Torsional Characteristics of SingleWalled Carbon Nanotube with Water Interactions by Using Molecular Dynamics Simulation
Corresponding Author: C. H. Wong
Nano-Micro Letters,
Vol. 6 No. 3 (2014), Article Number: 268-279
Abstract
The torsional characteristics of single walled carbon nanotube (SWCNT) with water interactions are studied in this work using molecular dynamics simulation method. The torsional properties of carbon nanotubes (CNTs) in a hydrodynamic environment such as water are critical for its key role in determining the lifetime and stability of CNT based nano-fluidic devices. The effect of chirality, defects and the density of water encapsulation is studied by subjecting the SWCNT to torsion. The findings show that the torsional strength of SWCNT decreases due to interaction of water molecules and presence of defects in the SWCNT. Additionally, for the case of water molecules encapsulated inside SWCNT, the torsional response depends on the density of packing of water molecules. Our findings and conclusions obtained from this paper is expected to further compliment the potential applications of CNTs as promising candidates for applications in nano-biological and nano-fluidic devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Liu, Z. Wu, W. M. Lau and J. Yang, “Recent advances in directed assembly of nanowires or nanotubes”, Nano-Micro Lett. 4(3), 142–153 (2012). http://dx.doi.org/10.3786/nml.v4i3.p142-153
- V. Vijayaraghavan and C. H. Wong, “Shear deformation characteristics of single walled carbon nanotube with water interactions by using molecular dynamics simulation”, Phys. E: Low-Dimensional Systems and Nanostructures 54 (0), 206–213 (2013). http://dx.doi.org/http://dx.doi.org/10.1016/j.physe.2013.06.025
- P. A. Williams, S. J. Papadakis, A. M. Patel, M. R. Falvo, S. Washburn and R. Superfine, “Fabrication of nanometer-scale mechanical devices incorporating individual multiwalled carbon nanotubes as torsional springs”, Appl. Phys. Lett. 82(5), 805–807 (2003). http://dx.doi.org/10.1063/1.1538346
- Y. Zhang, L. F. Duan, J. Wang, H. Geng and Q. Zhang, “Advances in conceptual electronic nanode-vices based on 0D and 1D nanomaterials”, Nano-Micro Lett. 6(1), 1–19 (2014). http://dx.doi.org/10.5101/nml.v6i1.p1-19
- Y. Cheng, Q. X. Pei and H. J. Gao, “Molecular-dynamics studies of competitive replacement in peptide-nanotube assembly for control of drug release”, Nanotechnology 20(14), 145101 (2009). http://dx.doi.org/10.1088/0957-4484/20/14/145101
- D. Xu, Z. Hu, J. Su, F. Wu and W. Yuan, “Micro and nanotechnology for intracellular delivery therapy protein”, Nano-Micro Lett. 4(2), 118–123 (2012). http://dx.doi.org/10.3786/nml.v4i2.p118-123
- X. Sun, L. Qiao and X. Wang, “A novel immunosensor based on Au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface”, Nano-Micro Lett. 5(3), 191–201 (2013). http://dx.doi.org/10.5101/nml.v5i3.p191-201
- D. R. Shobha Jeykumari, R. A. Kalaivani and S. Sriman Narayanan, “Nanobiocomposite electrochemical biosensor utilizing synergic action of neutral red functionalized carbon nanotubes”, Nano-Micro Lett. 4(4), 220–227 (2012). http://dx.doi.org/10.3786/nml.v4i4.p220-227
- A. R. Hall, L. An, J. Liu, L. Vicci, M. R. Falvo, R. Superfine and S. Washburn, “Experimental measurement of single-wall carbon nanotube torsional properties”, Phys. Rev. Lett. 96(25), 256102 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.256102
- Y. Wang, X. X. Wang and X. G. Ni, “Atomistic simulation of the torsion deformation of carbon nanotubes”, Modelling Simul. Mater. Sci. Eng. 12(6), 1099–1107 (2004). http://dx.doi.org/10.1088/0965-0393/12/6/004
- Y. Y. Zhang, C. M. Wang and V. B. C. Tan, “Mechanical Properties and Buckling Behaviors of Condensed Double-Walled Carbon Nanotubes”, J. Nanosci. Nanotechnol. 9(8), 4870–4879 (2009). http://dx.doi.org/10.1166/jnn.2009.1092
- Y. Y. Zhang, C. M. Wang and Y. Xiang, “A molecular dynamics investigation of the torsional responses of defective single-walled carbon nanotubes”, Carbon. 48(14), 4100–4108 (2010). http://dx.doi.org/10.1016/j.carbon.2010.07.018
- X. X. Lu and Z. Hu, “Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling”, Composites Part B-Engineering. 43(4), 1902–1913 (2012). http://dx.doi.org/10.1016/j.compositesb.2012.02.002
- B. Faria, N. Silvestre and J. N. C. Lopes, “Induced anisotropy of chiral carbon nanotubes under combined tension-twisting”, Mech. Mater. 58, 97–109 (2013). http://dx.doi.org/10.1016/j.mechmat.2012.11.004
- B. W. Jeong, J. K. Lim and S. B. Sinnott, “Elastic torsional responses of carbon nanotube systems”, J. Appl. Phys. 101(8), 084309 (2007). http://dx.doi.org/10.1063/1.2717138
- L. Wang, Z. Q. Zhang, Y. G. Zheng, J. B. Wang and H. F. Ye, “Torsional stability of carbon nanotubes filled with copper atoms”, Phys. Scripta. 85(4), 045602 (2012). http://dx.doi.org/10.1088/0031-8949/85/04/045602
- Q. Wang, K. M. Liew and V. K. Varadan, “Molecular dynamics simulations of the torsional instability of carbon nanotubes filled with hydrogen or silicon atoms”, Appl. Phys. Lett. 92(4), 043120 (2008). http://dx.doi.org/10.1063/1.2840165
- S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, J. Comput. Phys. 117(1), 1–19 (1995). http://dx.doi.org/10.1006/jcph.1995.1039
- S. J. Stuart, A. B. Tutein and J. A. Harrison, “A reactive potential for hydrocarbons with intermolecular interactions”, J. Chem. Phys. 112(14), 6472–6486 (2000). http://dx.doi.org/10.1063/1.481208
- Y. Y. Zhang, C. M. Wang and V. B. C. Tan, “Buckling of carbon nanotubes at high temperatures”, Nanotechnology. 20(21), 215702 (2009). http://dx.doi.org/10.1088/0957-4484/20/21/215702
- C. H. Wong and V. Vijayaraghavan, “Nanomechanics of free form and water submerged single layer graphene sheet under axial tension by using molecular dynamics simulation”, Mater. Sci. Eng. A 556, 420–428 (2012). http://dx.doi.org/10.1016/j.msea.2012.07.008
- C. H. Wong and V. Vijayaraghavan, “Nanomechanics of Nonideal Single- and Double-Walled Carbon Nanotubes”, J. Nanomater. 2012, 17 (2012). http://dx.doi.org/10.1155/2012/490872
- D.W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”, J. Phys.-Conden. Matt. 14(4), 783–802 (2002). http://dx.doi.org/10.1088/0953-8984/14/4/312
- Y. Nakamura and T. Ohno, “Structure of water confined inside carbon nanotubes and water models”, Mater. Chem. Phys. 132(2–3), 682–687 (2012). http://dx.doi.org/10.1016/j.matchemphys.2011.11.086
- C. H. Wong and V. Vijayaraghavan, “Compressive characteristics of single walled carbon nanotube with water interactions investigated by using molecular dynamics simulation”, Phys. Lett., Sect. A 378(5), 570–576 (2014). http://dx.doi.org/10.1016/j.physleta.2013.12.026
- T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu and P. Koumoutsakos, “On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes”, J. Phys. Chem. B 107(6), 1345–1352 (2003). http://dx.doi.org/10.1021/jp0268112
- N. Marković P. U. Andersson, M. B. Någård and J. B. C. Pettersson, “Scattering of water from graphite: simulations and experiments”, Chem. Phys. 247(3), 413–430 (1999). http://dx.doi.org/10.1016/S0301-0104(99)00233-5
- X. B. Zhang, Q. L. Liu and A. M. Zhu, “An improved fully flexible fixed-point charges model for water from ambient to supercritical condition”, Fluid Phase Equilibria. 262(1-2), 210–216 (2007). http://dx.doi.org/10.1016/j.fluid.2007.09.005
- C. H. Wong, “Elastic properties of imperfect single-walled carbon nanotubes under axial tension”, Comput. Mater. Sci. 49(1), 143–147 (2010). http://dx.doi.org/10.1016/j.commatsci.2010.04.037
- V. Vijayaraghavan and C. H. Wong, “Nanomechanics of single walled carbon nanotube with water interactions under axial tension by using molecular dynamics simulation”, Comput. Mater. Sci. 79, 519–526 (2013). http://dx.doi.org/10.1155/2012/490872
- W. G. Hoover, “Canonical dynamics — equilibrium phase-space distributions”, Phys. Rev. A 31 (3), 1695–1697 (1985). http://dx.doi.org/10.1103/PhysRevA.31.1695
- S. Nose, “A unified formulation of the constant temperature molecular-dynamics methods”, J. Chem. Phys 81 (1), 511–519 (1984). http://dx.doi.org/http://dx.doi.org/10.1063/1.447334
- L. Verlet, “Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev 159(1), 98–103 (1967). http://dx.doi.org/10.1103/PhysRev.159.98
- M. E. Suk and N. R. Aluru, “Water Transport through Ultrathin Graphene”, J. Phys. Chem. Lett. 1(10), 1590–1594 (2010). http://dx.doi.org/10.1021/jz100240r
- Y. Homma, S. Chiashi, T. Yamamoto, K. Kono, D. Matsumoto, J. Shitaba and S. Sato, “Photoluminescence Measurements and Molecular Dynamics Simulations of Water Adsorption on the Hydrophobic Surface of a Carbon Nanotube in Water Vapor”, Phys. Rev. Lett. 110(15), 157402 (2013). http://dx.doi.org/10.1103/PhysRevLett.110.157402
- V. Vijayaraghavan and C. H. Wong, “Temperature, defect and size effect on the elastic properties of imperfectly straight carbon nanotubes by using molecular dynamics simulation”, Comput. Mater. Sci. 71, 184–191 (2013).
- K. Min and N. R. Aluru, “Mechanical properties of graphene under shear deformation”, Appl. Phys. Lett. 98 (1), 013113 (2011). http://dx.doi.org/10.1063/1.3534787
- K. M. Liew, X. Q. He and C. H. Wong, “On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation”, Acta Mater. 52(9), 2521–2527 (2004). http://dx.doi.org/10.1016/j.actamat.2004.01.043
- H. Lu and L. Zhang, “Analysis of localized failure of single-wall carbon nanotubes”, Comput. Mater. Sci. 35(4), 432–441 (2006). http://dx.doi.org/10.1016/j.commatsci.2005.02.011
References
M. Liu, Z. Wu, W. M. Lau and J. Yang, “Recent advances in directed assembly of nanowires or nanotubes”, Nano-Micro Lett. 4(3), 142–153 (2012). http://dx.doi.org/10.3786/nml.v4i3.p142-153
V. Vijayaraghavan and C. H. Wong, “Shear deformation characteristics of single walled carbon nanotube with water interactions by using molecular dynamics simulation”, Phys. E: Low-Dimensional Systems and Nanostructures 54 (0), 206–213 (2013). http://dx.doi.org/http://dx.doi.org/10.1016/j.physe.2013.06.025
P. A. Williams, S. J. Papadakis, A. M. Patel, M. R. Falvo, S. Washburn and R. Superfine, “Fabrication of nanometer-scale mechanical devices incorporating individual multiwalled carbon nanotubes as torsional springs”, Appl. Phys. Lett. 82(5), 805–807 (2003). http://dx.doi.org/10.1063/1.1538346
Y. Zhang, L. F. Duan, J. Wang, H. Geng and Q. Zhang, “Advances in conceptual electronic nanode-vices based on 0D and 1D nanomaterials”, Nano-Micro Lett. 6(1), 1–19 (2014). http://dx.doi.org/10.5101/nml.v6i1.p1-19
Y. Cheng, Q. X. Pei and H. J. Gao, “Molecular-dynamics studies of competitive replacement in peptide-nanotube assembly for control of drug release”, Nanotechnology 20(14), 145101 (2009). http://dx.doi.org/10.1088/0957-4484/20/14/145101
D. Xu, Z. Hu, J. Su, F. Wu and W. Yuan, “Micro and nanotechnology for intracellular delivery therapy protein”, Nano-Micro Lett. 4(2), 118–123 (2012). http://dx.doi.org/10.3786/nml.v4i2.p118-123
X. Sun, L. Qiao and X. Wang, “A novel immunosensor based on Au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface”, Nano-Micro Lett. 5(3), 191–201 (2013). http://dx.doi.org/10.5101/nml.v5i3.p191-201
D. R. Shobha Jeykumari, R. A. Kalaivani and S. Sriman Narayanan, “Nanobiocomposite electrochemical biosensor utilizing synergic action of neutral red functionalized carbon nanotubes”, Nano-Micro Lett. 4(4), 220–227 (2012). http://dx.doi.org/10.3786/nml.v4i4.p220-227
A. R. Hall, L. An, J. Liu, L. Vicci, M. R. Falvo, R. Superfine and S. Washburn, “Experimental measurement of single-wall carbon nanotube torsional properties”, Phys. Rev. Lett. 96(25), 256102 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.256102
Y. Wang, X. X. Wang and X. G. Ni, “Atomistic simulation of the torsion deformation of carbon nanotubes”, Modelling Simul. Mater. Sci. Eng. 12(6), 1099–1107 (2004). http://dx.doi.org/10.1088/0965-0393/12/6/004
Y. Y. Zhang, C. M. Wang and V. B. C. Tan, “Mechanical Properties and Buckling Behaviors of Condensed Double-Walled Carbon Nanotubes”, J. Nanosci. Nanotechnol. 9(8), 4870–4879 (2009). http://dx.doi.org/10.1166/jnn.2009.1092
Y. Y. Zhang, C. M. Wang and Y. Xiang, “A molecular dynamics investigation of the torsional responses of defective single-walled carbon nanotubes”, Carbon. 48(14), 4100–4108 (2010). http://dx.doi.org/10.1016/j.carbon.2010.07.018
X. X. Lu and Z. Hu, “Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling”, Composites Part B-Engineering. 43(4), 1902–1913 (2012). http://dx.doi.org/10.1016/j.compositesb.2012.02.002
B. Faria, N. Silvestre and J. N. C. Lopes, “Induced anisotropy of chiral carbon nanotubes under combined tension-twisting”, Mech. Mater. 58, 97–109 (2013). http://dx.doi.org/10.1016/j.mechmat.2012.11.004
B. W. Jeong, J. K. Lim and S. B. Sinnott, “Elastic torsional responses of carbon nanotube systems”, J. Appl. Phys. 101(8), 084309 (2007). http://dx.doi.org/10.1063/1.2717138
L. Wang, Z. Q. Zhang, Y. G. Zheng, J. B. Wang and H. F. Ye, “Torsional stability of carbon nanotubes filled with copper atoms”, Phys. Scripta. 85(4), 045602 (2012). http://dx.doi.org/10.1088/0031-8949/85/04/045602
Q. Wang, K. M. Liew and V. K. Varadan, “Molecular dynamics simulations of the torsional instability of carbon nanotubes filled with hydrogen or silicon atoms”, Appl. Phys. Lett. 92(4), 043120 (2008). http://dx.doi.org/10.1063/1.2840165
S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, J. Comput. Phys. 117(1), 1–19 (1995). http://dx.doi.org/10.1006/jcph.1995.1039
S. J. Stuart, A. B. Tutein and J. A. Harrison, “A reactive potential for hydrocarbons with intermolecular interactions”, J. Chem. Phys. 112(14), 6472–6486 (2000). http://dx.doi.org/10.1063/1.481208
Y. Y. Zhang, C. M. Wang and V. B. C. Tan, “Buckling of carbon nanotubes at high temperatures”, Nanotechnology. 20(21), 215702 (2009). http://dx.doi.org/10.1088/0957-4484/20/21/215702
C. H. Wong and V. Vijayaraghavan, “Nanomechanics of free form and water submerged single layer graphene sheet under axial tension by using molecular dynamics simulation”, Mater. Sci. Eng. A 556, 420–428 (2012). http://dx.doi.org/10.1016/j.msea.2012.07.008
C. H. Wong and V. Vijayaraghavan, “Nanomechanics of Nonideal Single- and Double-Walled Carbon Nanotubes”, J. Nanomater. 2012, 17 (2012). http://dx.doi.org/10.1155/2012/490872
D.W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”, J. Phys.-Conden. Matt. 14(4), 783–802 (2002). http://dx.doi.org/10.1088/0953-8984/14/4/312
Y. Nakamura and T. Ohno, “Structure of water confined inside carbon nanotubes and water models”, Mater. Chem. Phys. 132(2–3), 682–687 (2012). http://dx.doi.org/10.1016/j.matchemphys.2011.11.086
C. H. Wong and V. Vijayaraghavan, “Compressive characteristics of single walled carbon nanotube with water interactions investigated by using molecular dynamics simulation”, Phys. Lett., Sect. A 378(5), 570–576 (2014). http://dx.doi.org/10.1016/j.physleta.2013.12.026
T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu and P. Koumoutsakos, “On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes”, J. Phys. Chem. B 107(6), 1345–1352 (2003). http://dx.doi.org/10.1021/jp0268112
N. Marković P. U. Andersson, M. B. Någård and J. B. C. Pettersson, “Scattering of water from graphite: simulations and experiments”, Chem. Phys. 247(3), 413–430 (1999). http://dx.doi.org/10.1016/S0301-0104(99)00233-5
X. B. Zhang, Q. L. Liu and A. M. Zhu, “An improved fully flexible fixed-point charges model for water from ambient to supercritical condition”, Fluid Phase Equilibria. 262(1-2), 210–216 (2007). http://dx.doi.org/10.1016/j.fluid.2007.09.005
C. H. Wong, “Elastic properties of imperfect single-walled carbon nanotubes under axial tension”, Comput. Mater. Sci. 49(1), 143–147 (2010). http://dx.doi.org/10.1016/j.commatsci.2010.04.037
V. Vijayaraghavan and C. H. Wong, “Nanomechanics of single walled carbon nanotube with water interactions under axial tension by using molecular dynamics simulation”, Comput. Mater. Sci. 79, 519–526 (2013). http://dx.doi.org/10.1155/2012/490872
W. G. Hoover, “Canonical dynamics — equilibrium phase-space distributions”, Phys. Rev. A 31 (3), 1695–1697 (1985). http://dx.doi.org/10.1103/PhysRevA.31.1695
S. Nose, “A unified formulation of the constant temperature molecular-dynamics methods”, J. Chem. Phys 81 (1), 511–519 (1984). http://dx.doi.org/http://dx.doi.org/10.1063/1.447334
L. Verlet, “Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev 159(1), 98–103 (1967). http://dx.doi.org/10.1103/PhysRev.159.98
M. E. Suk and N. R. Aluru, “Water Transport through Ultrathin Graphene”, J. Phys. Chem. Lett. 1(10), 1590–1594 (2010). http://dx.doi.org/10.1021/jz100240r
Y. Homma, S. Chiashi, T. Yamamoto, K. Kono, D. Matsumoto, J. Shitaba and S. Sato, “Photoluminescence Measurements and Molecular Dynamics Simulations of Water Adsorption on the Hydrophobic Surface of a Carbon Nanotube in Water Vapor”, Phys. Rev. Lett. 110(15), 157402 (2013). http://dx.doi.org/10.1103/PhysRevLett.110.157402
V. Vijayaraghavan and C. H. Wong, “Temperature, defect and size effect on the elastic properties of imperfectly straight carbon nanotubes by using molecular dynamics simulation”, Comput. Mater. Sci. 71, 184–191 (2013).
K. Min and N. R. Aluru, “Mechanical properties of graphene under shear deformation”, Appl. Phys. Lett. 98 (1), 013113 (2011). http://dx.doi.org/10.1063/1.3534787
K. M. Liew, X. Q. He and C. H. Wong, “On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation”, Acta Mater. 52(9), 2521–2527 (2004). http://dx.doi.org/10.1016/j.actamat.2004.01.043
H. Lu and L. Zhang, “Analysis of localized failure of single-wall carbon nanotubes”, Comput. Mater. Sci. 35(4), 432–441 (2006). http://dx.doi.org/10.1016/j.commatsci.2005.02.011