Dipping Process Characteristics Based on Image Processing of Pictures Captured by High-speed Cameras
Corresponding Author: Fuliang Wang
Nano-Micro Letters,
Vol. 7 No. 1 (2015), Article Number: 1-11
Abstract
The dipping process was recorded firstly by high-speed camera system; acceleration time, speed, and dipping time were set by the control system of dipping bed, respectively. By image processing of dipping process based on Otsu’s method, it was found that low-viscosity flux glue eliminates the micelle effectively, very low speed also leads to small micelle hidden between the bumps, and this small micelle and hidden phenomenon disappeared when the speed is ≥0.2 cm s−1. Dipping flux quantity of the bump decreases by about 100 square pixels when flux viscosity is reduced from 4,500 to 3,500 mpa s. For the 3,500 mpa s viscosity glue, dipping flux quantity increases with the increase of the speed and decreases with the increase of the speed after the speed is up to 0.8 cm s−1. The stable time of dipping glue can be obtained by real-time curve of dipping flux quantity and is only 80–90 ms when dipping speed is from 1.6 to 4.0 cm s−1. Dipping flux quantity has an increasing trend for acceleration time and has a decreasing trend for acceleration. Dipping flux quantity increases with the increase of dipping time, and is becoming saturated when the time is ≥55 ms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Li, L. Han, J. Duan, J. Zhong, Interface mechanism of ultrasonic flip chip bonding. Appl. Phys. Lett. 90, 242902 (2007). doi:10.1063/1.2747673
- J. Sutanto, S. Anand, C. Patel, Novel first-level interconnect techniques for flip chip on mems devices. J. Microelectromech. S. 21(1), 132–144 (2012). doi:10.1109/JMEMS.2011.2171326
- J. Li, L. Liu, L. Deng, B. Ma, F. Wang, L. Han, Interfacial microstructures and thermodynamics of thermosonic Cu-wire bonding. IEEE Electr. Device L. 32(10), 1433–1435 (2011). doi:10.1109/LED.2011.2161749
- H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, V.L. Acoff, Behavior of intermetallics, aluminum oxide and voids in Cu–Al wire bonds. Acta Mater. 59(14), 5661–5673 (2011). doi:10.1016/j.actamat.2011.05.041
- F. Wang, L. Han, Experimental study of thermosonic gold bump flip-chip bonding with a smooth end tool. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 930–934 (2013). doi:10.1109/TCPMT.2013.2257926
- Y.C. Liang, H.W. Lin, H.P. Chen, Anisotropic grain growth and crack propagation in eutectic microstructure under cyclic temperature annealing in flip-chip SnPb composite solder joints. Scripta Mater. 69(1), 25–28 (2013). doi:10.1016/j.scriptamat.2013.03.018
- J. Li, J. Duan, L. Han, J. Zhong, Microstructural characteristics of Au/Al bonded interfaces. Mater. Charact. 58, 103–107 (2007). doi:10.1016/j.matchar.2006.03.018
- J. Li, F. Wang, L. Han, J. Zhong, Theoretical and experimental analyses of atom diffusion characteristics on wire bonding interfaces. J. Phys D-Appl. Phys. 41, 135303 (2008). doi:10.1088/0022-3727/41/13/135303
- B. Xiong, Z. Yin, A universal denoising framework with a new impulse detector and nonlocal means. IEEE Trans. Image Process 21(14), 1663–1675 (2012). doi:10.1109/TIP.2011.2172804
- H.N. Yen, D.M. Tsai, S.K. Feng, Full-field 3D flip-chip solder bumps measurement using DLP-based phase shifting technique. IEEE Trans. Adv. Packag. 31, 830–840 (2008). doi:10.1109/TADVP.2008.2005015
- J. Li, X. Zhang, L. Liu, L. Deng, L. Han, Effects of ultrasonic power and time on bonding strength and interfacial atomic diffusion during thermosonic flip-chip bonding. IEEE Trans. Compon. Packag. Technol. 2(3), 521–526 (2012). doi:10.1109/TCPMT.2012.2183601
- Z. Liu, P.S. Valvo, Y. Huang, Z. Yin, Cohesive failure analysis of an array of IC chips bonded to a stretched substrate. Int. J. Solids Struct. 50(22–23), 3528–3538 (2013). doi:10.1016/j.ijsolstr.2013.06.021
- K. Shen, W. Lin, D. Wuu, S. Huang, K. Wen, S. Pai, L. Wu, R. Horng, An 83 % enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask. IEEE Electr. Device L. 34(2), 274–276 (2013). doi:10.1109/LED.2012.2228462
- J. Li, X. Zhang, L. Liu, L. Deng, L. Han, Interfacial characteristics and dynamic process of Au- and Cu-wire bonding and overhang bonding in microelectronics packaging. J. Microelectromech. S. 22(3), 560–568 (2013). doi:10.1109/JMEMS.2012.2230316
- D.M. Tsai, M.C. Lin, Machine-vision-based identification for wafer tracking in solar cell manufacturing. Robot Cim-Int. Manuf. 29(5), 312–321 (2013). doi:10.1016/j.rcim.2013.01.009
- S.M. Hong, C.S. Kang, J.P. Jung, Flux-free direct chip attachment of solder-bump flip chip by Ar+H−2 plasma treatment. J. Electron. Mater. 31(10), 1104–1111 (2002). doi:10.1007/s11664-002-0049-z
- H.Y. Zhang, D. Pinjala, T.N. Wong, Development of liquid cooling techniques for flip chip ball grid array packages with high heat flux dissipations. IEEE Trans. Compon. Packag. Technol. 28(1), 127–135 (2005). doi:10.1109/TCAPT.2004.843164
- J.U. Knickerbocker, P.S. Andry, B. Dang, Three-dimensional silicon integration. IBM J. Res. Dev. 52(6), 553–569 (2008). doi:10.1147/JRD.2008.5388564
- J. Lu, H. Takagi, R. Maeda, Chip to wafer temporary bonding with self-alignment by patterned FDTS layer for size-free MEMS integration. Proceedings of IEEE Sensors Conference, 1121–1124 (2011)
- M. Manna, Effect of fluxing chemical: an option for Zn-5 wt% Al alloy coating on wire surface by single hot dip process. Surf. Coat. Tech. 205(12), 3716–3721 (2011). doi:10.1016/j.surfcoat.2011.01.026
- S. Nyamannavar, K. Prabhu, Heat flux transients at the solder/substrate interface in dip soldering. Trans. Indian Inst. Metals 61(4), 279–282 (2008). doi:10.1007/s12666-008-0040-3
- X. Xu, S. Xu, L. Jin, E. Song, Characteristic analysis of Otsu threshold and its applications. Pattern Recogn. Lett. 32, 956–961 (2011). doi:10.1016/j.patrec.2011.01.021
- Z. Fu, Z. Xie, Y. Zhao, Quality evaluation of adhesive coating on space solar cells based on image processing. Acta Energize Solaris Sonica 28(8), 844–848 (2007)
References
J. Li, L. Han, J. Duan, J. Zhong, Interface mechanism of ultrasonic flip chip bonding. Appl. Phys. Lett. 90, 242902 (2007). doi:10.1063/1.2747673
J. Sutanto, S. Anand, C. Patel, Novel first-level interconnect techniques for flip chip on mems devices. J. Microelectromech. S. 21(1), 132–144 (2012). doi:10.1109/JMEMS.2011.2171326
J. Li, L. Liu, L. Deng, B. Ma, F. Wang, L. Han, Interfacial microstructures and thermodynamics of thermosonic Cu-wire bonding. IEEE Electr. Device L. 32(10), 1433–1435 (2011). doi:10.1109/LED.2011.2161749
H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, V.L. Acoff, Behavior of intermetallics, aluminum oxide and voids in Cu–Al wire bonds. Acta Mater. 59(14), 5661–5673 (2011). doi:10.1016/j.actamat.2011.05.041
F. Wang, L. Han, Experimental study of thermosonic gold bump flip-chip bonding with a smooth end tool. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 930–934 (2013). doi:10.1109/TCPMT.2013.2257926
Y.C. Liang, H.W. Lin, H.P. Chen, Anisotropic grain growth and crack propagation in eutectic microstructure under cyclic temperature annealing in flip-chip SnPb composite solder joints. Scripta Mater. 69(1), 25–28 (2013). doi:10.1016/j.scriptamat.2013.03.018
J. Li, J. Duan, L. Han, J. Zhong, Microstructural characteristics of Au/Al bonded interfaces. Mater. Charact. 58, 103–107 (2007). doi:10.1016/j.matchar.2006.03.018
J. Li, F. Wang, L. Han, J. Zhong, Theoretical and experimental analyses of atom diffusion characteristics on wire bonding interfaces. J. Phys D-Appl. Phys. 41, 135303 (2008). doi:10.1088/0022-3727/41/13/135303
B. Xiong, Z. Yin, A universal denoising framework with a new impulse detector and nonlocal means. IEEE Trans. Image Process 21(14), 1663–1675 (2012). doi:10.1109/TIP.2011.2172804
H.N. Yen, D.M. Tsai, S.K. Feng, Full-field 3D flip-chip solder bumps measurement using DLP-based phase shifting technique. IEEE Trans. Adv. Packag. 31, 830–840 (2008). doi:10.1109/TADVP.2008.2005015
J. Li, X. Zhang, L. Liu, L. Deng, L. Han, Effects of ultrasonic power and time on bonding strength and interfacial atomic diffusion during thermosonic flip-chip bonding. IEEE Trans. Compon. Packag. Technol. 2(3), 521–526 (2012). doi:10.1109/TCPMT.2012.2183601
Z. Liu, P.S. Valvo, Y. Huang, Z. Yin, Cohesive failure analysis of an array of IC chips bonded to a stretched substrate. Int. J. Solids Struct. 50(22–23), 3528–3538 (2013). doi:10.1016/j.ijsolstr.2013.06.021
K. Shen, W. Lin, D. Wuu, S. Huang, K. Wen, S. Pai, L. Wu, R. Horng, An 83 % enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask. IEEE Electr. Device L. 34(2), 274–276 (2013). doi:10.1109/LED.2012.2228462
J. Li, X. Zhang, L. Liu, L. Deng, L. Han, Interfacial characteristics and dynamic process of Au- and Cu-wire bonding and overhang bonding in microelectronics packaging. J. Microelectromech. S. 22(3), 560–568 (2013). doi:10.1109/JMEMS.2012.2230316
D.M. Tsai, M.C. Lin, Machine-vision-based identification for wafer tracking in solar cell manufacturing. Robot Cim-Int. Manuf. 29(5), 312–321 (2013). doi:10.1016/j.rcim.2013.01.009
S.M. Hong, C.S. Kang, J.P. Jung, Flux-free direct chip attachment of solder-bump flip chip by Ar+H−2 plasma treatment. J. Electron. Mater. 31(10), 1104–1111 (2002). doi:10.1007/s11664-002-0049-z
H.Y. Zhang, D. Pinjala, T.N. Wong, Development of liquid cooling techniques for flip chip ball grid array packages with high heat flux dissipations. IEEE Trans. Compon. Packag. Technol. 28(1), 127–135 (2005). doi:10.1109/TCAPT.2004.843164
J.U. Knickerbocker, P.S. Andry, B. Dang, Three-dimensional silicon integration. IBM J. Res. Dev. 52(6), 553–569 (2008). doi:10.1147/JRD.2008.5388564
J. Lu, H. Takagi, R. Maeda, Chip to wafer temporary bonding with self-alignment by patterned FDTS layer for size-free MEMS integration. Proceedings of IEEE Sensors Conference, 1121–1124 (2011)
M. Manna, Effect of fluxing chemical: an option for Zn-5 wt% Al alloy coating on wire surface by single hot dip process. Surf. Coat. Tech. 205(12), 3716–3721 (2011). doi:10.1016/j.surfcoat.2011.01.026
S. Nyamannavar, K. Prabhu, Heat flux transients at the solder/substrate interface in dip soldering. Trans. Indian Inst. Metals 61(4), 279–282 (2008). doi:10.1007/s12666-008-0040-3
X. Xu, S. Xu, L. Jin, E. Song, Characteristic analysis of Otsu threshold and its applications. Pattern Recogn. Lett. 32, 956–961 (2011). doi:10.1016/j.patrec.2011.01.021
Z. Fu, Z. Xie, Y. Zhao, Quality evaluation of adhesive coating on space solar cells based on image processing. Acta Energize Solaris Sonica 28(8), 844–848 (2007)