Research Progress in Improving the Rate Performance of LiFePO4 Cathode Materials
Corresponding Author: Hao Wang
Nano-Micro Letters,
Vol. 6 No. 3 (2014), Article Number: 209-226
Abstract
Olivine lithium iron phosphate (LiFePO4) is considered as a promising cathode material for high power-density lithium ion battery due to its high capacity, long cycle life, environmental friendly, low cost, and safety consideration. The theoretical capacity of LiFePO4 based on one electron reaction is 170 mAh g−1 at the stable voltage plateau of 3.5 V vs. Li/Li+. However, the instinct drawbacks of olivine structure induce a poor rate performance, resulting from the low lithium ion diffusion rate and low electronic conductivity. In this review, we summarize the methods for enhancing the rate performance of LiFePO4 cathode materials, including carbon coating, elements doping, preparation of nanosized materials, porous materials and composites, etc. Meanwhile, the advantages and disadvantages of above methods are also discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wang and G. Cao, “Developments in nanostructured cathode materials for high-performance lithium-ion batteries”, Adv. Mater. 20(12), 2251–2269 (2008). http://dx.doi.org/10.1002/adma.200702242
- G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim and H.-J. Sohn, “Prospective materials and applications for Li secondary batteries”, Energ. Environ. Sci. 4(6), 1986–2002 (2011). http://dx.doi.org/10.1039/C0EE00831A
- J. Wang and X. Sun, “Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries”, Energ. Environ. Sci. 5(1), 5163–5185 (2012). http://dx.doi.org/10.1039/c1ee01263k
- A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries”, J. Electrochem. Soc. 144(4), 1188–1194 (1997). http://dx.doi.org/10.1149/1.1837571
- A. Ritchie and W. Howard, “Recent developments and likely advances in lithium-ion batteries”, J. Power Sources 162(2), 809–812 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.07.014
- T. Ohzuku and R. J. Brodd, “An overview of positive-electrode materials for advanced lithium-ion batteries”, J. Power Sources 174(2), 449–456 (2007). http://dx.doi.org/10.1016/j.jpowsour.2007.06.154
- D. Jugović and D. Uskoković, “A review of recent developments in the synthesis procedures of lithium iron phosphate powders”, J. Power Sources 190(2), 538–544 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.01.074
- K. Tang, J. Sun, X. Yu, H. Li and X. Huang, “Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity”, Electrochim. Acta. 54(26), 6565–6569 (2009). http://dx.doi.org/10.1016/j.electacta.2009.06.030
- Y. Zhang, Q. Y. Huo, P. P. Du, L. Z. Wang, A. Q. Zhang, Y. H. Song, Y. Lv and G. Y. Li, “Advances in new cathode material LiFePO4 for lithium-ion batteries”, Synthetic Met. 162(13–14), 1315–1326 (2012). http://dx.doi.org/10.1016/j.synthmet.2012.04.025
- S. Y. Chung, J. T. Bloking and Y. M. Chiang, “Electronically conductive phospho-olivines as lithium storage electrodes”, Nat. Mater. 1(2), 123–8 (2002). http://dx.doi.org/10.1038/nmat732
- J. Molenda, A. Stoklosa and T. Baok, “Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties”, Solid State Ionics 36(1–2), 53–58 (1989). http://dx.doi.org/10.1016/0167-2738(89)90058-1
- Y. Shimakawa, T. Numata and J. Tabuchi, “Verwey-type transition and magnetic properties of the LiMn2O4 spinels”, J. Solid State Chem. 131(1), 138–143 (1997). http://dx.doi.org/10.1006/jssc.1997.7366
- H. C. Dinh, S. I. Mho and I. H. Yeo, “Electrochemical analysis of conductive polymer-coated LiFePO4 nanocrystalline cathodes with controlled morphology”, Electroanal. 23(9), 2079–2086 (2011). http://dx.doi.org/10.1002/elan.201100222
- H. Fang, Z. Pan, L. Li, Y. Yang, G. Yan, G. Li and S. Wei, “The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity”, Electrochem. Commun. 10(7), 1071–1073 (2008). http://dx.doi.org/10.1016/j.elecom.2008.05.010
- L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang and J. B. Goodenough, “Development and challenges of LiFePO4 cathode material for lithium-ion batteries”, Energ. Environ. Sci. 4(2), 269 (2011). http://dx.doi.org/10.1039/c0ee00029a
- M. S. Islam, D. J. Driscoll, C. A. J. Fisher and P. R. Slater, “Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material”, Chem. Mater. 17(20), 5085–5092 (2005). http://dx.doi.org/10.1021/cm050999v
- J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature 414(6861), 359–367 (2001). http://dx.doi.org/10.1038/35104644
- Y. Wang, J. Wang, J. Yang and Y. Nuli, “High-rate LiFePO4 electrode material synthesized by a novel route from FePO4·4H2O”, Adv. Funct. Mater. 16(16), 2135–2140 (2006). http://dx.doi.org/10.1002/adfm.200600442
- K. Hanai, T. Maruyama, N. Imanishi, A. Hirano, Y. Takeda and O. Yamamoto, “Enhancement of electrochemical performance of lithium dry polymer battery with LiFePO4/carbon composite cathode”, J. Power Sources 178(2), 789–794 (2008). http://dx.doi.org/10.1016/j.jpowsour.2007.10.004
- M. M. Doeff, J. D. Wilcox, R. Kostecki and G. Lau, “Optimization of carbon coatings on LiFePO4”, J. Power Sources 163(1), 180–184 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.11.075
- Y. Kadoma, J.-M. Kim, K. Abiko, K. Ohtsuki, K. Ui and N. Kumagai, “Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose”, Electrochim. Acta 55(3), 1034–1041 (2010). http://dx.doi.org/10.1016/j.electacta.2009.09.029
- S. T. Myung, S. Komaba, N. Hirosaki, H. Yashiro and N. Kumagai, “Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material”, Electrochim. Acta 49(24), 4213–4222 (2004). http://dx.doi.org/10.1016/j.electacta.2004.04.016
- M. R. Yang, T. H. Teng and S. H. Wu, “LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis”, J. Power Sources 159(1), 307–311 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.04.113
- M. A. E. Sanchez, G. E. S. Brito, M. C. A. Fantini, G. F. Goya and J. R. Matos, “Synthesis and characterization of LiFePO4 prepared by sol—gel technique”, Solid State Ionics 177(5–6), 497–500 (2006). http://dx.doi.org/10.1016/j.ssi.2005.11.018
- Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu and H. G. Pan, “Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C”, J. Power Sources 184(2), 444–448 (2008). http://dx.doi.org/10.1016/j.jpowsour.2008.03.026
- K. Wang, R. Cai, T. Yuan, X. Yu, R. Ran and Z. Shao, “Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source”, Electrochim. Acta 54(10), 2861–2868 (2009). http://dx.doi.org/10.1016/j.electacta.2008.11.012
- S. A. Needham, A. Calka, G. X. Wang, A. Mosbah and H. K. Liu, “A new rapid synthesis technique for electrochemically active materials used in energy storage applications”, Electrochem. Commun. 8(3), 434–438 (2006). http://dx.doi.org/10.1016/j.elecom.2005.12.011
- L. Wang, G. C. Liang, X. Q. Ou, X. K. Zhi, J. P. Zhang and J. Y. Cui, “Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction”, J. Power Sources 189(1), 423–428 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.07.032
- S. H. Ju and Y. C. Kang, “LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black”, Mater. Chem. Phys. 107(2–3), 328–333 (2008). http://dx.doi.org/10.1016/j.matchemphys.2007.07.025
- Y. H. Nien, J. R. Carey and J. S. Chen, “Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors”, J. Power Sources 193(2), 822–827 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.04.013
- Y. D. Cho, G. T. K. Fey and H. M. Kao, “The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes”, J. Power Sources 189(1), 256–262 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.09.053
- R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik and J. Jamnik, “Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites”, J. Electrochem. Soc. 152(3), A607–A610 (2005). http://dx.doi.org/10.1149/1.1860492
- H. Huang, S. C. Yin and L. F. Nazar, “Approaching theoretical capacity of LiFePO4 at room temperature at high rates”, Electrochem. Solid ST. 4(10), A170–A172 (2001). http://dx.doi.org/10.1149/1.1396695
- B. Zhao, Y. Jiang, H. Zhang, H. Tao, M. Zhong and Z. Jiao, “Morphology and electrical properties of carbon coated LiFePO4 cathode materials”, J. Power Sources 189(1), 462–466 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.12.069
- Y. Wang, Y. Wang, E. Hosono, K. Wang and H. Zhou, “The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method”, Angew. Chem. Int. Ed. Engl. 47(39), 7461–5 (2008). http://dx.doi.org/10.1002/anie.200802539
- Z. Chen and J. R. Dahn, “Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density”, J. Electrochem. Soc. 149(9), A1184–A1189 (2002). http://dx.doi.org/10.1149/1.1498255
- D. Zhang, X. Yu, Y. Wang, R. Cai, Z. Shao, X.-Z. Liao and Z.-F. Ma, “Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor”, J. Electrochem. Soc. 156(10), A802–A808 (2009). http://dx.doi.org/10.1149/1.3183880
- A. V. Murugan, T. Muraliganth and A. Manthiram, “Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries”, J. Phys. Chem. C 112(37), 14665–14671 (2008). http://dx.doi.org/10.1021/jp8053058
- A. Vadivel Murugan, T. Muraliganth and A. Manthiram, “One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M=Mn, Fe, and Co) cathodes”, J. Electrochem. Soc. 156(2), A79–A83 (2009). http://dx.doi.org/10.1149/1.3028304
- C. R. Sides, F. Croce, V. Y. Young, C. R. Martin and B. Scrosati, “A high-rate, nanocomposite LiFePO4/carbon cathode”, Electrochem. Solid ST. 8(9), A484 (2005). http://dx.doi.org/10.1149/1.1999916
- S. T. Yang, N. H. Zhao, H. Y. Dong, J. X. Yang and H. Y. Yue, “Synthesis and characterization of LiFePO4 cathode material dispersed with nano-structured carbon”, Electrochim. Acta. 51(1), 166–171 (2005). http://dx.doi.org/10.1016/j.electacta.2005.04.013
- H. Liu, Y. Feng, Z. Wang, K. Wang and J. Xie, “A PVB-based rheological phase approach to nano-LiFePO4/C composite cathodes”, Powder Technol. 184(3), 313–317 (2008). http://dx.doi.org/10.1016/j.powtec.2007.09.002
- A. F. Liu, Z. H. Hu, Z. B. Wen, L. Lei and J. An, “LiFePO4/C with high capacity synthesized by carbothermal reduction method”, Ionics 16(4), 311–316 (2009). http://dx.doi.org/10.1007/s11581-009-0405-6
- H. Xie and Z. Zhou, “Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion battery”, Electrochim. Acta 51(10), 2063–2067 (2006). http://dx.doi.org/10.1016/j.electacta.2005.07.014
- J. Xu and G. Chen, “Effects of doping on the electronic properties of LiFePO4: A first-principles investigation”, Physica B: Condens. Matter 405(3), 803–807 (2010). http://dx.doi.org/10.1016/j.physb.2009.05.035
- G. X. Wang, S. L. Bewlay, K. Konstantinov, H. K. Liu, S. X. Dou and J. H. Ahn, “Physical and electrochemical properties of doped lithium iron phosphate electrodes”, Electrochim. Acta. 50(2–3), 443–447 (2004). http://dx.doi.org/10.1016/j.electacta.2004.04.047
- T. H. Teng, M. R. Yang, S. h. Wu and Y. P. Chiang, “Electrochemical properties of LiFe0.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis”, Solid State Commun. 142(7), 389–392 (2007). http://dx.doi.org/10.1016/j.ssc.2007.03.010
- X. Z. Liao, Y. S. He, Z. F. Ma, X. M. Zhang and L. Wang, “Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials”, J. Power Sources 174(2), 720–725 (2007). http://dx.doi.org/10.1016/j.jpowsour.2007.06.146
- P. S. Herle, B. Ellis, N. Coombs and L. F. Nazar, “Nano-network electronic conduction in iron and nickel olivine phosphates”, Nat. Mater. 3(3), 147–152 (2004). http://dx.doi.org/10.1038/nmat1063
- C. Delacourt, C. Wurm, L. Laffont, J. B. Leriche and C. Masquelier, “Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites”, Solid State Ionics 177(3–4), 333–341 (2006). http://dx.doi.org/10.1016/j.ssi.2005.11.003
- C. Ouyang, S. Shi, Z. Wang, X. Huang and L. Chen, “First-principles study of Li ion diffusion in LiFePO4”, Phys. Rev. B 69(10), 104303 (2004).
- M. Abbate, S. M. Lala, L. A. Montoro and J. M. Rosolen, “Ti-, Al-, and Cu-doping induced gap states in LiFePO4”, Electrochem. Solid ST. 8(6), A288–A290 (2005). http://dx.doi.org/10.1149/1.1895286
- P. P. Prosini, D. Zane and M. Pasquali, “Improved electrochemical performance of a LiFePO4-based composite cathode”, Electrochim. Acta. 46(23), 3517–3523 (2001). http://dx.doi.org/10.1016/S0013-4686(01)00631-4
- D. Wang, H. Li, S. Shi, X. Huang and L. Chen, “Improving the rate performance of LiFePO4 by Fe-site doping”, Electrochim. Acta. 50(14), 2955–2958 (2005). http://dx.doi.org/10.1016/j.electacta.2004.11.045
- H. C. Shin, S. B. Park, H. Jang, K. Y. Chung, W. I. Cho, C. S. Kim and B. W. Cho, “Rate performance and structural change of Cr-doped LiFePO4/C during cycling”, Electrochim. Acta. 53(27), 7946–7951 (2008). http://dx.doi.org/10.1016/j.electacta.2008.06.005
- C. S. Sun, Z. Zhou, Z. G. Xu, D. G. Wang, J. P. Wei, X. K. Bian and J. Yan, “Improved high-rate charge/discharge performances of LiFePO4/C via V-doping”, J. Power Sources 193(2), 841–845 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.03.061
- L. Yang, L. Jiao, Y. Miao and H. Yuan, “Improvement of electrochemical properties of LiFePO4/C cathode materials by chlorine doping”, J. Solid State Electr. 13(10), 1541–1544 (2008). http://dx.doi.org/10.1007/s10008-008-0721-1
- F. Lu, Y. Zhou, J. Liu and Y. Pan, “Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route”, Electrochim. Acta 56(24), 8833–8838 (2011). http://dx.doi.org/10.1016/j.electacta.2011.07.079
- C. S. Sun, Y. Zhang, X. J. Zhang and Z. Zhou, “Structural and electrochemical properties of Cl-doped LiFePO4/C”, J. Power Sources 195(11), 3680–3683 (2010). http://dx.doi.org/10.1016/j.jpowsour.2009.12.074
- Z.-H. Wang, L.-X. Yuan, M. Wu, D. Sun and Y.-H. Huang, “Effects of Na+ and Cl- co-doping on electrochemical performance in LiFePO4/C”, Electrochim. Acta 56(24), 8477–8483 (2011). http://dx.doi.org/10.1016/j.electacta.2011.07.018
- Y. Lu, J. Shi, Z. Guo, Q. Tong, W. Huang and B. Li, “Synthesis of LiFe1–xNixPO4/C composites and their electrochemical performance”, J. Power Sources 194(2), 786–793 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.05.041
- S. Beninati, L. Damen and M. Mastragostino, “Fast sol—gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application”, J. Power Sources. 194(2), 1094–1098 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.06.035
- K. T. Lee, W. H. Kan and L. F. Nazar, “Proof of intercrystallite ionic transport in LiMPO4 electrodes (M = Fe, Mn)”, J. Am. Chem. Soc. 131(17), 6044–6045 (2009). http://dx.doi.org/10.1021/ja8090559
- M. Gaberscek, R. Dominko and J. Jamnik, “Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes”, Electrochem. Commun. 9(12), 2778–2783 (2007). http://dx.doi.org/10.1016/j.elecom.2007.09.020
- C. Delacourt, P. Poizot, S. Levasseur and C. Masquelier, “Size effects on carbon-free LiFePO4 powders”, Electrochem. Solid ST. 9(7), A352–A355 (2006). http://dx.doi.org/10.1149/1.2201987
- P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon and C. Masquelier, “Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4”, Nat. Mater. 7(9), 741–747 (2008). http://dx.doi.org/10.1038/nmat2245
- S. Lim, C. S. Yoon and J. Cho, “Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries”, Chem. Mater. 20(14), 4560–4564 (2008). http://dx.doi.org/10.1021/cm8006364
- G. Qin, Q. Wu, J. Zhao, Q. Ma and C. Wang, “C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries”, J. Power Sources 248(15), 588–595 (2014). http://dx.doi.org/10.1016/j.jpowsour.2013.06.070
- H. Deng, S. Jin, L. Zhan, W. Qiao and L. Ling, “Nest-like LiFePO4/C architectures for high performance lithium ion batteries”, Electrochim. Acta 78(1), 633–637 (2012). http://dx.doi.org/10.1016/j.electacta.2012.06.059
- G. Qin, S. Xue, Q. Ma and C. Wang, “The morphology controlled synthesis of 3D networking LiFePO4 with multiwalled-carbon nanotubes for Li-ion batteries”, CrystEngComm. 16(2), 260 (2014). http://dx.doi.org/10.1039/c3ce41967c
- K. Saravanan, M. V. Reddy, P. Balaya, H. Gong, B. V. R. Chowdari and J. J. Vittal, “Storage performance of LiFePO4 nanoplates”, J. Mater. Chem. 19(5), 605–610 (2009). http://dx.doi.org/10.1039/b817242k
- M. H. Lee, J. Y. Kim and H. K. Song, “A hollow sphere secondary structure of LiFePO4 nanoparticles”, Chem. Commun. (Camb). 46(36), 6795–6797 (2010). http://dx.doi.org/10.1039/c0cc02522d
- Y. S. Hu, Y. G. Guo, R. Dominko, M. Gaberscek, J. Jamnik and J. Maier, “Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect”, Adv. Mater. 19(15), 1963–1966 (2007). http://dx.doi.org/10.1002/adma.200700697
- R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. M. Goupil, S. Pejovnik and J. Jamnik, “Porous olivine composites synthesized by sol—gel technique”, J. Power Sources 153(2), 274–280 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.05.033
- F. Yu, J. Zhang, Y. Yang and G. Song, “Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method”, J. Power Sources 189(1), 794–797 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.07.074
- G. Qin, Q. Ma and C. Wang, “A porous C/LiFePO4/multiwalled carbon nanotubes cathode material for lithium ion batteries”, Electrochim. Acta 115(1), 407–415 (2014). http://dx.doi.org/10.1016/j.electacta.2013.10.177
- R. Dominko, M. Bele, J.-M. Goupil, M. Gaberscek, D. Hanzel, I. Arcon and J. Jamnik, “Wired porous cathode materials: A novel concept for synthesis of LiFePO4”, Chem. Mater. 19(12), 2960–2969 (2007). http://dx.doi.org/10.1021/cm062843g
- R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel and J. Jamnik, “Impact of LiFePO4/C composites porosity on their electrochemical performance”, J. Electrochem. Soc. 152(5), A858–A863 (2005). http://dx.doi.org/10.1149/1.1872674
- C. M. Doherty, R. A. Caruso, B. M. Smarsly, P. Adelhelm and C. J. Drummond, “Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries”, Chem. Mater. 21(21), 5300–5306 (2009). http://dx.doi.org/10.1021/cm9024167
- C. M. Doherty, R. A. Caruso, B. M. Smarsly and C. J. Drummond, “Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries”, Chem. Mater. 21(13), 2895–2903 (2009). http://dx.doi.org/10.1021/cm900698p
- N. N. Sinha, C. Shivakumara and N. Munichandraiah, “High rate capability of a dual-porosity LiFePO4/C composite”, ACS Appl. Mater. Inter. 2(7), 2031–2038 (2010). http://dx.doi.org/10.1021/am100309w
- F. Yu, J. Zhang, Y. Yang and G. Song, “Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol—gel-spray drying method”, J. Power Sources 195(19), 6873–6878 (2010). http://dx.doi.org/10.1016/j.jpowsour.2010.01.042
- J. Qian, M. Zhou, Y. Cao, X. Ai and H. Yang, “Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries”, J. Phys. Chem. C 114(8), 3477–3482 (2010). http://dx.doi.org/10.1021/jp912102k
- M. Xie, X. Zhang, J. Laakso, H. Wang and E. Lev鋘en, “New method of postmodifying the particle size and morphology of LiFePO4 via supercritical carbon dioxide”, Cryst. Growth Des. 12(5), 2166–2168 (2012). http://dx.doi.org/10.1021/cg3003146
- M. Xie, X. Zhang, S. Deng, Y. Wang, H. Wang, J. Liu, H. Yan, J. Laakso and E. Lev鋘en, “The effects of supercritical carbon dioxide treatment on the morphology and electrochemical performance of LiFePO4 cathode materials”, RSC Adv. 3(31), 12786–12793 (2013). http://dx.doi.org/10.1039/c3ra41133h
- M. Xie, X. Zhang, Y. Wang, S. Deng, H. Wang, J. Liu, H. Yan, J. Laakso and E. Levänen, “A template-free method to prepare porous LiFePO4 via supercritical carbon dioxide”, Electrochim. Acta 94(1), 16–20 (2013). http://dx.doi.org/10.1016/j.electacta.2013.01.131
- M. Gaberscek, R. Dominko, M. Bele, M. Remskar, D. Hanzel and J. Jamnik, “Porous, carbon-decorated LiFePO4 prepared by sol—gel method based on citric acid”, Solid State Ionics 176(19–22), 1801–1805 (2005). http://dx.doi.org/10.1016/j.ssi.2005.04.034
- R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel and J. Jamnik, “Impact of LiFePO4/C composites porosity on their electrochemical performance”, J. Electrochem. Soc. 152(5), A858-A863 (2005). http://dx.doi.org/10.1149/1.1872674
- A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa and A. Rousset, “Specific surface area of carbon nanotubes and bundles of carbon nanotubes”, Carbon 39(4), 507–514 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00155-X
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306(5696), 666–669 (2004). http://dx.doi.org/10.1126/science.1102896
- A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6(3), 183–191 (2007). http://dx.doi.org/10.1038/nmat1849
- Z.-L. Wang, D. Xu, H.-G. Wang, Z. Wu and X.-B. Zhang, “In situ fabrication of porous graphene electrodes for high-performance energy storage”, ACS Nano 7(3), 2422–2430 (2013). http://dx.doi.org/10.1021/nn3057388
- L. P. Biro, P. Nemes-Incze and P. Lambin, “Graphene: nanoscale processing and recent applications”, Nanoscale 4(6), 1824–1839 (2012). http://dx.doi.org/10.1039/C1NR11067E
- O. A. Vargas C, A. Caballero and J. Morales, “Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?”, Nanoscale 4(6), 2083–2092 (2012). http://dx.doi.org/10.1039/C2NR11936F
- F. Y. Su, Y. B. He, B. Li, X. C. Chen, C. H. You, W. Wei, W. Lv, Q. H. Yang and F. Kang, “Could graphene construct an effective conducting network in a high-power lithium ion battery?”, Nano Energy 1(3), 429–439 (2012). http://dx.doi.org/10.1016/j.nanoen.2012.02.004
- F. Y. Su, C. You, Y. B. He, W. Lv, W. Cui, F. Jin, B. Li, Q. H. Yang and F. Kang, “Flexible and planar graphene conductive additives for lithium-ion batteries”, J. Mater. Chem. 20(43), 9644–9650 (2010). http://dx.doi.org/10.1039/C0JM01633K
- X. Zhou, F. Wang, Y. Zhu and Z. Liu, “Graphene modified LiFePO4 cathode materials for high power lithium ion batteries”, J. Mater. Chem. 21(10), 3353–3358 (2011). http://dx.doi.org/10.1039/c0jm03287e
- C. Su, X. Bu, L. Xu, J. Liu and C. Zhang, “A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries”, Electrochim. Acta. 64(1), 190–195 (2012). http://dx.doi.org/10.1016/j.electacta.2012.01.014
- J. Popovic, R. Demir-Cakan, J. Tornow, M. Morcrette, D. S. Su, R. Schlögl, M. Antonietti and M. M. Titirici, “LiFePO4 mesocrystals for lithium-ion batteries”, Small 7(8), 1127–1135 (2011). http://dx.doi.org/10.1002/smll.201002000
- J. Ha, S. K. Park, S. H. Yu, A. Jin, B. Jang, S. Bong, I. Kim, Y. E. Sung and Y. Piao, “A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries”, Nanoscale 5(18), 8647–55 (2013). http://dx.doi.org/10.1039/c3nr02738d
- Y. Shi, S.-L. Chou, J.-Z. Wang, D. Wexler, H.-J. Li, H.-K. Liu and Y. Wu, “Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability”, J. Mater. Chem. 22(32), 16465–16470 (2012). http://dx.doi.org/10.1039/c2jm32649c
- H. Wang, J. T. Robinson, G. Diankov and H. Dai, “Nanocrystal growth on graphene with various degrees of oxidation”, J. Am. Chem. Soc. 132(10), 3270–3271 (2010). http://dx.doi.org/10.1021/ja100329d
- Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, “Carbon-based supercapacitors produced by activation of graphene”, Science 332(6037), 1537–41 (2011). http://dx.doi.org/10.1126/science.1200770
- J. Yang, J. Wang, D. Wang, X. Li, D. Geng, G. Liang, M. Gauthier, R. Li and X. Sun, “3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries”, J. Power Sources 208(15), 340–344(2012). http://dx.doi.org/10.1016/j.jpowsour.2012.02.032
- J. Yang, J. Wang, Y. Tang, D. Wang, X. Li, Y. Hu, R. Li, G. Liang, T.-K. Sham and X. Sun, “LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene”, Energ. Environ. Sci. 6(5), 1521–1528 (2013). http://dx.doi.org/10.1039/C3EE24163G
- R. H. Baughman, A. A. Zakhidov and W. A. de Heer, “Carbon nanotubes—the route toward applications”, Science 297(5582), 787–792 (2002). http://dx.doi.org/10.1126/science.1060928
- T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, “Electrical conductivity of individual carbon nanotubes”, Nature 382(6586), 54–56 (1996). http://dx.doi.org/10.1038/382054a0
- J. Yang, J. Wang, X. Li, D. Wang, J. Liu, G. Liang, M. Gauthier, Y. Li, D. Geng, R. Li and X. Sun, “Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries”, J. Mater. Chem. 22(15), 7537–7543 (2012). http://dx.doi.org/10.1039/c2jm30380a
- H. Liu, Y. Zhang, R. Li, X. Sun, S. Désilets, H. Abou-Rachid, M. Jaidann and L.-S. Lussier, “Structural and morphological control of aligned nitrogen-doped carbon nanotubes”, Carbon 48(5), 1498–1507 (2010). http://dx.doi.org/10.1016/j.carbon.2009.12.045
- Y. T. Lee, N. S. Kim, S. Y. Bae, J. Park, S.-C. Yu, H. Ryu and H. J. Lee, “Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900-1100°C”, J. Phys. Chem. B 107(47), 12958–12963 (2003). http://dx.doi.org/10.1021/jp0274536
- J. Liu, Y. Zhang, M. I. Ionescu, R. Li and X. Sun, “Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis”, Appl. Surf. Sci. 257(17), 7837–7844 (2011). http://dx.doi.org/10.1016/j.apsusc.2011.04.041
- O. Toprakci, H. A. Toprakci, L. Ji, G. Xu, Z. Lin and X. Zhang, “Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries”, ACS Appl. Mater. Interfaces 4(3), 1273–1280 (2012). http://dx.doi.org/10.1021/am201527r
- Y. Zhou, J. Wang, Y. Hu, R. O’Hayre and Z. Shao, “A porous LiFePO4 and carbon nanotube composite”, Chem. Commun. (Camb). 46(38), 7151–3 (2010). http://dx.doi.org/10.1039/c0cc01721c
- G. Arnold, J. Garche, R. Hemmer, S. Ströbele, C. Vogler and M. Wohlfahrt-Mehrens, “Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique”, J. Power Sources 119–121(1), 247–251 (2003). http://dx.doi.org/10.1016/S0378-7753(03)00241-6
- Y. Xu, Y. Lu, L. Yan, Z. Yang and R. Yang, “Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C materials”, J. Power Sources 160(1), 570–576 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.01.042
- B. Kang and G. Ceder, “Battery materials for ultrafast charging and discharging”, Nature 458(7235), 190–193 (2009). http://dx.doi.org/10.1038/nature07853
- K. Zaghib, J. B. Goodenough, A. Mauger and C. Julien, “Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries”, J. Power Sources 194(2), 1021–1023 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.05.043
- G. Ceder and B. Kang, “Response to “unsupported claims of ultrafast charging of Li-ion batteries””, J. Power Sources. 194(2), 1024–1028 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.07.004
References
Y. Wang and G. Cao, “Developments in nanostructured cathode materials for high-performance lithium-ion batteries”, Adv. Mater. 20(12), 2251–2269 (2008). http://dx.doi.org/10.1002/adma.200702242
G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim and H.-J. Sohn, “Prospective materials and applications for Li secondary batteries”, Energ. Environ. Sci. 4(6), 1986–2002 (2011). http://dx.doi.org/10.1039/C0EE00831A
J. Wang and X. Sun, “Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries”, Energ. Environ. Sci. 5(1), 5163–5185 (2012). http://dx.doi.org/10.1039/c1ee01263k
A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries”, J. Electrochem. Soc. 144(4), 1188–1194 (1997). http://dx.doi.org/10.1149/1.1837571
A. Ritchie and W. Howard, “Recent developments and likely advances in lithium-ion batteries”, J. Power Sources 162(2), 809–812 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.07.014
T. Ohzuku and R. J. Brodd, “An overview of positive-electrode materials for advanced lithium-ion batteries”, J. Power Sources 174(2), 449–456 (2007). http://dx.doi.org/10.1016/j.jpowsour.2007.06.154
D. Jugović and D. Uskoković, “A review of recent developments in the synthesis procedures of lithium iron phosphate powders”, J. Power Sources 190(2), 538–544 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.01.074
K. Tang, J. Sun, X. Yu, H. Li and X. Huang, “Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity”, Electrochim. Acta. 54(26), 6565–6569 (2009). http://dx.doi.org/10.1016/j.electacta.2009.06.030
Y. Zhang, Q. Y. Huo, P. P. Du, L. Z. Wang, A. Q. Zhang, Y. H. Song, Y. Lv and G. Y. Li, “Advances in new cathode material LiFePO4 for lithium-ion batteries”, Synthetic Met. 162(13–14), 1315–1326 (2012). http://dx.doi.org/10.1016/j.synthmet.2012.04.025
S. Y. Chung, J. T. Bloking and Y. M. Chiang, “Electronically conductive phospho-olivines as lithium storage electrodes”, Nat. Mater. 1(2), 123–8 (2002). http://dx.doi.org/10.1038/nmat732
J. Molenda, A. Stoklosa and T. Baok, “Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties”, Solid State Ionics 36(1–2), 53–58 (1989). http://dx.doi.org/10.1016/0167-2738(89)90058-1
Y. Shimakawa, T. Numata and J. Tabuchi, “Verwey-type transition and magnetic properties of the LiMn2O4 spinels”, J. Solid State Chem. 131(1), 138–143 (1997). http://dx.doi.org/10.1006/jssc.1997.7366
H. C. Dinh, S. I. Mho and I. H. Yeo, “Electrochemical analysis of conductive polymer-coated LiFePO4 nanocrystalline cathodes with controlled morphology”, Electroanal. 23(9), 2079–2086 (2011). http://dx.doi.org/10.1002/elan.201100222
H. Fang, Z. Pan, L. Li, Y. Yang, G. Yan, G. Li and S. Wei, “The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity”, Electrochem. Commun. 10(7), 1071–1073 (2008). http://dx.doi.org/10.1016/j.elecom.2008.05.010
L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang and J. B. Goodenough, “Development and challenges of LiFePO4 cathode material for lithium-ion batteries”, Energ. Environ. Sci. 4(2), 269 (2011). http://dx.doi.org/10.1039/c0ee00029a
M. S. Islam, D. J. Driscoll, C. A. J. Fisher and P. R. Slater, “Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material”, Chem. Mater. 17(20), 5085–5092 (2005). http://dx.doi.org/10.1021/cm050999v
J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature 414(6861), 359–367 (2001). http://dx.doi.org/10.1038/35104644
Y. Wang, J. Wang, J. Yang and Y. Nuli, “High-rate LiFePO4 electrode material synthesized by a novel route from FePO4·4H2O”, Adv. Funct. Mater. 16(16), 2135–2140 (2006). http://dx.doi.org/10.1002/adfm.200600442
K. Hanai, T. Maruyama, N. Imanishi, A. Hirano, Y. Takeda and O. Yamamoto, “Enhancement of electrochemical performance of lithium dry polymer battery with LiFePO4/carbon composite cathode”, J. Power Sources 178(2), 789–794 (2008). http://dx.doi.org/10.1016/j.jpowsour.2007.10.004
M. M. Doeff, J. D. Wilcox, R. Kostecki and G. Lau, “Optimization of carbon coatings on LiFePO4”, J. Power Sources 163(1), 180–184 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.11.075
Y. Kadoma, J.-M. Kim, K. Abiko, K. Ohtsuki, K. Ui and N. Kumagai, “Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose”, Electrochim. Acta 55(3), 1034–1041 (2010). http://dx.doi.org/10.1016/j.electacta.2009.09.029
S. T. Myung, S. Komaba, N. Hirosaki, H. Yashiro and N. Kumagai, “Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material”, Electrochim. Acta 49(24), 4213–4222 (2004). http://dx.doi.org/10.1016/j.electacta.2004.04.016
M. R. Yang, T. H. Teng and S. H. Wu, “LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis”, J. Power Sources 159(1), 307–311 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.04.113
M. A. E. Sanchez, G. E. S. Brito, M. C. A. Fantini, G. F. Goya and J. R. Matos, “Synthesis and characterization of LiFePO4 prepared by sol—gel technique”, Solid State Ionics 177(5–6), 497–500 (2006). http://dx.doi.org/10.1016/j.ssi.2005.11.018
Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu and H. G. Pan, “Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C”, J. Power Sources 184(2), 444–448 (2008). http://dx.doi.org/10.1016/j.jpowsour.2008.03.026
K. Wang, R. Cai, T. Yuan, X. Yu, R. Ran and Z. Shao, “Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source”, Electrochim. Acta 54(10), 2861–2868 (2009). http://dx.doi.org/10.1016/j.electacta.2008.11.012
S. A. Needham, A. Calka, G. X. Wang, A. Mosbah and H. K. Liu, “A new rapid synthesis technique for electrochemically active materials used in energy storage applications”, Electrochem. Commun. 8(3), 434–438 (2006). http://dx.doi.org/10.1016/j.elecom.2005.12.011
L. Wang, G. C. Liang, X. Q. Ou, X. K. Zhi, J. P. Zhang and J. Y. Cui, “Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction”, J. Power Sources 189(1), 423–428 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.07.032
S. H. Ju and Y. C. Kang, “LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black”, Mater. Chem. Phys. 107(2–3), 328–333 (2008). http://dx.doi.org/10.1016/j.matchemphys.2007.07.025
Y. H. Nien, J. R. Carey and J. S. Chen, “Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors”, J. Power Sources 193(2), 822–827 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.04.013
Y. D. Cho, G. T. K. Fey and H. M. Kao, “The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes”, J. Power Sources 189(1), 256–262 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.09.053
R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik and J. Jamnik, “Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites”, J. Electrochem. Soc. 152(3), A607–A610 (2005). http://dx.doi.org/10.1149/1.1860492
H. Huang, S. C. Yin and L. F. Nazar, “Approaching theoretical capacity of LiFePO4 at room temperature at high rates”, Electrochem. Solid ST. 4(10), A170–A172 (2001). http://dx.doi.org/10.1149/1.1396695
B. Zhao, Y. Jiang, H. Zhang, H. Tao, M. Zhong and Z. Jiao, “Morphology and electrical properties of carbon coated LiFePO4 cathode materials”, J. Power Sources 189(1), 462–466 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.12.069
Y. Wang, Y. Wang, E. Hosono, K. Wang and H. Zhou, “The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method”, Angew. Chem. Int. Ed. Engl. 47(39), 7461–5 (2008). http://dx.doi.org/10.1002/anie.200802539
Z. Chen and J. R. Dahn, “Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density”, J. Electrochem. Soc. 149(9), A1184–A1189 (2002). http://dx.doi.org/10.1149/1.1498255
D. Zhang, X. Yu, Y. Wang, R. Cai, Z. Shao, X.-Z. Liao and Z.-F. Ma, “Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor”, J. Electrochem. Soc. 156(10), A802–A808 (2009). http://dx.doi.org/10.1149/1.3183880
A. V. Murugan, T. Muraliganth and A. Manthiram, “Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries”, J. Phys. Chem. C 112(37), 14665–14671 (2008). http://dx.doi.org/10.1021/jp8053058
A. Vadivel Murugan, T. Muraliganth and A. Manthiram, “One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M=Mn, Fe, and Co) cathodes”, J. Electrochem. Soc. 156(2), A79–A83 (2009). http://dx.doi.org/10.1149/1.3028304
C. R. Sides, F. Croce, V. Y. Young, C. R. Martin and B. Scrosati, “A high-rate, nanocomposite LiFePO4/carbon cathode”, Electrochem. Solid ST. 8(9), A484 (2005). http://dx.doi.org/10.1149/1.1999916
S. T. Yang, N. H. Zhao, H. Y. Dong, J. X. Yang and H. Y. Yue, “Synthesis and characterization of LiFePO4 cathode material dispersed with nano-structured carbon”, Electrochim. Acta. 51(1), 166–171 (2005). http://dx.doi.org/10.1016/j.electacta.2005.04.013
H. Liu, Y. Feng, Z. Wang, K. Wang and J. Xie, “A PVB-based rheological phase approach to nano-LiFePO4/C composite cathodes”, Powder Technol. 184(3), 313–317 (2008). http://dx.doi.org/10.1016/j.powtec.2007.09.002
A. F. Liu, Z. H. Hu, Z. B. Wen, L. Lei and J. An, “LiFePO4/C with high capacity synthesized by carbothermal reduction method”, Ionics 16(4), 311–316 (2009). http://dx.doi.org/10.1007/s11581-009-0405-6
H. Xie and Z. Zhou, “Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion battery”, Electrochim. Acta 51(10), 2063–2067 (2006). http://dx.doi.org/10.1016/j.electacta.2005.07.014
J. Xu and G. Chen, “Effects of doping on the electronic properties of LiFePO4: A first-principles investigation”, Physica B: Condens. Matter 405(3), 803–807 (2010). http://dx.doi.org/10.1016/j.physb.2009.05.035
G. X. Wang, S. L. Bewlay, K. Konstantinov, H. K. Liu, S. X. Dou and J. H. Ahn, “Physical and electrochemical properties of doped lithium iron phosphate electrodes”, Electrochim. Acta. 50(2–3), 443–447 (2004). http://dx.doi.org/10.1016/j.electacta.2004.04.047
T. H. Teng, M. R. Yang, S. h. Wu and Y. P. Chiang, “Electrochemical properties of LiFe0.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis”, Solid State Commun. 142(7), 389–392 (2007). http://dx.doi.org/10.1016/j.ssc.2007.03.010
X. Z. Liao, Y. S. He, Z. F. Ma, X. M. Zhang and L. Wang, “Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials”, J. Power Sources 174(2), 720–725 (2007). http://dx.doi.org/10.1016/j.jpowsour.2007.06.146
P. S. Herle, B. Ellis, N. Coombs and L. F. Nazar, “Nano-network electronic conduction in iron and nickel olivine phosphates”, Nat. Mater. 3(3), 147–152 (2004). http://dx.doi.org/10.1038/nmat1063
C. Delacourt, C. Wurm, L. Laffont, J. B. Leriche and C. Masquelier, “Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites”, Solid State Ionics 177(3–4), 333–341 (2006). http://dx.doi.org/10.1016/j.ssi.2005.11.003
C. Ouyang, S. Shi, Z. Wang, X. Huang and L. Chen, “First-principles study of Li ion diffusion in LiFePO4”, Phys. Rev. B 69(10), 104303 (2004).
M. Abbate, S. M. Lala, L. A. Montoro and J. M. Rosolen, “Ti-, Al-, and Cu-doping induced gap states in LiFePO4”, Electrochem. Solid ST. 8(6), A288–A290 (2005). http://dx.doi.org/10.1149/1.1895286
P. P. Prosini, D. Zane and M. Pasquali, “Improved electrochemical performance of a LiFePO4-based composite cathode”, Electrochim. Acta. 46(23), 3517–3523 (2001). http://dx.doi.org/10.1016/S0013-4686(01)00631-4
D. Wang, H. Li, S. Shi, X. Huang and L. Chen, “Improving the rate performance of LiFePO4 by Fe-site doping”, Electrochim. Acta. 50(14), 2955–2958 (2005). http://dx.doi.org/10.1016/j.electacta.2004.11.045
H. C. Shin, S. B. Park, H. Jang, K. Y. Chung, W. I. Cho, C. S. Kim and B. W. Cho, “Rate performance and structural change of Cr-doped LiFePO4/C during cycling”, Electrochim. Acta. 53(27), 7946–7951 (2008). http://dx.doi.org/10.1016/j.electacta.2008.06.005
C. S. Sun, Z. Zhou, Z. G. Xu, D. G. Wang, J. P. Wei, X. K. Bian and J. Yan, “Improved high-rate charge/discharge performances of LiFePO4/C via V-doping”, J. Power Sources 193(2), 841–845 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.03.061
L. Yang, L. Jiao, Y. Miao and H. Yuan, “Improvement of electrochemical properties of LiFePO4/C cathode materials by chlorine doping”, J. Solid State Electr. 13(10), 1541–1544 (2008). http://dx.doi.org/10.1007/s10008-008-0721-1
F. Lu, Y. Zhou, J. Liu and Y. Pan, “Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route”, Electrochim. Acta 56(24), 8833–8838 (2011). http://dx.doi.org/10.1016/j.electacta.2011.07.079
C. S. Sun, Y. Zhang, X. J. Zhang and Z. Zhou, “Structural and electrochemical properties of Cl-doped LiFePO4/C”, J. Power Sources 195(11), 3680–3683 (2010). http://dx.doi.org/10.1016/j.jpowsour.2009.12.074
Z.-H. Wang, L.-X. Yuan, M. Wu, D. Sun and Y.-H. Huang, “Effects of Na+ and Cl- co-doping on electrochemical performance in LiFePO4/C”, Electrochim. Acta 56(24), 8477–8483 (2011). http://dx.doi.org/10.1016/j.electacta.2011.07.018
Y. Lu, J. Shi, Z. Guo, Q. Tong, W. Huang and B. Li, “Synthesis of LiFe1–xNixPO4/C composites and their electrochemical performance”, J. Power Sources 194(2), 786–793 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.05.041
S. Beninati, L. Damen and M. Mastragostino, “Fast sol—gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application”, J. Power Sources. 194(2), 1094–1098 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.06.035
K. T. Lee, W. H. Kan and L. F. Nazar, “Proof of intercrystallite ionic transport in LiMPO4 electrodes (M = Fe, Mn)”, J. Am. Chem. Soc. 131(17), 6044–6045 (2009). http://dx.doi.org/10.1021/ja8090559
M. Gaberscek, R. Dominko and J. Jamnik, “Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes”, Electrochem. Commun. 9(12), 2778–2783 (2007). http://dx.doi.org/10.1016/j.elecom.2007.09.020
C. Delacourt, P. Poizot, S. Levasseur and C. Masquelier, “Size effects on carbon-free LiFePO4 powders”, Electrochem. Solid ST. 9(7), A352–A355 (2006). http://dx.doi.org/10.1149/1.2201987
P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon and C. Masquelier, “Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4”, Nat. Mater. 7(9), 741–747 (2008). http://dx.doi.org/10.1038/nmat2245
S. Lim, C. S. Yoon and J. Cho, “Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries”, Chem. Mater. 20(14), 4560–4564 (2008). http://dx.doi.org/10.1021/cm8006364
G. Qin, Q. Wu, J. Zhao, Q. Ma and C. Wang, “C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries”, J. Power Sources 248(15), 588–595 (2014). http://dx.doi.org/10.1016/j.jpowsour.2013.06.070
H. Deng, S. Jin, L. Zhan, W. Qiao and L. Ling, “Nest-like LiFePO4/C architectures for high performance lithium ion batteries”, Electrochim. Acta 78(1), 633–637 (2012). http://dx.doi.org/10.1016/j.electacta.2012.06.059
G. Qin, S. Xue, Q. Ma and C. Wang, “The morphology controlled synthesis of 3D networking LiFePO4 with multiwalled-carbon nanotubes for Li-ion batteries”, CrystEngComm. 16(2), 260 (2014). http://dx.doi.org/10.1039/c3ce41967c
K. Saravanan, M. V. Reddy, P. Balaya, H. Gong, B. V. R. Chowdari and J. J. Vittal, “Storage performance of LiFePO4 nanoplates”, J. Mater. Chem. 19(5), 605–610 (2009). http://dx.doi.org/10.1039/b817242k
M. H. Lee, J. Y. Kim and H. K. Song, “A hollow sphere secondary structure of LiFePO4 nanoparticles”, Chem. Commun. (Camb). 46(36), 6795–6797 (2010). http://dx.doi.org/10.1039/c0cc02522d
Y. S. Hu, Y. G. Guo, R. Dominko, M. Gaberscek, J. Jamnik and J. Maier, “Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect”, Adv. Mater. 19(15), 1963–1966 (2007). http://dx.doi.org/10.1002/adma.200700697
R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. M. Goupil, S. Pejovnik and J. Jamnik, “Porous olivine composites synthesized by sol—gel technique”, J. Power Sources 153(2), 274–280 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.05.033
F. Yu, J. Zhang, Y. Yang and G. Song, “Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method”, J. Power Sources 189(1), 794–797 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.07.074
G. Qin, Q. Ma and C. Wang, “A porous C/LiFePO4/multiwalled carbon nanotubes cathode material for lithium ion batteries”, Electrochim. Acta 115(1), 407–415 (2014). http://dx.doi.org/10.1016/j.electacta.2013.10.177
R. Dominko, M. Bele, J.-M. Goupil, M. Gaberscek, D. Hanzel, I. Arcon and J. Jamnik, “Wired porous cathode materials: A novel concept for synthesis of LiFePO4”, Chem. Mater. 19(12), 2960–2969 (2007). http://dx.doi.org/10.1021/cm062843g
R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel and J. Jamnik, “Impact of LiFePO4/C composites porosity on their electrochemical performance”, J. Electrochem. Soc. 152(5), A858–A863 (2005). http://dx.doi.org/10.1149/1.1872674
C. M. Doherty, R. A. Caruso, B. M. Smarsly, P. Adelhelm and C. J. Drummond, “Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries”, Chem. Mater. 21(21), 5300–5306 (2009). http://dx.doi.org/10.1021/cm9024167
C. M. Doherty, R. A. Caruso, B. M. Smarsly and C. J. Drummond, “Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries”, Chem. Mater. 21(13), 2895–2903 (2009). http://dx.doi.org/10.1021/cm900698p
N. N. Sinha, C. Shivakumara and N. Munichandraiah, “High rate capability of a dual-porosity LiFePO4/C composite”, ACS Appl. Mater. Inter. 2(7), 2031–2038 (2010). http://dx.doi.org/10.1021/am100309w
F. Yu, J. Zhang, Y. Yang and G. Song, “Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol—gel-spray drying method”, J. Power Sources 195(19), 6873–6878 (2010). http://dx.doi.org/10.1016/j.jpowsour.2010.01.042
J. Qian, M. Zhou, Y. Cao, X. Ai and H. Yang, “Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries”, J. Phys. Chem. C 114(8), 3477–3482 (2010). http://dx.doi.org/10.1021/jp912102k
M. Xie, X. Zhang, J. Laakso, H. Wang and E. Lev鋘en, “New method of postmodifying the particle size and morphology of LiFePO4 via supercritical carbon dioxide”, Cryst. Growth Des. 12(5), 2166–2168 (2012). http://dx.doi.org/10.1021/cg3003146
M. Xie, X. Zhang, S. Deng, Y. Wang, H. Wang, J. Liu, H. Yan, J. Laakso and E. Lev鋘en, “The effects of supercritical carbon dioxide treatment on the morphology and electrochemical performance of LiFePO4 cathode materials”, RSC Adv. 3(31), 12786–12793 (2013). http://dx.doi.org/10.1039/c3ra41133h
M. Xie, X. Zhang, Y. Wang, S. Deng, H. Wang, J. Liu, H. Yan, J. Laakso and E. Levänen, “A template-free method to prepare porous LiFePO4 via supercritical carbon dioxide”, Electrochim. Acta 94(1), 16–20 (2013). http://dx.doi.org/10.1016/j.electacta.2013.01.131
M. Gaberscek, R. Dominko, M. Bele, M. Remskar, D. Hanzel and J. Jamnik, “Porous, carbon-decorated LiFePO4 prepared by sol—gel method based on citric acid”, Solid State Ionics 176(19–22), 1801–1805 (2005). http://dx.doi.org/10.1016/j.ssi.2005.04.034
R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel and J. Jamnik, “Impact of LiFePO4/C composites porosity on their electrochemical performance”, J. Electrochem. Soc. 152(5), A858-A863 (2005). http://dx.doi.org/10.1149/1.1872674
A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa and A. Rousset, “Specific surface area of carbon nanotubes and bundles of carbon nanotubes”, Carbon 39(4), 507–514 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00155-X
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306(5696), 666–669 (2004). http://dx.doi.org/10.1126/science.1102896
A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6(3), 183–191 (2007). http://dx.doi.org/10.1038/nmat1849
Z.-L. Wang, D. Xu, H.-G. Wang, Z. Wu and X.-B. Zhang, “In situ fabrication of porous graphene electrodes for high-performance energy storage”, ACS Nano 7(3), 2422–2430 (2013). http://dx.doi.org/10.1021/nn3057388
L. P. Biro, P. Nemes-Incze and P. Lambin, “Graphene: nanoscale processing and recent applications”, Nanoscale 4(6), 1824–1839 (2012). http://dx.doi.org/10.1039/C1NR11067E
O. A. Vargas C, A. Caballero and J. Morales, “Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?”, Nanoscale 4(6), 2083–2092 (2012). http://dx.doi.org/10.1039/C2NR11936F
F. Y. Su, Y. B. He, B. Li, X. C. Chen, C. H. You, W. Wei, W. Lv, Q. H. Yang and F. Kang, “Could graphene construct an effective conducting network in a high-power lithium ion battery?”, Nano Energy 1(3), 429–439 (2012). http://dx.doi.org/10.1016/j.nanoen.2012.02.004
F. Y. Su, C. You, Y. B. He, W. Lv, W. Cui, F. Jin, B. Li, Q. H. Yang and F. Kang, “Flexible and planar graphene conductive additives for lithium-ion batteries”, J. Mater. Chem. 20(43), 9644–9650 (2010). http://dx.doi.org/10.1039/C0JM01633K
X. Zhou, F. Wang, Y. Zhu and Z. Liu, “Graphene modified LiFePO4 cathode materials for high power lithium ion batteries”, J. Mater. Chem. 21(10), 3353–3358 (2011). http://dx.doi.org/10.1039/c0jm03287e
C. Su, X. Bu, L. Xu, J. Liu and C. Zhang, “A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries”, Electrochim. Acta. 64(1), 190–195 (2012). http://dx.doi.org/10.1016/j.electacta.2012.01.014
J. Popovic, R. Demir-Cakan, J. Tornow, M. Morcrette, D. S. Su, R. Schlögl, M. Antonietti and M. M. Titirici, “LiFePO4 mesocrystals for lithium-ion batteries”, Small 7(8), 1127–1135 (2011). http://dx.doi.org/10.1002/smll.201002000
J. Ha, S. K. Park, S. H. Yu, A. Jin, B. Jang, S. Bong, I. Kim, Y. E. Sung and Y. Piao, “A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries”, Nanoscale 5(18), 8647–55 (2013). http://dx.doi.org/10.1039/c3nr02738d
Y. Shi, S.-L. Chou, J.-Z. Wang, D. Wexler, H.-J. Li, H.-K. Liu and Y. Wu, “Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability”, J. Mater. Chem. 22(32), 16465–16470 (2012). http://dx.doi.org/10.1039/c2jm32649c
H. Wang, J. T. Robinson, G. Diankov and H. Dai, “Nanocrystal growth on graphene with various degrees of oxidation”, J. Am. Chem. Soc. 132(10), 3270–3271 (2010). http://dx.doi.org/10.1021/ja100329d
Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, “Carbon-based supercapacitors produced by activation of graphene”, Science 332(6037), 1537–41 (2011). http://dx.doi.org/10.1126/science.1200770
J. Yang, J. Wang, D. Wang, X. Li, D. Geng, G. Liang, M. Gauthier, R. Li and X. Sun, “3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries”, J. Power Sources 208(15), 340–344(2012). http://dx.doi.org/10.1016/j.jpowsour.2012.02.032
J. Yang, J. Wang, Y. Tang, D. Wang, X. Li, Y. Hu, R. Li, G. Liang, T.-K. Sham and X. Sun, “LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene”, Energ. Environ. Sci. 6(5), 1521–1528 (2013). http://dx.doi.org/10.1039/C3EE24163G
R. H. Baughman, A. A. Zakhidov and W. A. de Heer, “Carbon nanotubes—the route toward applications”, Science 297(5582), 787–792 (2002). http://dx.doi.org/10.1126/science.1060928
T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, “Electrical conductivity of individual carbon nanotubes”, Nature 382(6586), 54–56 (1996). http://dx.doi.org/10.1038/382054a0
J. Yang, J. Wang, X. Li, D. Wang, J. Liu, G. Liang, M. Gauthier, Y. Li, D. Geng, R. Li and X. Sun, “Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries”, J. Mater. Chem. 22(15), 7537–7543 (2012). http://dx.doi.org/10.1039/c2jm30380a
H. Liu, Y. Zhang, R. Li, X. Sun, S. Désilets, H. Abou-Rachid, M. Jaidann and L.-S. Lussier, “Structural and morphological control of aligned nitrogen-doped carbon nanotubes”, Carbon 48(5), 1498–1507 (2010). http://dx.doi.org/10.1016/j.carbon.2009.12.045
Y. T. Lee, N. S. Kim, S. Y. Bae, J. Park, S.-C. Yu, H. Ryu and H. J. Lee, “Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900-1100°C”, J. Phys. Chem. B 107(47), 12958–12963 (2003). http://dx.doi.org/10.1021/jp0274536
J. Liu, Y. Zhang, M. I. Ionescu, R. Li and X. Sun, “Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis”, Appl. Surf. Sci. 257(17), 7837–7844 (2011). http://dx.doi.org/10.1016/j.apsusc.2011.04.041
O. Toprakci, H. A. Toprakci, L. Ji, G. Xu, Z. Lin and X. Zhang, “Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries”, ACS Appl. Mater. Interfaces 4(3), 1273–1280 (2012). http://dx.doi.org/10.1021/am201527r
Y. Zhou, J. Wang, Y. Hu, R. O’Hayre and Z. Shao, “A porous LiFePO4 and carbon nanotube composite”, Chem. Commun. (Camb). 46(38), 7151–3 (2010). http://dx.doi.org/10.1039/c0cc01721c
G. Arnold, J. Garche, R. Hemmer, S. Ströbele, C. Vogler and M. Wohlfahrt-Mehrens, “Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique”, J. Power Sources 119–121(1), 247–251 (2003). http://dx.doi.org/10.1016/S0378-7753(03)00241-6
Y. Xu, Y. Lu, L. Yan, Z. Yang and R. Yang, “Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C materials”, J. Power Sources 160(1), 570–576 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.01.042
B. Kang and G. Ceder, “Battery materials for ultrafast charging and discharging”, Nature 458(7235), 190–193 (2009). http://dx.doi.org/10.1038/nature07853
K. Zaghib, J. B. Goodenough, A. Mauger and C. Julien, “Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries”, J. Power Sources 194(2), 1021–1023 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.05.043
G. Ceder and B. Kang, “Response to “unsupported claims of ultrafast charging of Li-ion batteries””, J. Power Sources. 194(2), 1024–1028 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.07.004