ursini and T. Parasassi “Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface sites”, Biophys.J. 90(11), 4239–4247 (2006). http://dx.doi.org/10.1529/biophysj.105.075788
- M. Chiarpotto, G. Ciasca, M. Vassalli, C. Rossi, G. Campi, A. Ricci, B. Bocca, A. Pino, A. Alimonti, P. De Sole and M. Papi, “Mechanism of aluminium biomineralization in the apoferritin cavity”, Appl. Phys. Lett. 103(8), 083701 (2013). http://dx.doi.org/10.1063/1.4818749
- P. De Sole, C. Rossi, M. Chiarpotto, G. Ciasca, B. Bocca, A. Alimonti, A. Bizzarro, C. Rossi and C. Masullo “Possible relationship between Al/ferritin complex and Alzheimer’s disease”, Clin. Biochem. 46(1-2), 89–93 (2013). http://dx.doi.org/10.1016/j.clinbiochem.2012.10.023
- G. Ciasca, M. Papi, M. Chiarpotto, M. Rodio, G. Campi, C. Rossi, P. De Sole and A. Bianconi, “Transient state kinetic investigation of ferritin iron release”, Appl. Phys. Lett. 100(7), 073703 (2012). http://dx.doi.org/10.1063/1.3685706
- G. Ciasca, M. Chiarpotto, G. Campi, B. Bocca, M. Rodio, A. Pino, A. Ricci, N. Poccia, C. Rossi, A. Alimonti, H. Amenitsch, P. De Sole and A. Bianconi, “Reconstitution of aluminium and iron core in horse spleen apoferritin”, J. Nanopart. Res. 13(11), 6149–6155 (2011). http://dx.doi.org/10.1007/s11051-011-0294-2
- M. Papi, G. Maulucci, M. De Spirito, M. Missori, G. Arcovito, S. Lancellotti, E. Di Stasio, R. De Cristofaro and A. Arcovito, “Ristocetin-induced selfaggregation of vonWillebrand factor”, Eur. Biophysics J. 39(12), 1597–1603, 2010. http://dx.doi.org/10.1007/s00249-010-0617-8
- G. Campi, A. Ricci, A. Guagliardi, C. Giannini, S. Lagomarsino, R. Cancedda, M. Mastrogiacomo and A. Cedola, “Early stage mineralization in tissue engineering mapped by high resolution X-ray microdiffraction”, ActaBiomaterialia 8(9), 3411–3418 (2012). http://dx.doi.org/10.1016/j.actbio.2012.05.034
- G. Campi, G. Pezzotti, M. Fratini, A. Ricci, M. Burghammer, R. Cancedda, M. Mastrogiacomo, I. Bukreeva and A. Cedola, “Imaging regenerating bone tissue based on neural networks applied to micro-diffraction measurements”, Appl. Phys. Lett. 103(25), 253703 (2013). http://dx.doi.org/10.1063/1.4852056
- M. De Spirito, M. Missori, M. Papi, G. Maulucci, J. Teixeira, C, Castellano and G. Arcovito, “Modifications in solvent clusters embedded along the fibers of a cellulose polymer network cause paper degradation”, Phys. Rev. E 77(4), 041801 (2008). http://dx.doi.org/10.1103/PhysRevE.77.041801
References
W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta Med. 202(1), 1–8 (1997). http://dx.doi.org/10.1007/s004250050096
T. Wagner, C. Neinhuis and W. Barthlott, “Wettability and contaminability of insect wings as a function of their surface sculptures”, Acta Zoologica. 77(3), 213–225 (1996). http://dx.doi.org/10.1111/j.1463-6395.1996.tb01265.x
X. M. Li, D. Reinhoudt and M. Crego-Calama, “What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces”, Chem. Soc. Rev. 36(8), 1350–1368 (2007). http://dx.doi.org/10.1039/B602486F
X. Deng, L. Mammen, Y. Zhao, P. Lellig, K. Müllen, C. Li and D. Vollmer, “Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules”, Adv. Mater. 23(26), 2962–2965 (2011). http://dx.doi.org/10.1002/adma.201100410
C. I. Park, H. E. Jeong, S. H. Lee, H. S. Cho and K. Y. Suh, “Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials”, J. Colloid Interface Sci. 336(1), 298–303 (2009). http://dx.doi.org/10.1016/j.jcis.2009.04.022
E Greco, M. B. Santucci, M. Sali, F. R. De Angelis, M. Papi, M. De Spirito, G. Delogu, V. Colizzi and M. Fraziano, “Natural lysophospholipids reduce mycobacterium tuberculosis-induced cytotoxicity and induce anti-mycobacterial activity by a phagolysosome maturation-dependent mechanism in A549 type II alveolar epithelial cells”, Immunology 129 (1), 125–132 (2010). http://dx.doi.org/10.1111/j.1365-2567.2009.03145.x
Z. Burton and B. Bhushan, “Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro-and nanoelectromechanical systems”, Nano Lett. 5(8), 1607–1613 (2005). http://dx.doi.org/10.1021/nl050861b
H. Ren, R. B. Fair, M. G. Pollack and E. J. Shaughnessy, “Dynamics of electro-wetting droplet transport”, Sens.Actuators B: Chemical 87(1), 201–206 (2002). http://dx.doi.org/10.1016/S0925-4005(02)00223-X
M. Reyssat, J. M. Yeomans and D. Quéré, “Impalement of fakir drops”, Europhys. Lett. 81(2), 26006 (2008). http://dx.doi.org/10.1209/0295-5075/81/26006
H. Kusumaatmaja, M. L. Blow, A. Dupuis and J. M. Yeomans, “The collapse transition on superhydrophobic surfaces”, Europhy. Lett. 81(3), 36003 (2008). http://dx.doi.org/10.1209/0295-5075/81/36003
G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton and H. Y. Erbil, “Analysis of droplet evaporation on a superhydrophobic surface”, Langmuir 21(24), 11053–11060 (2005). http://dx.doi.org/10.1021/la0518795
D. H. Kwon and S. J. Lee, “Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces”, Appl. Phys. Lett. 100(17), 171601 (2012). http://dx.doi.org/10.1063/1.4705296
C. W. Extrand, “Model for contact angles and hysteresis on rough and ultraphobic surfaces”, Langmuir 18(21), 7991–7999 (2002). http://dx.doi.org/10.1021/la025769z
J. Kijlstra, K. Reihs and A. Klamt, “Roughness and topology of ultra-hydrophobic surfaces”, Colloids Surf. A 206(1–3), 521–529 (2002). http://dx.doi.org/10.1016/S0927-7757(02)00089-4
Y. C. Jung and B. Bhushan, “Contact angle, adhesion and friction properties of micro- and nanopatterned polymers for superhydrophobicity”, Nanotechnology 17(19), 4970 (2006). http://dx.doi.org/10.1088/0957-4484/17/19/033
A. Cavalli, P. Bøggild and F. Okkels, “Topology optimization of robust superhydrophobic surfaces”, Soft Matter 9(7), 2234–2238 (2013). http://dx.doi.org/10.1039/C2SM27214H
P. Papadopoulos, L. Mammen, X. Deng, D, Vollmer and H. J. Butt, “How superhydrophobicity breaks down”, Proc. Natl. Acad. Sci. 110(9), 3254–3258 (2013). http://dx.doi.org/10.1073/pnas.1218673110
G. Ciasca, L. Businaro, A. De Ninno, A. Cedola, A. Notargiacomo, G. Campi and A. Gerardino, “Wet sample confinement by superhydrophobic patterned surfaces for combined X-ray fluorescence and X-ray phase contrast imaging”, Microelectron. Eng. 111, 304–309 (2013). http://dx.doi.org/10.1016/j.mee.2013.02.020
G. Ciasca, L. Businaro, M. Papi, A. Notargiacomo, M. Chiarpotto, A. De Ninno and M. De Spirito, “Self-assembling of large ordered DNA arrays using superhydrophobic patterned surfaces”, Nanotechnology 24(49), 495302 (2013). http://dx.doi.org/10.1088/0957-4484/24/49/495302
F. Gentile, M. Moretti, T. Limongi, A. Falqui, G. Bertoni, A. Scarpellini and E. di Fabrizio, “Direct imaging of dnafibers: the visage of double helix”, Nano Lett. 12(12), 6453–6458 (2012). http://dx.doi.org/10.1021/nl3039162
F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonicnanofocusing SERS structures”, Nature Photonics 5 (11), 682–687 (2011). http://dx.doi.org/10.1038/nphoton.2011.222
B. Su, S. Wang, J. Ma, Y. Wu, X. Chen, Y. Song and L. Jiang, “Elaborate positioning of nanowire arrays contributed by highly adhesive superhydrophobic pillar-structured substrates” Adv. Mater. 24(4), 559–564 (2012). http://dx.doi.org/10.1002/adma.201104019
Y. C. Jung and B. Bhushan, “Wetting transition of water droplets on superhydrophobic patterned surfaces”, Scripta Materialia 57, 1057–1060 (2007). http://dx.doi.org/10.1016/j.scriptamat.2007.09.004
K. K. Varanasi, T. Deng, M. F. Hsu and N. Bhate, “Design of superhydrophobic surfaces for optimum roll-off and droplet impact resistance”, American Society of Mechanical EngineersIMECE2008-67808, 637–645 (2008). http://dx.doi.org/10.1115/IMECE2008-67808
B. Bhushan and Y. C. Jung, “Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction”, Progress in Materials Science 56(1), 1–108 (2011). http://dx.doi.org/10.1016/j.pmatsci.2010.04.003
J. Guan and L. J. Lee, “Generating highly ordered DNA nanostrand arrays”, Proc. Natl. Acad. Sci. U.S.A. 102(51), 18321–18325 (2005). http://dx.doi.org/10.1073/pnas.0506902102
A. D. Chepelianskii, D. Klinov, A. Kasumov, S. Guéron, O. Pietrement, S. Lyonnais and H. Bouchiat, “Long range electronic transport in DNA molecules deposited across a disconnected array of metallic nanoparticles”, ComptesRendus Physique 13(9-10), 967–992 (2012). http://dx.doi.org/10.1016/j.crhy.2012.10.007
D. S. Hopkins, D. Pekker, P. M. Goldbart and A. Bezryadin, “Quantum interference device made by DNA templating of superconducting nanowires”, Science 308(5729), 1762–1765 (2005). http://dx.doi.org/10.1126/science.1111307
F. Patolsky, G. Zheng and C. M. Lieber, “Nanowirebased biosensors”, Anal. Chem. 78(13), 4260–4269 (2006). http://dx.doi.org/10.1021/ac069419j
M. De Spirito, R. Brunelli, G. Mei, F. R. Bertani, G. Ciasca, G. Greco, M. Papi, G. Arcovito, F. Ursini and T. Parasassi “Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface sites”, Biophys.J. 90(11), 4239–4247 (2006). http://dx.doi.org/10.1529/biophysj.105.075788
M. Chiarpotto, G. Ciasca, M. Vassalli, C. Rossi, G. Campi, A. Ricci, B. Bocca, A. Pino, A. Alimonti, P. De Sole and M. Papi, “Mechanism of aluminium biomineralization in the apoferritin cavity”, Appl. Phys. Lett. 103(8), 083701 (2013). http://dx.doi.org/10.1063/1.4818749
P. De Sole, C. Rossi, M. Chiarpotto, G. Ciasca, B. Bocca, A. Alimonti, A. Bizzarro, C. Rossi and C. Masullo “Possible relationship between Al/ferritin complex and Alzheimer’s disease”, Clin. Biochem. 46(1-2), 89–93 (2013). http://dx.doi.org/10.1016/j.clinbiochem.2012.10.023
G. Ciasca, M. Papi, M. Chiarpotto, M. Rodio, G. Campi, C. Rossi, P. De Sole and A. Bianconi, “Transient state kinetic investigation of ferritin iron release”, Appl. Phys. Lett. 100(7), 073703 (2012). http://dx.doi.org/10.1063/1.3685706
G. Ciasca, M. Chiarpotto, G. Campi, B. Bocca, M. Rodio, A. Pino, A. Ricci, N. Poccia, C. Rossi, A. Alimonti, H. Amenitsch, P. De Sole and A. Bianconi, “Reconstitution of aluminium and iron core in horse spleen apoferritin”, J. Nanopart. Res. 13(11), 6149–6155 (2011). http://dx.doi.org/10.1007/s11051-011-0294-2
M. Papi, G. Maulucci, M. De Spirito, M. Missori, G. Arcovito, S. Lancellotti, E. Di Stasio, R. De Cristofaro and A. Arcovito, “Ristocetin-induced selfaggregation of vonWillebrand factor”, Eur. Biophysics J. 39(12), 1597–1603, 2010. http://dx.doi.org/10.1007/s00249-010-0617-8
G. Campi, A. Ricci, A. Guagliardi, C. Giannini, S. Lagomarsino, R. Cancedda, M. Mastrogiacomo and A. Cedola, “Early stage mineralization in tissue engineering mapped by high resolution X-ray microdiffraction”, ActaBiomaterialia 8(9), 3411–3418 (2012). http://dx.doi.org/10.1016/j.actbio.2012.05.034
G. Campi, G. Pezzotti, M. Fratini, A. Ricci, M. Burghammer, R. Cancedda, M. Mastrogiacomo, I. Bukreeva and A. Cedola, “Imaging regenerating bone tissue based on neural networks applied to micro-diffraction measurements”, Appl. Phys. Lett. 103(25), 253703 (2013). http://dx.doi.org/10.1063/1.4852056
M. De Spirito, M. Missori, M. Papi, G. Maulucci, J. Teixeira, C, Castellano and G. Arcovito, “Modifications in solvent clusters embedded along the fibers of a cellulose polymer network cause paper degradation”, Phys. Rev. E 77(4), 041801 (2008). http://dx.doi.org/10.1103/PhysRevE.77.041801