Fabrication and Characterization of Au Nanoparticle-aggregated Nanowires by Using Nanomeniscus-induced Colloidal Stacking Method
Corresponding Author: Wonho Jhe
Nano-Micro Letters,
Vol. 7 No. 1 (2015), Article Number: 27-34
Abstract
We fabricate and characterize Au nanoparticle-aggregated nanowires by using the nano meniscus-induced colloidal stacking method. The Au nanoparticle solution ejects with guidance of nanopipette/quartz tuning fork-based atomic force microscope in ambient conditions, and the stacking particles form Au nanoparticle-aggregated nanowire while the nozzle retracts from the surface. Their mechanical properties with relatively low elastic modulus are in situ investigated by using the same apparatus.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Yang, Z. Zhong, C.M. Lieber, Encoding information through synthesis in modulation-doped nanowire structures. Science 310, 1304–1307 (2005). doi:10.1126/science.1118798
- J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C.M. Lieber, Ge/Si nanowire heterostructures as high performance field-effect transistors. Nature 441, 489–493 (2006). doi:10.1038/nature04796
- F. Shen, J. Wang, Z. Xu, Y. Wu, Q. Chen, X. Li, X. Jie, L. Li, M. Yao, X. Guo, T. Zhu, Rapid flu diagnosis using silicon nanowire sensor. Nano Lett. 12(7), 3722–3730 (2012). doi:10.1021/nl301516z
- C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). doi:10.1038/nnano.2007.411
- B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–890 (2007). doi:10.1038/nature06181
- R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964). doi:10.1063/1.1753975
- F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006). doi:10.1126/science.1128640
- G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005). doi:10.1038/nbt1138
- X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing, H.S. Choe, B. Tian, X. Jiang, C.M. Lieber, Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2012). doi:10.1038/nnano.2011.223
- C.-H. Chung, T.-B. Song, B. Bob, R. Zhu, H.-S. Duan, Y. Yang, Silver nanowire composite window layers for fully solution-deposited thin-film photovoltaic devices. Adv. Mater. 24(40), 5499–5504 (2012). doi:10.1002/adma.201201010
- S. Yun, X. Niu, Z. Yu, W. Hu, P. Brochu, Q. Pei, Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Adv. Mater. 24(10), 1321–1327 (2012). doi:10.1002/adma.201104101
- P. Shera, G. Ingavleb, S. Ponrathnamb, A.P. Pawara, Low density porous carrier based conceptual drug delivery system. Microporous Mesoporous Mater. 102(1–3), 290–298 (2007). doi:10.1016/j.micromeso.2007.01.001
- D.C. Scott, An assessment of reasonable tortuosity values. Pharm. Res. 18(12), 1797–1800 (2001). doi:10.1023/A:1013399302958
- A. Bruckbauer, L. Ying, A.M. Rothery, D. Zhou, A.I. Shevchuk, C. Abell, Y.E. Korchev, D. Klenerman, Writing with DNA and protein using a nanopipette for controlled delivery. J. Am. Chem. Soc. 124(30), 8810–8811 (2002). doi:10.1021/ja026816c
- S. An, C. Stambaugh, G. Kim, M. Lee, Y. Kim, K. Lee, W. Jhe, Low-volume liquid delivery and nanolithography using a nanopipette combined with a quartz tuning fork-atomic force microscope. Nanoscale 4(20), 6493–6500 (2012). doi:10.1039/c2nr30972f
- R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014). doi:10.1038/nnano.2014.157
- H. Choe, M.-H. Hong, Y. Seo, K. Lee, G. Kim, Y. Cho, J. Ihm, W. Jhe, Formation, manipulation, and elasticity measurement of a nanometric nolumn of water molecules. Phys. Rev. Lett. 95, 187801 (2005). doi:10.1103/PhysRevLett.95.187801
- D. Schebarchov, S.C. Hendy, Superheating and solid-liquid phase coexistence in nanoparticles with non-melting surfaces. Phys. Rev. Lett. 96, 256101 (2006). doi:10.1103/PhysRevLett.96.256101
- J. Errington, Solid-liquid phase coexistence of the lennard-jones system through phase-switch monte carlo simulation. J. Chem. Phys. 120(7), 3130–3141 (2004). doi:10.1063/1.1642591
- D. Schebarchov, S.C. Hendy, g-factors and discrete energy level velocities in nanoparticles. Phys. Rev. B 74, 121402 (2006). doi:10.1103/PhysRevB.73.121402
- A. Siavosh-Haghighi, D.L. Thompson, Melting point determination from solid-liquid coexistence initiated by surface melting. J. Phys. Chem. C 111(22), 7980–7985 (2007). doi:10.1021/jp070242m
- W.G. Hoover, F.H. Ree, Melting transition and communal entropy for hard spheres. J. Chem. Phys. 49(8), 3609 (1968). doi:10.1063/1.1670641
- J. Ge, G.W. Wu, B.D. Todd, R.J. Sadus, Equilibrium and nonequilibrium molecular dynamics methods for determining solid-liquid phase coexistence at equilibrium. J. Chem. Phys. 119(21), 11017 (2003). doi:10.1063/1.1623476
- M. Lee, W. Jhe, General theory of amplitude-modulation atomic force microscopy. Phys. Rev. Lett. 97, 036104 (2006). doi:10.1103/PhysRevLett.97.036104
- M. Lee, J. Jahng, K. Kim, W. Jhe, Quantitative atomic force measurement with a quartz tuning fork. Appl. Phys. Lett. 91(2), 023117 (2007). doi:10.1063/1.2756125
- S. An, J. Kim, K. Lee, B. Kim, M. Lee, W. Jhe, Mechanical properties of the nanoscale molecular cluster of water meniscus by high-precision frequency modulation atomic force spectroscopy. Appl. Phys. Lett. 101(5), 053114 (2012). doi:10.1063/1.4740083
- A. Castellanos-Gomez, N. Agraït, G. Rubio-Bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotechnology 20(21), 215502 (2009). doi:10.1088/0957-4484/20/21/215502
- R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999)
References
C. Yang, Z. Zhong, C.M. Lieber, Encoding information through synthesis in modulation-doped nanowire structures. Science 310, 1304–1307 (2005). doi:10.1126/science.1118798
J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C.M. Lieber, Ge/Si nanowire heterostructures as high performance field-effect transistors. Nature 441, 489–493 (2006). doi:10.1038/nature04796
F. Shen, J. Wang, Z. Xu, Y. Wu, Q. Chen, X. Li, X. Jie, L. Li, M. Yao, X. Guo, T. Zhu, Rapid flu diagnosis using silicon nanowire sensor. Nano Lett. 12(7), 3722–3730 (2012). doi:10.1021/nl301516z
C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). doi:10.1038/nnano.2007.411
B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–890 (2007). doi:10.1038/nature06181
R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964). doi:10.1063/1.1753975
F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006). doi:10.1126/science.1128640
G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005). doi:10.1038/nbt1138
X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing, H.S. Choe, B. Tian, X. Jiang, C.M. Lieber, Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2012). doi:10.1038/nnano.2011.223
C.-H. Chung, T.-B. Song, B. Bob, R. Zhu, H.-S. Duan, Y. Yang, Silver nanowire composite window layers for fully solution-deposited thin-film photovoltaic devices. Adv. Mater. 24(40), 5499–5504 (2012). doi:10.1002/adma.201201010
S. Yun, X. Niu, Z. Yu, W. Hu, P. Brochu, Q. Pei, Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Adv. Mater. 24(10), 1321–1327 (2012). doi:10.1002/adma.201104101
P. Shera, G. Ingavleb, S. Ponrathnamb, A.P. Pawara, Low density porous carrier based conceptual drug delivery system. Microporous Mesoporous Mater. 102(1–3), 290–298 (2007). doi:10.1016/j.micromeso.2007.01.001
D.C. Scott, An assessment of reasonable tortuosity values. Pharm. Res. 18(12), 1797–1800 (2001). doi:10.1023/A:1013399302958
A. Bruckbauer, L. Ying, A.M. Rothery, D. Zhou, A.I. Shevchuk, C. Abell, Y.E. Korchev, D. Klenerman, Writing with DNA and protein using a nanopipette for controlled delivery. J. Am. Chem. Soc. 124(30), 8810–8811 (2002). doi:10.1021/ja026816c
S. An, C. Stambaugh, G. Kim, M. Lee, Y. Kim, K. Lee, W. Jhe, Low-volume liquid delivery and nanolithography using a nanopipette combined with a quartz tuning fork-atomic force microscope. Nanoscale 4(20), 6493–6500 (2012). doi:10.1039/c2nr30972f
R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014). doi:10.1038/nnano.2014.157
H. Choe, M.-H. Hong, Y. Seo, K. Lee, G. Kim, Y. Cho, J. Ihm, W. Jhe, Formation, manipulation, and elasticity measurement of a nanometric nolumn of water molecules. Phys. Rev. Lett. 95, 187801 (2005). doi:10.1103/PhysRevLett.95.187801
D. Schebarchov, S.C. Hendy, Superheating and solid-liquid phase coexistence in nanoparticles with non-melting surfaces. Phys. Rev. Lett. 96, 256101 (2006). doi:10.1103/PhysRevLett.96.256101
J. Errington, Solid-liquid phase coexistence of the lennard-jones system through phase-switch monte carlo simulation. J. Chem. Phys. 120(7), 3130–3141 (2004). doi:10.1063/1.1642591
D. Schebarchov, S.C. Hendy, g-factors and discrete energy level velocities in nanoparticles. Phys. Rev. B 74, 121402 (2006). doi:10.1103/PhysRevB.73.121402
A. Siavosh-Haghighi, D.L. Thompson, Melting point determination from solid-liquid coexistence initiated by surface melting. J. Phys. Chem. C 111(22), 7980–7985 (2007). doi:10.1021/jp070242m
W.G. Hoover, F.H. Ree, Melting transition and communal entropy for hard spheres. J. Chem. Phys. 49(8), 3609 (1968). doi:10.1063/1.1670641
J. Ge, G.W. Wu, B.D. Todd, R.J. Sadus, Equilibrium and nonequilibrium molecular dynamics methods for determining solid-liquid phase coexistence at equilibrium. J. Chem. Phys. 119(21), 11017 (2003). doi:10.1063/1.1623476
M. Lee, W. Jhe, General theory of amplitude-modulation atomic force microscopy. Phys. Rev. Lett. 97, 036104 (2006). doi:10.1103/PhysRevLett.97.036104
M. Lee, J. Jahng, K. Kim, W. Jhe, Quantitative atomic force measurement with a quartz tuning fork. Appl. Phys. Lett. 91(2), 023117 (2007). doi:10.1063/1.2756125
S. An, J. Kim, K. Lee, B. Kim, M. Lee, W. Jhe, Mechanical properties of the nanoscale molecular cluster of water meniscus by high-precision frequency modulation atomic force spectroscopy. Appl. Phys. Lett. 101(5), 053114 (2012). doi:10.1063/1.4740083
A. Castellanos-Gomez, N. Agraït, G. Rubio-Bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotechnology 20(21), 215502 (2009). doi:10.1088/0957-4484/20/21/215502
R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999)