Hydrothermal Preparation and White-Light-Controlled Resistive Switching Behavior of BaWO4 Nanospheres
Corresponding Author: Peng Chen
Nano-Micro Letters,
Vol. 7 No. 1 (2015), Article Number: 80-85
Abstract
In this work, BaWO4 nanospheres were successfully prepared by hydrothermal process. The bipolar resistive switching behavior of Ag/BaWO4/FTO device is observed. Moreover, this resistive switching behavior can be modulated by white light. The device can maintain superior stability in the dark and under white-light illumination. This study is useful for developing the light-controlled nonvolatile memory devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Sun, G. Li, X. Zhang, L. Ding, W. Zhang, Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells. J. Phys D-Appl. Phys. 44(12), 125404 (2011). doi:10.1088/0022-3727/44/12/125404
- R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). doi:10.1038/nmat2023
- J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008). doi:10.1038/nnano.2008.160
- D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010). doi:10.1038/nnano.2009.456
- A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11(6), 28–36 (2008). doi:10.1016/S1369-7021(08)70119-6
- K. Oka, T. Yanagida, K. Nagashima, M. Kanai, T. Kawai, J.S. Kim, B.H. Park, Spatial nonuniformity in resistive-switching memory effects of NiO. JACS 133(32), 12482–12485 (2011). doi:10.1021/ja206063m
- L. Goux, J.G. Lisoni, M. Jurczak, D.J. Wouters, L. Courtade, C. Muller, Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers. J. Appl. Phys. 107, 024512 (2010). doi:10.1063/1.3275426
- R. Zazpe, M. Ungureanu, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, D.F. Pickup, C. Rogero, L.E. Hueso, Resistive switching dependence on atomic layer deposition parameters in HfO2-based memory devices. J. Mater. Chem. C 2(17), 3204–3211 (2014). doi:10.1039/c3tc31819b
- M. Ungureanu, R. Zazpe, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, L.E. Hueso, A light-controlled resistive switching memory. Adv. Mater. 24(18), 2496–2500 (2012). doi:10.1002/adma.201200382
- M. Adachi, Shape control of highly crystallized titania nanorods based on formation mechanism. J. Mater. Res. 27(2), 440–447 (2012). doi:10.1557/jmr.2011.393
- J. Park, S. Lee, J. Lee, K. Yong, A light incident angle switchable ZnO nanorod memristor: reversible switching behavior between two non-volatile memory devices. Adv. Mater. 25(44), 6423–6429 (2013). doi:10.1002/adma.201303017
- J. Park, S. Lee, K. Yong, Photo-stimulated resistive switching of ZnO nanorods. Nanotechnology 23(38), 385707 (2012). doi:10.1088/0957-4484/23/38/385707
- W.X. Zhao, Q.L. Li, B. Sun, Z. Shen, Y.H. Liu, P. Chen, White-light-controlled resistive switching effect in [BaTiO3/γ-Fe2O3]/ZnO film. Solid State Commun. 194, 16–19 (2014). doi:10.1016/j.ssc.2014.06.007
- W.X. Zhao, B. Sun, Y.H. Liu, L.J. Wei, H.W. Li, P. Chen, Light-controlled resistive switching of ZnWO4 nanowires array. AIP Adv. 4, 077127 (2014). doi:10.1063/1.4891461
- B. Sun, Q.L. Li, W.X. Zhao, H.W. Li, L.J. Wei, P. Chen, White-light-controlled resistance switching in TiO2/α-Fe2O3 composite nanorods array. J. Nanopart. Res. 16, 2389–2395 (2014). doi:10.1007/s11051-014-2389-z
- R. Lacomba-Perales, D. Errandonea, A. Segura, J. Ruiz-Fuertes, P. Rodríguez-Hernández, S. Radescu, J. López-Solano, A. Mujica, A. Munǒz, A combined high-pressure experimental and theoretical study of the electronic band-structure of scheelite-type AWO4 (A5Ca, Sr, Ba, Pb) compounds. J. Appl. Phys. 110, 043703 (2011). doi:10.1063/1.3622322
- O. Gomis, J.A. Sans, R. Lacomba-Perales, D. Errandonea, Y. Meng, J.C. Chervin, A. Polian, Complex high-pressure polymorphism of barium tungstate. Phys. Rev. B 86, 054121 (2012). doi:10.1103/PhysRevB.86.054121
- C. Zhang, E. Shen, E. Wang, Z. Kang, L. Gao, C. Hu, L. Xu, One-step solvothermal synthesis of high ordered BaWO4 and BaMoO4 nanostructures. Mater. Chem. Phys. 96, 240–243 (2006). doi:10.1016/j.matchemphys.2005.06.061
- W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, J. Li, M. Jiang, Growth of large dimension BaWO4 crystal by the Czochralski method. J. Cryst. Growth 270, 582–588 (2004). doi:10.1016/j.jcrysgro.2004.06.031
- W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, M. Jiang, The thermal and optical properties of BaWO4 single crystal. J. Cryst. Growth 276, 208–214 (2005). doi:10.1016/j.jcrysgro.2004.11.385
- L.I. Ivleva, I.S. Voronina, P.A. Lykov, L.Y. Berezovskaya, V.V. Osiko, Growth of optically homogeneous BaWO4 single crystals for Raman lasers. J. Cryst. Growth 304, 108–113 (2007). doi:10.1016/j.jcrysgro.2007.02.020
- X. Zhang, Y. Xie, F. Xu, X. Tian, Growth of BaWO4 fishbone-like nanostructures in w/o microemulsion. J. Colloid Interf. Sci. 274, 118–121 (2004). doi:10.1016/j.jcis.2004.01.048
- G. Blasse, G.J. Dirksen, Photo-luminescence of Ba3W2O9-confirmation of a structural principle. J. Solid State Chem. 36(1), 124–126 (1981). doi:10.1016/0022-4596(81)90200-0
- Y. Liu, Y. Chu, Surfactant-assisted synthesis of single crystal BaWO4 octahedral microparticles. Mater. Chem. Phys. 92(1), 59–63 (2005). doi:10.1016/j.matchemphys.2004.12.030
- X. Zhao, T. Li, Y. Xi, D.H.L. Ng, J. Yu, Synthesis of BaWO4 hollow structures. Cryst. Growth Des. 6(10), 2210–2213 (2006). doi:10.1021/cg0601655
- L.S. Cavalcante, J.C. Sczancoski, L.F. Lima Jr, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, Synthesis, characterization, anisotropic growth and photoluminescence of BaWO4. Cryst. Growth Des. 9(2), 1002–1012 (2009). doi:10.1021/cg800817x
- H. Shi, X. Wang, N. Zhao, L. Qi, J. Ma, Growth mechanism of penniform BaWO4 nanostructures in catanionic reverse micelles involving polymers. J. Phys. Chem. B 110(2), 748–753 (2006). doi:10.1021/jp0545694
- A. Shih, W.D. Zhou, J. Qiu, H.J. Yang, S.Y. Chen, Z.T. Mi, I. Shih, Highly stable resistive switching on monocrystalline ZnO. Nanotechnology 21(12), 125201 (2010). doi:10.1088/0957-4484/21/12/125201
- T.L. Qu, Y.G. Zhao, D. Xie, J.P. Shi, Q.P. Chen, T.L. Ren, Resistance switching and white-light photovoltaic effects in BiFeO3/Nb-SrTiO3 heterojunctions. Appl. Phys. Lett. 98(17), 173507 (2011). doi:10.1063/1.3584031
- N. Li, F. Gao, L. Hou, D. Gao, dna-templated rational assembly of BaWO4 nano pair-linear arrays. J. Phys. Chem. C 114, 16114–16121 (2010). doi:10.1021/jp101292c
- X.G. Chen, J.B. Fu, S.Q. Liu, Y.B. Yang, C.S. Wang, H.L. Du, G.C. Xiong, G.J. Lian, J.B. Yang, Trap-assisted tunneling resistance switching effect in CeO2/La0.7(Sr0.1Ca0.9)0.3MnO3 heterostructure. Appl. Phys. Lett. 101(15), 153509 (2012). doi:10.1063/1.4760221
- A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85(18), 4073–4075 (2004). doi:10.1063/1.1812580
- D. Ielmini, C. Cagli, F. Nardi, Y. Zhang, Nanowire-based resistive switching memories: devices, operation and scaling. J. Phys D-Appl. Phys. 46(7), 074006 (2013). doi:10.1088/0022-3727/46/7/074006
References
X. Sun, G. Li, X. Zhang, L. Ding, W. Zhang, Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells. J. Phys D-Appl. Phys. 44(12), 125404 (2011). doi:10.1088/0022-3727/44/12/125404
R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). doi:10.1038/nmat2023
J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008). doi:10.1038/nnano.2008.160
D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010). doi:10.1038/nnano.2009.456
A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11(6), 28–36 (2008). doi:10.1016/S1369-7021(08)70119-6
K. Oka, T. Yanagida, K. Nagashima, M. Kanai, T. Kawai, J.S. Kim, B.H. Park, Spatial nonuniformity in resistive-switching memory effects of NiO. JACS 133(32), 12482–12485 (2011). doi:10.1021/ja206063m
L. Goux, J.G. Lisoni, M. Jurczak, D.J. Wouters, L. Courtade, C. Muller, Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers. J. Appl. Phys. 107, 024512 (2010). doi:10.1063/1.3275426
R. Zazpe, M. Ungureanu, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, D.F. Pickup, C. Rogero, L.E. Hueso, Resistive switching dependence on atomic layer deposition parameters in HfO2-based memory devices. J. Mater. Chem. C 2(17), 3204–3211 (2014). doi:10.1039/c3tc31819b
M. Ungureanu, R. Zazpe, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, L.E. Hueso, A light-controlled resistive switching memory. Adv. Mater. 24(18), 2496–2500 (2012). doi:10.1002/adma.201200382
M. Adachi, Shape control of highly crystallized titania nanorods based on formation mechanism. J. Mater. Res. 27(2), 440–447 (2012). doi:10.1557/jmr.2011.393
J. Park, S. Lee, J. Lee, K. Yong, A light incident angle switchable ZnO nanorod memristor: reversible switching behavior between two non-volatile memory devices. Adv. Mater. 25(44), 6423–6429 (2013). doi:10.1002/adma.201303017
J. Park, S. Lee, K. Yong, Photo-stimulated resistive switching of ZnO nanorods. Nanotechnology 23(38), 385707 (2012). doi:10.1088/0957-4484/23/38/385707
W.X. Zhao, Q.L. Li, B. Sun, Z. Shen, Y.H. Liu, P. Chen, White-light-controlled resistive switching effect in [BaTiO3/γ-Fe2O3]/ZnO film. Solid State Commun. 194, 16–19 (2014). doi:10.1016/j.ssc.2014.06.007
W.X. Zhao, B. Sun, Y.H. Liu, L.J. Wei, H.W. Li, P. Chen, Light-controlled resistive switching of ZnWO4 nanowires array. AIP Adv. 4, 077127 (2014). doi:10.1063/1.4891461
B. Sun, Q.L. Li, W.X. Zhao, H.W. Li, L.J. Wei, P. Chen, White-light-controlled resistance switching in TiO2/α-Fe2O3 composite nanorods array. J. Nanopart. Res. 16, 2389–2395 (2014). doi:10.1007/s11051-014-2389-z
R. Lacomba-Perales, D. Errandonea, A. Segura, J. Ruiz-Fuertes, P. Rodríguez-Hernández, S. Radescu, J. López-Solano, A. Mujica, A. Munǒz, A combined high-pressure experimental and theoretical study of the electronic band-structure of scheelite-type AWO4 (A5Ca, Sr, Ba, Pb) compounds. J. Appl. Phys. 110, 043703 (2011). doi:10.1063/1.3622322
O. Gomis, J.A. Sans, R. Lacomba-Perales, D. Errandonea, Y. Meng, J.C. Chervin, A. Polian, Complex high-pressure polymorphism of barium tungstate. Phys. Rev. B 86, 054121 (2012). doi:10.1103/PhysRevB.86.054121
C. Zhang, E. Shen, E. Wang, Z. Kang, L. Gao, C. Hu, L. Xu, One-step solvothermal synthesis of high ordered BaWO4 and BaMoO4 nanostructures. Mater. Chem. Phys. 96, 240–243 (2006). doi:10.1016/j.matchemphys.2005.06.061
W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, J. Li, M. Jiang, Growth of large dimension BaWO4 crystal by the Czochralski method. J. Cryst. Growth 270, 582–588 (2004). doi:10.1016/j.jcrysgro.2004.06.031
W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, M. Jiang, The thermal and optical properties of BaWO4 single crystal. J. Cryst. Growth 276, 208–214 (2005). doi:10.1016/j.jcrysgro.2004.11.385
L.I. Ivleva, I.S. Voronina, P.A. Lykov, L.Y. Berezovskaya, V.V. Osiko, Growth of optically homogeneous BaWO4 single crystals for Raman lasers. J. Cryst. Growth 304, 108–113 (2007). doi:10.1016/j.jcrysgro.2007.02.020
X. Zhang, Y. Xie, F. Xu, X. Tian, Growth of BaWO4 fishbone-like nanostructures in w/o microemulsion. J. Colloid Interf. Sci. 274, 118–121 (2004). doi:10.1016/j.jcis.2004.01.048
G. Blasse, G.J. Dirksen, Photo-luminescence of Ba3W2O9-confirmation of a structural principle. J. Solid State Chem. 36(1), 124–126 (1981). doi:10.1016/0022-4596(81)90200-0
Y. Liu, Y. Chu, Surfactant-assisted synthesis of single crystal BaWO4 octahedral microparticles. Mater. Chem. Phys. 92(1), 59–63 (2005). doi:10.1016/j.matchemphys.2004.12.030
X. Zhao, T. Li, Y. Xi, D.H.L. Ng, J. Yu, Synthesis of BaWO4 hollow structures. Cryst. Growth Des. 6(10), 2210–2213 (2006). doi:10.1021/cg0601655
L.S. Cavalcante, J.C. Sczancoski, L.F. Lima Jr, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, Synthesis, characterization, anisotropic growth and photoluminescence of BaWO4. Cryst. Growth Des. 9(2), 1002–1012 (2009). doi:10.1021/cg800817x
H. Shi, X. Wang, N. Zhao, L. Qi, J. Ma, Growth mechanism of penniform BaWO4 nanostructures in catanionic reverse micelles involving polymers. J. Phys. Chem. B 110(2), 748–753 (2006). doi:10.1021/jp0545694
A. Shih, W.D. Zhou, J. Qiu, H.J. Yang, S.Y. Chen, Z.T. Mi, I. Shih, Highly stable resistive switching on monocrystalline ZnO. Nanotechnology 21(12), 125201 (2010). doi:10.1088/0957-4484/21/12/125201
T.L. Qu, Y.G. Zhao, D. Xie, J.P. Shi, Q.P. Chen, T.L. Ren, Resistance switching and white-light photovoltaic effects in BiFeO3/Nb-SrTiO3 heterojunctions. Appl. Phys. Lett. 98(17), 173507 (2011). doi:10.1063/1.3584031
N. Li, F. Gao, L. Hou, D. Gao, dna-templated rational assembly of BaWO4 nano pair-linear arrays. J. Phys. Chem. C 114, 16114–16121 (2010). doi:10.1021/jp101292c
X.G. Chen, J.B. Fu, S.Q. Liu, Y.B. Yang, C.S. Wang, H.L. Du, G.C. Xiong, G.J. Lian, J.B. Yang, Trap-assisted tunneling resistance switching effect in CeO2/La0.7(Sr0.1Ca0.9)0.3MnO3 heterostructure. Appl. Phys. Lett. 101(15), 153509 (2012). doi:10.1063/1.4760221
A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85(18), 4073–4075 (2004). doi:10.1063/1.1812580
D. Ielmini, C. Cagli, F. Nardi, Y. Zhang, Nanowire-based resistive switching memories: devices, operation and scaling. J. Phys D-Appl. Phys. 46(7), 074006 (2013). doi:10.1088/0022-3727/46/7/074006