Novel Flow Field with Superhydrophobic Gas Channels Prepared by One-step Solvent-induced Crystallization for Micro Direct Methanol Fuel Cell
Corresponding Author: Dazhi Wang
Nano-Micro Letters,
Vol. 7 No. 2 (2015), Article Number: 165-171
Abstract
The CO2-induced capillary blocking in anode flow field is one of the key adverse factors to reduce the performance of a micro-direct methanol fuel cell (μDMFC). In order to solve this problem, new polycarbonate (PC) flow field plates with nested arrangement of hydrophilic fuel channels and superhydrophobic gas channels were designed, fabricated, and tested in this work. The gas channels were treated with solvent-induced crystallization using acetone solution. The superhydrophobicity with 160° water contact angle and 2° tilting angle was obtained on the PC substrates. A dummy cell using hydrogen peroxide decomposition reaction and a test loop were separately set up to evaluate the flow fields’ performance. It was found that a 37 % pressure drop decrease can be obtained in the new serpentine flow field compared with that of the conventional one. The benefit of the new flow field to remove gas bubbles was also confirmed by an in situ visualization study on the dummy cell. Results show that the auxiliary superhydrophobic gas channels can speed up the discharge of the gas bubbles from the flow field, which will in turn improve the μDMFC performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.X. Zhao, Z. Zheng, J. Li, H.M. Jia, K.W. Wong, Y.D. Zhang, W.M. Lau, Substitute of expensive Pt with improved electro-catalytic performance and higher resistance to CO poisoning for methanol oxidation: the case of synergistic Pt-Co3O4 nanocomposite. Nano–Micro Lett. 5(4), 296–302 (2013). doi:10.1007/BF03353761
- C. Feng, T. Takeuchi, M.A. Abdelkareem, T. Tsujiguchi, N. Nakagawa, Carbone-CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell. J. Power Sources 242, 57–64 (2013). doi:10.1016/j.jpowsour.2013.04.157
- P. Chen, H.J. Wu, T. Yuan, Z.Q. Zou, H.F. Zhang, J.W. Zheng, H. Yang, Electronspun nanofiber network anode for a passive direct methanol fuel cell. J. Power Sources 255, 70–75 (2014). doi:10.1016/j.jpowsour.2013.12.130
- H. Yang, T.S. Zhao, Q. Ye, In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields. J. Power Sources 139(1–2), 79–90 (2005). doi:10.1016/j.jpowsour.2004.05.033
- Q. Liao, X. Zhu, X.Y. Zheng, Y.D. Ding, Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC. J. Power Sources 171(2), 644–651 (2007). doi:10.1016/j.jpowsour.2007.06.257
- C.W. Wong, T.S. Zhao, Q. Ye, J.G. Liu, Transient capillary blocking in the flow field of a micro-DMFC and its effect on cell performance. J. Electrochem. Soc. 152(8), A1600–A1605 (2005). doi:10.1149/1.1949067
- S. Burgmann, M. Blank, J. Wartmann, A. Heinzel, Investigation of the effect of CO2 bubbles and slugs on the performance of a DMFC by means of laser-optical flow measurements. Energy Procedia 28, 88–101 (2012). doi:10.1016/j.egypro.2012.08.043
- S. Burgmann, M. Blank, O. Panchenko, J. Wartmann, µPIV measurements of two-phase flows of an operated direct methanol fuel cell. Exp. Fluids 54, 1513 (2013). doi:10.1007/s00348-013-1513-7
- T. Numaguchi, S. Hirano, Y. Eguchi, E. Ejiri, Visualization of two-phase flow in DMFC anode channel. ECS Trans. 25(33), 147–154 (2010). doi:10.1149/1.3334802
- C.R. Buie, J.G. Santiago, Two-phase hydrodynamics in a miniature direct methanol fuel cell. Int. J. Heat Mass Transf. 52(21–22), 5158–5166 (2009). doi:10.1016/j.ijheatmasstransfer.2009.05.003
- H. Yang, T.S. Zhao, Q. Ye, Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells. J. Power Sources 142(1–2), 117–124 (2005). doi:10.1016/j.jpowsour.2004.09.036
- Z.Y. Yuan, Y.F. Zhang, W.T. Fu, Z.P. Li, X.W. Liu, Investigation of corner effect on micro-scale flow of μDMFC. Microelectron. Eng. 111, 96–100 (2013). doi:10.1016/j.mee.2013.02.022
- Z.Y. Yuan, Y.F. Zhang, W.T. Fu, Z. Wang, X.L. Zhang, X.W. Liu, Hydrophilicity effect on micro-scale flow of μDMFC. Microelectron. Eng. 119, 131–136 (2014). doi:10.1016/j.mee.2014.03.024
- T. Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten, Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution. J. Power Sources 125(1), 1–9 (2004). doi:10.1016/S0378-7753(03)00824-3
- D.S. Meng, J. Kim, C.J. Kim, A distributed gas breather for micro direct methanol fuel cell (μ-DMFC) in Proceedings of Micro Electro Mechanical Systems, MEMS03, Kyoto, Japan (Jan19–23, 2003): IEEE, pp. 534–537 (2003). doi: 10.1109/MEMSYS.2003.1189804
- Y.J. Chuang, C.C. Chieng, C. Pan, S.J. Luo, F.G. Tseng, A spontaneous and passive waste-management device (PWMD) for a micro direct methanol fuel cell. J. Micromech. Microeng. 17(5), 915–922 (2007). doi:10.1088/0960-1317/17/5/010
- M.D. Lundin, M.J. McCready, Reduction of carbon dioxide gas formation at the anode of a direct methanol fuel cell using chemically enhanced solubility. J. Power Sources 172(2), 553–559 (2007). doi:10.1016/j.jpowsour.2007.05.074
- M.M. Li, J.S. Liang, C. Liu, G.Q. Sun, G. Zhao, Effects of anode flow field design on CO2 bubble behavior in μDMFC. Sensors 9(5), 3314–3324 (2009). doi:10.3390/s90503314
- T. Hutzenlaub, N. Paust, R. Zengerle, C. Ziegler, The effect of wetting properties on bubble dynamics and fuel distribution in the flow field of direct methanol fuel cells. J. Power Sources 196(19), 8048–8056 (2011). doi:10.1016/j.jpowsour.2011.05.070
- H. Yang, T.S. Zhao, Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells. Electrochim. Acta 50(16–17), 3243–3252 (2005). doi:10.1016/j.electacta.2004.11.060
- J.D. Hoffman, R.L. Miller, Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38(13), 3151–3212 (1997). doi:10.1016/S0032-3861(97)00071-2
- I. Saarikoski, M. Suvanto, T.A. Pakkanen, Modification of polycarbonate surface properties by nano-, micro-, and hierarchical micro–nano structuring. Appl. Surf. Sci. 255(22), 9000–9005 (2009). doi:10.1016/j.apsusc.2009.06.073
- A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944). doi:10.1039/tf9444000546
References
H.X. Zhao, Z. Zheng, J. Li, H.M. Jia, K.W. Wong, Y.D. Zhang, W.M. Lau, Substitute of expensive Pt with improved electro-catalytic performance and higher resistance to CO poisoning for methanol oxidation: the case of synergistic Pt-Co3O4 nanocomposite. Nano–Micro Lett. 5(4), 296–302 (2013). doi:10.1007/BF03353761
C. Feng, T. Takeuchi, M.A. Abdelkareem, T. Tsujiguchi, N. Nakagawa, Carbone-CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell. J. Power Sources 242, 57–64 (2013). doi:10.1016/j.jpowsour.2013.04.157
P. Chen, H.J. Wu, T. Yuan, Z.Q. Zou, H.F. Zhang, J.W. Zheng, H. Yang, Electronspun nanofiber network anode for a passive direct methanol fuel cell. J. Power Sources 255, 70–75 (2014). doi:10.1016/j.jpowsour.2013.12.130
H. Yang, T.S. Zhao, Q. Ye, In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields. J. Power Sources 139(1–2), 79–90 (2005). doi:10.1016/j.jpowsour.2004.05.033
Q. Liao, X. Zhu, X.Y. Zheng, Y.D. Ding, Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC. J. Power Sources 171(2), 644–651 (2007). doi:10.1016/j.jpowsour.2007.06.257
C.W. Wong, T.S. Zhao, Q. Ye, J.G. Liu, Transient capillary blocking in the flow field of a micro-DMFC and its effect on cell performance. J. Electrochem. Soc. 152(8), A1600–A1605 (2005). doi:10.1149/1.1949067
S. Burgmann, M. Blank, J. Wartmann, A. Heinzel, Investigation of the effect of CO2 bubbles and slugs on the performance of a DMFC by means of laser-optical flow measurements. Energy Procedia 28, 88–101 (2012). doi:10.1016/j.egypro.2012.08.043
S. Burgmann, M. Blank, O. Panchenko, J. Wartmann, µPIV measurements of two-phase flows of an operated direct methanol fuel cell. Exp. Fluids 54, 1513 (2013). doi:10.1007/s00348-013-1513-7
T. Numaguchi, S. Hirano, Y. Eguchi, E. Ejiri, Visualization of two-phase flow in DMFC anode channel. ECS Trans. 25(33), 147–154 (2010). doi:10.1149/1.3334802
C.R. Buie, J.G. Santiago, Two-phase hydrodynamics in a miniature direct methanol fuel cell. Int. J. Heat Mass Transf. 52(21–22), 5158–5166 (2009). doi:10.1016/j.ijheatmasstransfer.2009.05.003
H. Yang, T.S. Zhao, Q. Ye, Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells. J. Power Sources 142(1–2), 117–124 (2005). doi:10.1016/j.jpowsour.2004.09.036
Z.Y. Yuan, Y.F. Zhang, W.T. Fu, Z.P. Li, X.W. Liu, Investigation of corner effect on micro-scale flow of μDMFC. Microelectron. Eng. 111, 96–100 (2013). doi:10.1016/j.mee.2013.02.022
Z.Y. Yuan, Y.F. Zhang, W.T. Fu, Z. Wang, X.L. Zhang, X.W. Liu, Hydrophilicity effect on micro-scale flow of μDMFC. Microelectron. Eng. 119, 131–136 (2014). doi:10.1016/j.mee.2014.03.024
T. Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten, Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution. J. Power Sources 125(1), 1–9 (2004). doi:10.1016/S0378-7753(03)00824-3
D.S. Meng, J. Kim, C.J. Kim, A distributed gas breather for micro direct methanol fuel cell (μ-DMFC) in Proceedings of Micro Electro Mechanical Systems, MEMS03, Kyoto, Japan (Jan19–23, 2003): IEEE, pp. 534–537 (2003). doi: 10.1109/MEMSYS.2003.1189804
Y.J. Chuang, C.C. Chieng, C. Pan, S.J. Luo, F.G. Tseng, A spontaneous and passive waste-management device (PWMD) for a micro direct methanol fuel cell. J. Micromech. Microeng. 17(5), 915–922 (2007). doi:10.1088/0960-1317/17/5/010
M.D. Lundin, M.J. McCready, Reduction of carbon dioxide gas formation at the anode of a direct methanol fuel cell using chemically enhanced solubility. J. Power Sources 172(2), 553–559 (2007). doi:10.1016/j.jpowsour.2007.05.074
M.M. Li, J.S. Liang, C. Liu, G.Q. Sun, G. Zhao, Effects of anode flow field design on CO2 bubble behavior in μDMFC. Sensors 9(5), 3314–3324 (2009). doi:10.3390/s90503314
T. Hutzenlaub, N. Paust, R. Zengerle, C. Ziegler, The effect of wetting properties on bubble dynamics and fuel distribution in the flow field of direct methanol fuel cells. J. Power Sources 196(19), 8048–8056 (2011). doi:10.1016/j.jpowsour.2011.05.070
H. Yang, T.S. Zhao, Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells. Electrochim. Acta 50(16–17), 3243–3252 (2005). doi:10.1016/j.electacta.2004.11.060
J.D. Hoffman, R.L. Miller, Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38(13), 3151–3212 (1997). doi:10.1016/S0032-3861(97)00071-2
I. Saarikoski, M. Suvanto, T.A. Pakkanen, Modification of polycarbonate surface properties by nano-, micro-, and hierarchical micro–nano structuring. Appl. Surf. Sci. 255(22), 9000–9005 (2009). doi:10.1016/j.apsusc.2009.06.073
A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944). doi:10.1039/tf9444000546