Rational Design of WO3 Nanostructures as the Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance
Corresponding Author: Xiang Wu
Nano-Micro Letters,
Vol. 7 No. 1 (2015), Article Number: 12-16
Abstract
A facile, one-step hydrothermal method was employed to synthesize two kinds of WO3 nanostructures. By using different kinds of sylvine, tungsten trioxide (WO3) with different morphologies of microflowers and nanowires was obtained, respectively. The discharge capacities for microflowers and nanowires are 107 and 146 mAh g−1 after 180 cycles, and their corresponding capacity retentions after the first cycle are 72 and 85 %, respectively. Even at a high current density of 1,600 mAh g−1, the discharge capacities of WO3 microflowers and nanowires are as high as 433 and 557 mAh g−1 after 40 cycles, in which the current densities were increased stepwise. It is worth mentioned that the rate capability of the nanowires is superior to that of the microflowers. However, the cycle performance of the microflowers is better than nanowires, revealing that the morphology and structure of the as-synthesized WO3 products can exert great influence on the electrochemical performances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, Y. Jiao, Z.L. Zhang, F.Y. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014). doi:10.1021/am405301v
- G.H. Yu, L.B. Hu, N. Liu, H.L. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z.N. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11(10), 4438–4442 (2011). doi:10.1021/nl2026635
- Y.T. Han, X. Wu, Y.L. Ma, L.H. Gong, F.Y. Qu, H.J. Fan, Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. Cryst EngComm. 13(11), 3506–3510 (2011). doi:10.1039/c1ce05171g
- Y. Liu, Y. Jiao, S.W. Zhang, B.S. Yin, F.Y. Qu, X. Wu, SnO2 core-shell microspheres as the superior anode materials for Li-ion batteries. Sci. Adv. Mater. 6(6), 1184–1187 (2014). doi:10.1166/sam.2014.1910
- W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40(3), 1697–1721 (2011). doi:10.1039/c0cs00127a
- C.R. Zhu, X.H. Xia, J.L. Liu, Z.X. Fan, D.L. Chao, H. Zhang, H.J. Fan, TiO2 nanotube@SnO2 nanoflake core-branch arrays for lithium-ion battery anode. Nano Energy 4, 105–112 (2014). doi:10.1016/j.nanoen.2013.12.018
- J.S. Luo, J.L. Liu, Z.Y. Zeng, C.F. Ng, L.J. Ma, H. Zhang, J.Y. Lin, Z.X. Shen, H.J. Fan, Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13(12), 6136–6143 (2013). doi:10.1021/nl403461n
- J.P. Liu, J. Jiang, C.W. Cheng, H.X. Li, J.X. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core-shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23(18), 2076–2081 (2011). doi:10.1002/adma.201100058
- L.N. Gao, F.Y. Qu, X. Wu, Reduced graphene oxide-BiVO4 composite for enhanced photoelectrochemical cell and photocatalyst. Sci. Adv. Mater. 5(10), 1485–1492 (2013). doi:10.1166/sam.2013.1609
- B. Frenzel, P. Kurzweil, H. Rönnebeck, Electromobility concept for racing cars based on lithium-ion batteries and supercapacitors. J. Power Sources 196(12), 5364–5376 (2011). doi:10.1016/j.jpowsour.2010.10.057
- X.J. Hou, X.F. Wang, B. Liu, Q.F. Wang, Z.R. Wang, D. Chen, G.Z. Shen, SnO2@TiO2 heterojunction nanostructures for lithium-ion batteries and self-powered UV photodetectors with improved performances. Chem. Electro. Chem. 1(1), 108–115 (2014). doi:10.1002/celc.201300053
- D.S. Tan, B. Liu, D. Chen, G.Z. Shen, Si@SiO2 nanowires/carbon textilescable-type anodes for high-capacity reversible lithium-ion batteries. RSC Adv. 4(35), 18391–18396 (2014). doi:10.1039/c4ra01363h
- B. Liu, X.F. Wang, H.T. Chen, Z.R. Wang, D. Chen, Y.B. Cheng, C.W. Zhou, G.Z. Shen, Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Sci. Reports 3, 1622 (2013). doi:10.1038/srep01622
- B. Liu, X.F. Wang, Q.F. Wang, D.S. Tan, W.F. Song, X.J. Hou, D. Chen, G.Z. Shen, Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-ruchins-on-carbon-fibers electrodes. Nano Res. 6(7), 525–534 (2013). doi:10.1007/s12274-013-0329-3
- J.S. Luo, X.H. Xia, Y.S. Luo, C. Guan, J.L. Liu, X.Y. Qi, C.F. Ng, T. Yu, H. Zhang, H.J. Fan, Rational designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 3(6), 737–743 (2013). doi:10.1002/aenm.201200953
- S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou, Y.G. Guo, L.J. Wan, Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134(45), 18510–18513 (2012). doi:10.1021/ja308170k
- B. Wang, J.S. Chen, H.B. Wu, Z.Y. Wang, X.W. Lou, Quasiemulsion templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 133(43), 17146–17148 (2011). doi:10.1021/ja208346s
- L. Zhang, H.B. Wu, S. Madhavi, H.H. Hng, X.W. Lou, Formation of Fe2O3 microboxes with hierarchical shell structures from metal organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 134(42), 17388–17391 (2012). doi:10.1021/ja307475c
- L.N. Gao, X.F. Wang, Z. Xie, W.F. Song, L.J. Wang, X. Wu, F.Y. Qu, D. Chen, G.Z. Shen, High performance energy storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 1, 7167–7173 (2013). doi:10.1039/c3ta10831g
- L.N. Gao, F.Y. Qu, X. Wu, Hierarchical WO3@SnO2 core/shell nanowire arrays on carbon cloth: a new class of anode for high performance lithium-ion batteries. J. Mater. Chem. A 2, 7367–7372 (2014). doi:10.1039/c4ta00206g
- X.Q. An, J.C. Yu, Y. Wang, Y.M. Hu, X.L. Yu, G.J. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22(17), 8525–8531 (2012). doi:10.1039/c2jm16709c
- J.Z. Su, L.J. Guo, N.Z. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011). doi:10.1021/nl2000743
- K. Huang, Q.T. Pan, F. Yang, S.B. Ni, X.C. Wei, D.Y. He, Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D Appl. Phys. 41(15), 155417–155422 (2008). doi:10.1088/0022-3727/41/15/155417
- X.S. Fang, Y. Bando, U.K. Gautam, C.H. Ye, D. Golberg, Inorganic semiconductor nanostructures and their field-emission Applications. J. Mater. Chem. 18(5), 509–522 (2008). doi:10.1039/b712874f
- J.S. Chen, L.A. Archer, X.W. Lou, SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J. Mater. Chem. 21(27), 9912–9924 (2011). doi:10.1039/c0jm04163g
- I.A. Courtney, J.R. Dahn, Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2 BPO6 glass. J. Electrochem. Soc. 144(9), 294–2943 (1997). doi:10.1149/1.1837941
- N. Li, C.R. Martin, B. Scrosati, Nanomaterial-based Li-ion battery electrodes. J. Power Sources 97–98, 240–243 (2001). doi:10.1016/S0378-7753(01)00760-1
- S.H. Ng, D.I. dos Santos, S.Y. Chew, D. Wexler, J. Wang, S.X. Dou, H.K. Liu, Polyol-mediated synthesis of ultrafine tin oxide nanoparticles for reversible Li-ion storage. Electrochem. Commun. 9(5), 915–919 (2007). doi:10.1016/j.elecom.2006.12.007
- X.Y. Xue, Z.H. Chen, L.L. Xing, S. Yuan, Y.J. Chen, SnO2/α-MoO3core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes. Chem. Commun. 47(18), 5205–5207 (2011). doi:10.1039/c1cc00076d
- Y.C. Qiu, G.L. Xu, Q. Kuang, S.G. Sun, S.H. Yang, Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Res. 5(11), 826–832 (2012). doi:10.1007/s12274-012-0266-6
- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarescon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 6803, 496–499 (2000). doi:10.1038/35035045
- L.A. Riley, S.H. Lee, L. Gedvilias, A.C. Dillon, Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries. J. Power Sources 195(2), 588–592 (2010). doi:10.1016/j.jpowsour.2009.08.013
References
Y. Liu, Y. Jiao, Z.L. Zhang, F.Y. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014). doi:10.1021/am405301v
G.H. Yu, L.B. Hu, N. Liu, H.L. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z.N. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11(10), 4438–4442 (2011). doi:10.1021/nl2026635
Y.T. Han, X. Wu, Y.L. Ma, L.H. Gong, F.Y. Qu, H.J. Fan, Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. Cryst EngComm. 13(11), 3506–3510 (2011). doi:10.1039/c1ce05171g
Y. Liu, Y. Jiao, S.W. Zhang, B.S. Yin, F.Y. Qu, X. Wu, SnO2 core-shell microspheres as the superior anode materials for Li-ion batteries. Sci. Adv. Mater. 6(6), 1184–1187 (2014). doi:10.1166/sam.2014.1910
W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40(3), 1697–1721 (2011). doi:10.1039/c0cs00127a
C.R. Zhu, X.H. Xia, J.L. Liu, Z.X. Fan, D.L. Chao, H. Zhang, H.J. Fan, TiO2 nanotube@SnO2 nanoflake core-branch arrays for lithium-ion battery anode. Nano Energy 4, 105–112 (2014). doi:10.1016/j.nanoen.2013.12.018
J.S. Luo, J.L. Liu, Z.Y. Zeng, C.F. Ng, L.J. Ma, H. Zhang, J.Y. Lin, Z.X. Shen, H.J. Fan, Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13(12), 6136–6143 (2013). doi:10.1021/nl403461n
J.P. Liu, J. Jiang, C.W. Cheng, H.X. Li, J.X. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core-shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23(18), 2076–2081 (2011). doi:10.1002/adma.201100058
L.N. Gao, F.Y. Qu, X. Wu, Reduced graphene oxide-BiVO4 composite for enhanced photoelectrochemical cell and photocatalyst. Sci. Adv. Mater. 5(10), 1485–1492 (2013). doi:10.1166/sam.2013.1609
B. Frenzel, P. Kurzweil, H. Rönnebeck, Electromobility concept for racing cars based on lithium-ion batteries and supercapacitors. J. Power Sources 196(12), 5364–5376 (2011). doi:10.1016/j.jpowsour.2010.10.057
X.J. Hou, X.F. Wang, B. Liu, Q.F. Wang, Z.R. Wang, D. Chen, G.Z. Shen, SnO2@TiO2 heterojunction nanostructures for lithium-ion batteries and self-powered UV photodetectors with improved performances. Chem. Electro. Chem. 1(1), 108–115 (2014). doi:10.1002/celc.201300053
D.S. Tan, B. Liu, D. Chen, G.Z. Shen, Si@SiO2 nanowires/carbon textilescable-type anodes for high-capacity reversible lithium-ion batteries. RSC Adv. 4(35), 18391–18396 (2014). doi:10.1039/c4ra01363h
B. Liu, X.F. Wang, H.T. Chen, Z.R. Wang, D. Chen, Y.B. Cheng, C.W. Zhou, G.Z. Shen, Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Sci. Reports 3, 1622 (2013). doi:10.1038/srep01622
B. Liu, X.F. Wang, Q.F. Wang, D.S. Tan, W.F. Song, X.J. Hou, D. Chen, G.Z. Shen, Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-ruchins-on-carbon-fibers electrodes. Nano Res. 6(7), 525–534 (2013). doi:10.1007/s12274-013-0329-3
J.S. Luo, X.H. Xia, Y.S. Luo, C. Guan, J.L. Liu, X.Y. Qi, C.F. Ng, T. Yu, H. Zhang, H.J. Fan, Rational designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 3(6), 737–743 (2013). doi:10.1002/aenm.201200953
S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou, Y.G. Guo, L.J. Wan, Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134(45), 18510–18513 (2012). doi:10.1021/ja308170k
B. Wang, J.S. Chen, H.B. Wu, Z.Y. Wang, X.W. Lou, Quasiemulsion templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 133(43), 17146–17148 (2011). doi:10.1021/ja208346s
L. Zhang, H.B. Wu, S. Madhavi, H.H. Hng, X.W. Lou, Formation of Fe2O3 microboxes with hierarchical shell structures from metal organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 134(42), 17388–17391 (2012). doi:10.1021/ja307475c
L.N. Gao, X.F. Wang, Z. Xie, W.F. Song, L.J. Wang, X. Wu, F.Y. Qu, D. Chen, G.Z. Shen, High performance energy storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 1, 7167–7173 (2013). doi:10.1039/c3ta10831g
L.N. Gao, F.Y. Qu, X. Wu, Hierarchical WO3@SnO2 core/shell nanowire arrays on carbon cloth: a new class of anode for high performance lithium-ion batteries. J. Mater. Chem. A 2, 7367–7372 (2014). doi:10.1039/c4ta00206g
X.Q. An, J.C. Yu, Y. Wang, Y.M. Hu, X.L. Yu, G.J. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22(17), 8525–8531 (2012). doi:10.1039/c2jm16709c
J.Z. Su, L.J. Guo, N.Z. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011). doi:10.1021/nl2000743
K. Huang, Q.T. Pan, F. Yang, S.B. Ni, X.C. Wei, D.Y. He, Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D Appl. Phys. 41(15), 155417–155422 (2008). doi:10.1088/0022-3727/41/15/155417
X.S. Fang, Y. Bando, U.K. Gautam, C.H. Ye, D. Golberg, Inorganic semiconductor nanostructures and their field-emission Applications. J. Mater. Chem. 18(5), 509–522 (2008). doi:10.1039/b712874f
J.S. Chen, L.A. Archer, X.W. Lou, SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J. Mater. Chem. 21(27), 9912–9924 (2011). doi:10.1039/c0jm04163g
I.A. Courtney, J.R. Dahn, Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2 BPO6 glass. J. Electrochem. Soc. 144(9), 294–2943 (1997). doi:10.1149/1.1837941
N. Li, C.R. Martin, B. Scrosati, Nanomaterial-based Li-ion battery electrodes. J. Power Sources 97–98, 240–243 (2001). doi:10.1016/S0378-7753(01)00760-1
S.H. Ng, D.I. dos Santos, S.Y. Chew, D. Wexler, J. Wang, S.X. Dou, H.K. Liu, Polyol-mediated synthesis of ultrafine tin oxide nanoparticles for reversible Li-ion storage. Electrochem. Commun. 9(5), 915–919 (2007). doi:10.1016/j.elecom.2006.12.007
X.Y. Xue, Z.H. Chen, L.L. Xing, S. Yuan, Y.J. Chen, SnO2/α-MoO3core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes. Chem. Commun. 47(18), 5205–5207 (2011). doi:10.1039/c1cc00076d
Y.C. Qiu, G.L. Xu, Q. Kuang, S.G. Sun, S.H. Yang, Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Res. 5(11), 826–832 (2012). doi:10.1007/s12274-012-0266-6
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarescon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 6803, 496–499 (2000). doi:10.1038/35035045
L.A. Riley, S.H. Lee, L. Gedvilias, A.C. Dillon, Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries. J. Power Sources 195(2), 588–592 (2010). doi:10.1016/j.jpowsour.2009.08.013