Doping Induced Tailoring in the Morphology, Band-Gap and Ferromagnetic Properties of Biocompatible ZnO Nanowires, Nanorods and Nanoparticles
Corresponding Author: Javed Iqbal
Nano-Micro Letters,
Vol. 6 No. 3 (2014), Article Number: 242-251
Abstract
The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped ZnO nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of ZnO nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved. The prepared nanostructures have been found to be nontoxic to SH-SY5Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of ZnO nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Zhu, J. Iqbal, H. Xu and D. Yu, “Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process”, J. Chem. Phys. 129(12), 124713 (2008). http://dx.doi.org/10.1063/1.2981050
- P. V. Radovanovic and D. R. Gamelin, “Hightemperature ferromagnetism in Ni2-doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots”, Phys. Rev. Lett. 91(15), 157202 (2003). http://dx.doi.org/10.1103/PhysRevLett.91.157202
- Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications”, J. Phys: Condens. Matter. 16, 829–858 (2004). http://dx.doi.org/10.1088/0953-8984/16/25/R01
- H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor”, Nano Lett. 4(7), 1247–1252 (2004). http://dx.doi.org/10.1021/nl049461z
- C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO nanowire UV photodetectors with high internal gain”, Nano Lett. 7(4), 1003–1009 (2007). http://dx.doi.org/10.1021/nl070111x
- Q. H. Li, Y. X. Liang, Q. Wan and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors”, Appl. Phys. Lett. 85(26), 6389–6391 (2004). http://dx.doi.org/10.1063/1.1840116
- C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature”, Appl. Phys. Lett. 81(19), 3648–3650 (2002). http://dx.doi.org/10.1063/1.1518810
- M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Roomtemperature ultraviolet nanowire nanolasers”, Science 292(5523), 1897–1899 (2001). http://dx.doi.org/10.1126/science.1060367
- X. D. Wang, J. H. Song, J. Liu and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves”, Science 316(5821), 102–105 (2007). http://dx.doi.org/10.1126/science.1139366
- B. Dindar and S. Icli, “Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight”, J. Photochem. Photobiol. A: Chem. 140(3), 263–268 (2001). http://dx.doi.org/10.1016/S1010-6030(01)00414-2
- M. A. Behnajady, N. Modirshahla and R. Hamzavi, “Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst”, J. Hazard. Mater. 133(1), 226–232 (2006). http://dx.doi.org/10.1016/j.jhazmat.2005.10.022
- S. V. Bhat and F. L. Deepak, “Tuning the bandgap of ZnO by substitution with Mn2+, Co2+ and Ni2+, Solid State Comm. 135(6), 345–347 (2005). http://dx.doi.org/10.1016/j.ssc.2005.05.051
- T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, “Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors”, Science 287(5455), 1019–1022 (2000). http://dx.doi.org/10.1126/science.287.5455.1019
- Quarta, R. Di Corato, L. Manna, S. Argentiere, R. Cingolani, G. Barbarella and T. Pellegrino, “ Multifunctional nanostructures based on inorganic nanoparticles and oligothiophenes and their exploitation for cellular studies”, J. Am. Chem. Soc. 130(32), 10545–10555 (2008). http://dx.doi.org/10.1021/ja800102v
- Morfesis, D. Fairhurst, NSTI Nanotechnology Conference and Trade Show. NSTI Nanotech Anaheim, CA May 8–12, (2005).
- W. J. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications”, Expert Opin. Drug Deliv. 7(9), 1063–1077, (2010). http://dx.doi.org/10.1517/17425247.2010.502560
- Rita John and Rajaram Rajakumari, “Synthesis and characterization of rare earth ion doped nano ZnO”, Nano Micro Lett. 4(2), 65–72 (2012). http://dx.doi.org/10.3786/nml.v4i2.p65-72
- J. Iqbal, B. Wang, X. F. Liu, H. Be, D. P. Yu and R. H. Yu, “Oxygen-vacancy-induced green emission and room-temperature ferromagnetism in Ni-doped ZnO nanorods”, New Journal Phys. 11(6), 063009 (2009). http://dx.doi.org/10.1088/1367-2630/11/6/063009
- Y. J. Li, C. Y. Wang, M. Y. Lu, K. M. Li and L. J. Chen, “Electrodeposited hexagonal ringlike superstructures composed of hexagonal Codoped ZnO nanorods with optical tuning and hightemperature ferromagnetic properties”, Cryst. Growth Des. 8(8), 2598–2602 (2008). http://dx.doi.org/10.1021/cg7007864
- X. Y. Kong, Y. Ding, R. Yang and Z. L. Wang, “Singlecrystal nanorings formed by epitaxial self-coiling of polar nanobelts”, Science 303(5662), 1348–1351 (2004). http://dx.doi.org/10.1126/science.1092356
- Z. Y. Tang, N. A. Kotov and M. Giersig, “Spontaneous organization of single CdTe nanoparticles into luminescent nanowires”, Science 297(5579), 237–240 (2002). http://dx.doi.org/10.1126/science.1072086
- J. M. D. Coey, M. Viret and S. von Molnar, “Mixedvalence manganite”, Adv. Phys. 48(2), 167–293 (1999). http://dx.doi.org/10.1080/000187399243455
- G.R. Li, T. Hu, G. L. Pan, T. Y. Yan, X. P. Gao and H. Y. Zhu, “Morphology- function relationship of ZnO: polar planes, oxygen vacancies, and activity”, J. Phys. Chem. C 112(31), 11859–11864 (2008). http://dx.doi.org/10.1021/jp8038626
- S. Baek, J. Song and S. Lim, “Improvement of the optical properties of ZnO nanorods by Fe doping”, Physica B 399(2), 101–104 (2007). http://dx.doi.org/10.1016/j.physb.2007.05.030
- J. F. Moulder, William F. Stickle, Peter E. Sobol and Kenneth D. Bomben “Handbook of X-ray photoelectron spectroscopy”, Perkin Elmer Corporation, 84–85, (1992).
- Y. W. Chen, Y. C. Liu, S. X. Lu, C. S. Xu, C. L. Shao, C. Wang, J. Y. Zhang, Y. M. Lu, D. Z. Shen and X. W. Fan, “Optical properties of ZnO and ZnO: in nanorods assembled by sol-gel method”, J. Chem. Phys. 123(13), 134701 (2005). http://dx.doi.org/10.1063/1.2009731
- A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures”, Adv. Funct. Mater. 14(9), 856–864, (2004). http://dx.doi.org/10.1002/adfm.200305082
- W. Li, Y. Wang, H. Lin, S. Ismat Shah, C. P. Huang, D. J. Doren, S. A. Rykov, J. G. Chen and M. A. Barteau, “Band gap tailoring of Nd3+ -doped TiO2 nanoparticles”, Appl. Phys. Lett. 83(20), 4143–4145 (2003). http://dx.doi.org/10.1063/1.1627962
- J. Iqbal, X. Liu and H. Zhu, “Trapping of Ce electrons in band gap and room temperature ferromagnetism of Ce4+ doped ZnO nanowires”, J. Appl. Phys. 106(8), 083515-083515-6 (2009). http://dx.doi.org/10.1063/1.3245325
- S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton and T. Steiner, “Dilute magnetic semiconducting oxides”, Semicond. Sci. Technol. 19(10), 54–59 (2004). http://dx.doi.org/10.1088/0268-1242/19/10/R01
- M. Venkatesan, C. B. Fitzgerald, J. G. Lunney and J. M. D. Coey, “Anisotropic ferromagnetism in substituted zinc oxide”, Phys. Rev. Lett. 93(17), 177206 (2004). http://dx.doi.org/10.1103/PhysRevLett.93.177206
- M. Venkatesan, C. B. Fitzgerald and J. M. D. Coey, “Thin films: unexpected magnetism in a dielectric oxide”, Nature 430(7000), 630–630 (2004). http://dx.doi.org/10.1038/430630a
- N. Khare, M. J. Kappers, M. Wei, M.G. Blamire and J. L. Macmanus-Driscoll, “Defect-induced ferromagnetism in Co-doped ZnO”, Adv. Mater. 18(11), 1449–1452 (2006). http://dx.doi.org/10.1002/adma.200502200
- B. B. Straumal, S. G. Protasova, A. A. Mazilkin, G. Schütz, E. Goering, B. Baretzky and P. B. Straumal, “Ferromagnetism of zinc oxide nanograined films”, JETP Letters. 97(6), 367–377 (2013). http://dx.doi.org/10.1134/S0021364013060143
- B. B. Straumal, S. G. Protasova, A. A. Mazilkin, T. Tietze, E. Goering, G. Schütz, P. B. Straumal and B. Baretzky, “Ferromagnetic behaviour of Fe-doped ZnO nanograined films”, Beilstein J. Nanotechnol. 4(1), 361–369 (2013). http://dx.doi.org/10.3762/bjnano.4.42
- T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J. I. Yeh, J. I. Zink and A. E. Nel, “Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties”, ACS Nano. 2(10), 2121–2134 (2008). http://dx.doi.org/10.1021/nn800511k
- C. Hanley, A. Thurber, C. Hanna, A. Punnoose, J. Zhang and D. G. Wingett, “The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction”, Nanoscale Res. Lett. 4(12), 1409–1420 (2009). http://dx.doi.org/10.1007/s11671-009-9413-8
References
H. Zhu, J. Iqbal, H. Xu and D. Yu, “Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process”, J. Chem. Phys. 129(12), 124713 (2008). http://dx.doi.org/10.1063/1.2981050
P. V. Radovanovic and D. R. Gamelin, “Hightemperature ferromagnetism in Ni2-doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots”, Phys. Rev. Lett. 91(15), 157202 (2003). http://dx.doi.org/10.1103/PhysRevLett.91.157202
Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications”, J. Phys: Condens. Matter. 16, 829–858 (2004). http://dx.doi.org/10.1088/0953-8984/16/25/R01
H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor”, Nano Lett. 4(7), 1247–1252 (2004). http://dx.doi.org/10.1021/nl049461z
C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO nanowire UV photodetectors with high internal gain”, Nano Lett. 7(4), 1003–1009 (2007). http://dx.doi.org/10.1021/nl070111x
Q. H. Li, Y. X. Liang, Q. Wan and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors”, Appl. Phys. Lett. 85(26), 6389–6391 (2004). http://dx.doi.org/10.1063/1.1840116
C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature”, Appl. Phys. Lett. 81(19), 3648–3650 (2002). http://dx.doi.org/10.1063/1.1518810
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Roomtemperature ultraviolet nanowire nanolasers”, Science 292(5523), 1897–1899 (2001). http://dx.doi.org/10.1126/science.1060367
X. D. Wang, J. H. Song, J. Liu and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves”, Science 316(5821), 102–105 (2007). http://dx.doi.org/10.1126/science.1139366
B. Dindar and S. Icli, “Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight”, J. Photochem. Photobiol. A: Chem. 140(3), 263–268 (2001). http://dx.doi.org/10.1016/S1010-6030(01)00414-2
M. A. Behnajady, N. Modirshahla and R. Hamzavi, “Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst”, J. Hazard. Mater. 133(1), 226–232 (2006). http://dx.doi.org/10.1016/j.jhazmat.2005.10.022
S. V. Bhat and F. L. Deepak, “Tuning the bandgap of ZnO by substitution with Mn2+, Co2+ and Ni2+, Solid State Comm. 135(6), 345–347 (2005). http://dx.doi.org/10.1016/j.ssc.2005.05.051
T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, “Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors”, Science 287(5455), 1019–1022 (2000). http://dx.doi.org/10.1126/science.287.5455.1019
Quarta, R. Di Corato, L. Manna, S. Argentiere, R. Cingolani, G. Barbarella and T. Pellegrino, “ Multifunctional nanostructures based on inorganic nanoparticles and oligothiophenes and their exploitation for cellular studies”, J. Am. Chem. Soc. 130(32), 10545–10555 (2008). http://dx.doi.org/10.1021/ja800102v
Morfesis, D. Fairhurst, NSTI Nanotechnology Conference and Trade Show. NSTI Nanotech Anaheim, CA May 8–12, (2005).
W. J. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications”, Expert Opin. Drug Deliv. 7(9), 1063–1077, (2010). http://dx.doi.org/10.1517/17425247.2010.502560
Rita John and Rajaram Rajakumari, “Synthesis and characterization of rare earth ion doped nano ZnO”, Nano Micro Lett. 4(2), 65–72 (2012). http://dx.doi.org/10.3786/nml.v4i2.p65-72
J. Iqbal, B. Wang, X. F. Liu, H. Be, D. P. Yu and R. H. Yu, “Oxygen-vacancy-induced green emission and room-temperature ferromagnetism in Ni-doped ZnO nanorods”, New Journal Phys. 11(6), 063009 (2009). http://dx.doi.org/10.1088/1367-2630/11/6/063009
Y. J. Li, C. Y. Wang, M. Y. Lu, K. M. Li and L. J. Chen, “Electrodeposited hexagonal ringlike superstructures composed of hexagonal Codoped ZnO nanorods with optical tuning and hightemperature ferromagnetic properties”, Cryst. Growth Des. 8(8), 2598–2602 (2008). http://dx.doi.org/10.1021/cg7007864
X. Y. Kong, Y. Ding, R. Yang and Z. L. Wang, “Singlecrystal nanorings formed by epitaxial self-coiling of polar nanobelts”, Science 303(5662), 1348–1351 (2004). http://dx.doi.org/10.1126/science.1092356
Z. Y. Tang, N. A. Kotov and M. Giersig, “Spontaneous organization of single CdTe nanoparticles into luminescent nanowires”, Science 297(5579), 237–240 (2002). http://dx.doi.org/10.1126/science.1072086
J. M. D. Coey, M. Viret and S. von Molnar, “Mixedvalence manganite”, Adv. Phys. 48(2), 167–293 (1999). http://dx.doi.org/10.1080/000187399243455
G.R. Li, T. Hu, G. L. Pan, T. Y. Yan, X. P. Gao and H. Y. Zhu, “Morphology- function relationship of ZnO: polar planes, oxygen vacancies, and activity”, J. Phys. Chem. C 112(31), 11859–11864 (2008). http://dx.doi.org/10.1021/jp8038626
S. Baek, J. Song and S. Lim, “Improvement of the optical properties of ZnO nanorods by Fe doping”, Physica B 399(2), 101–104 (2007). http://dx.doi.org/10.1016/j.physb.2007.05.030
J. F. Moulder, William F. Stickle, Peter E. Sobol and Kenneth D. Bomben “Handbook of X-ray photoelectron spectroscopy”, Perkin Elmer Corporation, 84–85, (1992).
Y. W. Chen, Y. C. Liu, S. X. Lu, C. S. Xu, C. L. Shao, C. Wang, J. Y. Zhang, Y. M. Lu, D. Z. Shen and X. W. Fan, “Optical properties of ZnO and ZnO: in nanorods assembled by sol-gel method”, J. Chem. Phys. 123(13), 134701 (2005). http://dx.doi.org/10.1063/1.2009731
A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures”, Adv. Funct. Mater. 14(9), 856–864, (2004). http://dx.doi.org/10.1002/adfm.200305082
W. Li, Y. Wang, H. Lin, S. Ismat Shah, C. P. Huang, D. J. Doren, S. A. Rykov, J. G. Chen and M. A. Barteau, “Band gap tailoring of Nd3+ -doped TiO2 nanoparticles”, Appl. Phys. Lett. 83(20), 4143–4145 (2003). http://dx.doi.org/10.1063/1.1627962
J. Iqbal, X. Liu and H. Zhu, “Trapping of Ce electrons in band gap and room temperature ferromagnetism of Ce4+ doped ZnO nanowires”, J. Appl. Phys. 106(8), 083515-083515-6 (2009). http://dx.doi.org/10.1063/1.3245325
S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton and T. Steiner, “Dilute magnetic semiconducting oxides”, Semicond. Sci. Technol. 19(10), 54–59 (2004). http://dx.doi.org/10.1088/0268-1242/19/10/R01
M. Venkatesan, C. B. Fitzgerald, J. G. Lunney and J. M. D. Coey, “Anisotropic ferromagnetism in substituted zinc oxide”, Phys. Rev. Lett. 93(17), 177206 (2004). http://dx.doi.org/10.1103/PhysRevLett.93.177206
M. Venkatesan, C. B. Fitzgerald and J. M. D. Coey, “Thin films: unexpected magnetism in a dielectric oxide”, Nature 430(7000), 630–630 (2004). http://dx.doi.org/10.1038/430630a
N. Khare, M. J. Kappers, M. Wei, M.G. Blamire and J. L. Macmanus-Driscoll, “Defect-induced ferromagnetism in Co-doped ZnO”, Adv. Mater. 18(11), 1449–1452 (2006). http://dx.doi.org/10.1002/adma.200502200
B. B. Straumal, S. G. Protasova, A. A. Mazilkin, G. Schütz, E. Goering, B. Baretzky and P. B. Straumal, “Ferromagnetism of zinc oxide nanograined films”, JETP Letters. 97(6), 367–377 (2013). http://dx.doi.org/10.1134/S0021364013060143
B. B. Straumal, S. G. Protasova, A. A. Mazilkin, T. Tietze, E. Goering, G. Schütz, P. B. Straumal and B. Baretzky, “Ferromagnetic behaviour of Fe-doped ZnO nanograined films”, Beilstein J. Nanotechnol. 4(1), 361–369 (2013). http://dx.doi.org/10.3762/bjnano.4.42
T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J. I. Yeh, J. I. Zink and A. E. Nel, “Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties”, ACS Nano. 2(10), 2121–2134 (2008). http://dx.doi.org/10.1021/nn800511k
C. Hanley, A. Thurber, C. Hanna, A. Punnoose, J. Zhang and D. G. Wingett, “The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction”, Nanoscale Res. Lett. 4(12), 1409–1420 (2009). http://dx.doi.org/10.1007/s11671-009-9413-8