The Effect of Thermal Exfoliation Temperature on the Structure and Supercapacitive Performance of Graphene Nanosheets
Corresponding Author: Tongjiang Peng
Nano-Micro Letters,
Vol. 7 No. 1 (2015), Article Number: 17-26
Abstract
Graphene nanosheets (GSs) were prepared from graphite oxide by thermal exfoliation method. The effect of thermal exfoliation temperature on the structure and supercapacitive performance of GSs has been investigated. The results show that the GSs with pore sizes center around 4.0 nm. With an increase of thermal reduction temperature, the number of stacking layers and the structure disorder degree increase, while the oxygen-containing groups content, BET surface area, and electrical resistivity of GSs decrease. The results indicate that 673 K is the preferable thermal exfoliation temperature to acquire good supercapacitive performance. In this case, the GSs have the best supercapacitive performance (233.1 F g−1) in a 6 mol L−1 KOH electrolyte. The prepared GSs at the preferable thermal exfoliation temperature have good rate performance and cycle stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15–16), 2483–2498 (2000). doi:10.1016/S0013-4686(00)00354-6
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
- L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). doi:10.1039/B813846J
- J. Liu, M. Zhou, L.-Z. Fan, P. Li, X. Qu, Porous polyaniline exhibits highly enhanced electrochemical capacitance performance. Electrochim. Acta 55(20), 5819–5822 (2010). doi:10.1016/j.electacta.2010.05.030
- L.-Z. Fan, J. Maier, High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem. Commun. 8(6), 937–940 (2006). doi:10.1016/j.elecom.2006.03.035
- C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6(12), 2690–2695 (2006). doi:10.1021/nl061576a
- J. Broughton, M. Brett, Investigation of thin sputtered Mn films for electrochemical capacitors. Electrochim. Acta 49(25), 4439–4446 (2004). doi:10.1016/j.electacta.2004.04.035
- D. Wang, W. Ni, H. Pang, Q. Lu, Z. Huang, J. Zhao, Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochim. Acta 55(22), 6830–6835 (2010). doi:10.1016/j.electacta.2010.05.084
- J.H. Park, O.O. Park, Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. J. Power Sources 111(1), 185–190 (2002). doi:10.1016/S0378-7753(02)00304-X
- E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Beguin, Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 153(2), 413–418 (2006). doi:10.1016/j.jpowsour.2005.05.030
- L.Z. Fan, Y.S. Hu, J. Maier, P. Adelhelm, B. Smarsly, M. Antonietti, High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv. Funct. Mater. 17(16), 3083–3087 (2007). doi:10.1002/adfm.200700518
- T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor. J. Power Sources 60(2), 249–253 (1996). doi:10.1016/S0378-7753(96)80018-8
- X. Li, J. Rong, B. Wei, Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 4(10), 6039–6049 (2010). doi:10.1021/nn101595y
- A. Halama, B. Szubzda, G. Pasciak, Carbon aerogels as electrode material for electrical double layer supercapacitors—synthesis and properties. Electrochim. Acta 55(25), 7501–7505 (2010). doi:10.1016/j.electacta.2010.03.040
- S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006). doi:10.1038/nature04969
- K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896
- V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25–29 (2009). doi:10.1038/nnano.2008.329
- Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008). doi:10.1038/nnano.2008.215
- A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2008). doi:10.1021/nl801827v
- C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006). doi:10.1126/science.1125925
- H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009). doi:10.1002/adfm.200900167
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
- M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15(25), 6116–6120 (2009). doi:10.1002/chem.200900596
- H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). doi:10.1021/jp060936f
- Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, J. Cao, Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim. Acta 55(12), 3897–3903 (2010). doi:10.1016/j.electacta.2010.01.089
- Y. Kuibo, L. Haitao, X. Yidong, B. Hengchang, S. Jun, L. Zhiguo, S. Litao, Thermodynamic and kinetic analysis of low-temperature thermal reduction of graphene oxide. Nano-Micro Lett. 3(1), 51–55 (2011). doi:10.5101/nml.v3i1.p51-55
- S. Vivekchand, C.S. Rout, K. Subrahmanyam, A. Govindaraj, C. Rao, Graphene-based electrochemical supercapacitors. J. Chem. Sci. 120(1), 9–13 (2008). doi:10.1007/s12039-008-0002-7
- X. Du, P. Guo, H. Song, X. Chen, Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim. Acta 55(16), 4812–4819 (2010). doi:10.1016/j.electacta.2010.03.047
- F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). doi:10.1038/nmat1967
- H. Zhou, S. Zhu, M. Hibino, I. Honma, M. Ichihara, Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 15(24), 2107–2111 (2003). doi:10.1002/adma.200306125
- K. Fukuda, K. Kikuya, K. Isono, M. Yoshio, Foliated natural graphite as the anode material for rechargeable lithium-ion cells. J. Power Sources 69(1), 165–168 (1997). doi:10.1016/S0378-7753(97)02568-8
- M. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9(11), 1276–1290 (2007). doi:10.1039/B613962K
- J. Zhao, S. Pei, W. Ren, L. Gao, H.-M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4(9), 5245–5252 (2010). doi:10.1021/nn1015506
References
R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15–16), 2483–2498 (2000). doi:10.1016/S0013-4686(00)00354-6
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). doi:10.1039/B813846J
J. Liu, M. Zhou, L.-Z. Fan, P. Li, X. Qu, Porous polyaniline exhibits highly enhanced electrochemical capacitance performance. Electrochim. Acta 55(20), 5819–5822 (2010). doi:10.1016/j.electacta.2010.05.030
L.-Z. Fan, J. Maier, High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem. Commun. 8(6), 937–940 (2006). doi:10.1016/j.elecom.2006.03.035
C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6(12), 2690–2695 (2006). doi:10.1021/nl061576a
J. Broughton, M. Brett, Investigation of thin sputtered Mn films for electrochemical capacitors. Electrochim. Acta 49(25), 4439–4446 (2004). doi:10.1016/j.electacta.2004.04.035
D. Wang, W. Ni, H. Pang, Q. Lu, Z. Huang, J. Zhao, Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochim. Acta 55(22), 6830–6835 (2010). doi:10.1016/j.electacta.2010.05.084
J.H. Park, O.O. Park, Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. J. Power Sources 111(1), 185–190 (2002). doi:10.1016/S0378-7753(02)00304-X
E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Beguin, Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 153(2), 413–418 (2006). doi:10.1016/j.jpowsour.2005.05.030
L.Z. Fan, Y.S. Hu, J. Maier, P. Adelhelm, B. Smarsly, M. Antonietti, High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv. Funct. Mater. 17(16), 3083–3087 (2007). doi:10.1002/adfm.200700518
T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor. J. Power Sources 60(2), 249–253 (1996). doi:10.1016/S0378-7753(96)80018-8
X. Li, J. Rong, B. Wei, Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 4(10), 6039–6049 (2010). doi:10.1021/nn101595y
A. Halama, B. Szubzda, G. Pasciak, Carbon aerogels as electrode material for electrical double layer supercapacitors—synthesis and properties. Electrochim. Acta 55(25), 7501–7505 (2010). doi:10.1016/j.electacta.2010.03.040
S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006). doi:10.1038/nature04969
K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896
V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25–29 (2009). doi:10.1038/nnano.2008.329
Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008). doi:10.1038/nnano.2008.215
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2008). doi:10.1021/nl801827v
C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006). doi:10.1126/science.1125925
H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009). doi:10.1002/adfm.200900167
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15(25), 6116–6120 (2009). doi:10.1002/chem.200900596
H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). doi:10.1021/jp060936f
Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, J. Cao, Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim. Acta 55(12), 3897–3903 (2010). doi:10.1016/j.electacta.2010.01.089
Y. Kuibo, L. Haitao, X. Yidong, B. Hengchang, S. Jun, L. Zhiguo, S. Litao, Thermodynamic and kinetic analysis of low-temperature thermal reduction of graphene oxide. Nano-Micro Lett. 3(1), 51–55 (2011). doi:10.5101/nml.v3i1.p51-55
S. Vivekchand, C.S. Rout, K. Subrahmanyam, A. Govindaraj, C. Rao, Graphene-based electrochemical supercapacitors. J. Chem. Sci. 120(1), 9–13 (2008). doi:10.1007/s12039-008-0002-7
X. Du, P. Guo, H. Song, X. Chen, Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim. Acta 55(16), 4812–4819 (2010). doi:10.1016/j.electacta.2010.03.047
F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). doi:10.1038/nmat1967
H. Zhou, S. Zhu, M. Hibino, I. Honma, M. Ichihara, Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 15(24), 2107–2111 (2003). doi:10.1002/adma.200306125
K. Fukuda, K. Kikuya, K. Isono, M. Yoshio, Foliated natural graphite as the anode material for rechargeable lithium-ion cells. J. Power Sources 69(1), 165–168 (1997). doi:10.1016/S0378-7753(97)02568-8
M. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9(11), 1276–1290 (2007). doi:10.1039/B613962K
J. Zhao, S. Pei, W. Ren, L. Gao, H.-M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4(9), 5245–5252 (2010). doi:10.1021/nn1015506