Controlling Ion Conductance and Channels to Achieve Synaptic-like Frequency Selectivity
Corresponding Author: Jingting Luo
Nano-Micro Letters,
Vol. 7 No. 2 (2015), Article Number: 121-126
Abstract
Enhancing ion conductance and controlling transport pathway in organic electrolyte could be used to modulate ionic kinetics to handle signals. In a Pt/Poly(3-hexylthiophene-2,5-diyl)/Polyethylene+LiCF3SO3/Pt hetero-junction, the electrolyte layer handled at high temperature showed nano-fiber microstructures accompanied with greatly improved salt solubility. Ions with high mobility were confined in the nano-fibrous channels leading to the semiconducting polymer layer, which is favorable for modulating dynamic doping at the semiconducting polymer/electrolyte interface by pulse frequency. Such a device realized synaptic-like frequency selectivity, i.e., depression at low frequency stimulation but potentiation at high-frequency stimulation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.A. Henderson, D.M. Seo, Q. Zhou, P.D. Boyle, J.H. Shin, H.C. De Long, P.C. Trulove, S. Passerini, An alternative ionic conductivity mechanism for plastic crystalline salt-lithium salt electrolyte mixtures. Adv. Energy Mater. 2, 1343–1350 (2012). doi:10.1002/aenm.201200130
- F.M. Gray, Polymer Electrolytes (RSC Materials Monographs, The Royal Society of Chemistry, Cambridge, 1997)
- W. Gorecki, P. Donoso, C. Berthier, M. Mali, J. Roos, D. Brinkmann, M.B. Armand, NMR, DSC and conductivity study of the polymer solid electrolytes p(eo) (LiCP + 1F2P + 3SO3)x. Solid State Ion. 28–30, 1018–1022 (1988). doi:10.1016/0167-2738(88)90323-2
- A. van Zon, S.W. de Leeuw, A Rouse model for polymer electrolytes. Electrochim. Acta 46, 1539–1544 (2001). doi:10.1016/S0013-4686(00)00750-7
- O. Borodin, G.D. Smith, Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39(4), 1620–1629 (2006). doi:10.1021/ma052277v
- Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001). doi:10.1038/35087538
- Y. Wang, B. Li, J.Y. Ji, W.H. Zhong, Controlled Li+ conduction pathway to achieve enhanced ionic conductivity in polymer electrolytes. J. Power Sources 247(1), 452–459 (2014). doi:10.1016/j.jpowsour.2013.08.137
- F. Zeng, S.H. Lu, S.Z. Li, X.J. Li, F. Pan, Frequency selectivity in pulse responses of Pt/poly(3-hexylthiophene-2,5-diyl)/polyethylene oxide+Li+/Pt hetero junction. PLoS ONE 9, e108316 (2014). doi:10.1371/journal.pone.0108316
- A. Adamatzky, L. Chua, Memristor Networks (Springer, Cham Heidelberg, New York, 2014)
- J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013). doi:10.1038/nnano.2012.240
- C. Zamarre-o-Ramos, L.A. Camu-as-Mesa, J.A. Pérez-Carrasco, T. Timothée Masquelier, T. Serrano-Gotarredona, B. Linares-Barranco, On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 5, 26 (2011). doi:10.3389/fnins.2011.00026
- G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17(1), 211–221 (2006). doi:10.1109/TNN.2005.860850
- F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R 83, 1–59 (2014). doi:10.1016/j.mser.2014.06.002
- C.K. Machens, Building the human brain. Science 338, 1156–1157 (2012). doi:10.1126/science.1231865
- C.D. Robitaille, D. Fauteux, Phase-diagrams and conductivity characterization of some peo-lix electrolytes. J. Electrochem. Soc. 133(2), 315–325 (1986). doi:10.1149/1.2108569
- C.P. Rhodes, R. Frech, Cation–anion and cation–polymer interactions in (PEO)(n)NaCF3SO3 (n = 1–80). Solid State Ion. 121(1–4), 91–99 (1999). doi:10.1016/S0167-2738(98)00534-7
- C. Guo, J. Wang, H. Liu, J.Y. Chen, Hydration and conformation of temperature-dependent micellization of PEO-PPO-PEO block copolymers in aqueous solutions by FT-Raman. Langmuir 15(8), 2703–2708 (1999). doi:10.1021/la981036w
- L.F. Abbott, W.G. Regehr, Synaptic computation. Nature 431, 796–803 (2004). doi:10.1038/nature03010
- Z. Rotman, P.Y. Deng, V.A. Klyachko, Short-term plasticity optimizes synaptic information transmission. J. Neurosci. 31(41), 14800–14809 (2011). doi:10.1523/JNEUROSCI.3231-11.2011
- D.L. Brody, D.T. Yue, Release-independent short-term synaptic depression in cultured hippocampal neurons. J. Neurosci. 20(7), 2480–2494 (2000)
- S.M. Dudek, M.F. Bear, Homosynaptic long-term depression in area ca1 of hippocampus and effects of n-methyl-d-aspartate receptor blockade. PNAS 89(10), 4363–4367 (1992). doi:10.1073/pnas.89.10.4363
- G.Q. Bi, M.M. Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 15, 10464 (1998)
- S.N. Yang, Y.G. Tang, R.S. Zucker, Selective induction of LTP and LTD by postsynaptic [Ca2+], elevation. J. Neurophysiol. 81, 781 (1999)
- T. Chang, S.H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011). doi:10.1021/nn202983n
- S.Z. Li, F. Zeng, C. Chen, H. Liu, G.S. Tang, S. Gao, C. Song, Y.S. Lin, F. Pan, D. Guo, Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C 1, 5292–5298 (2013). doi:10.1039/c3tc30575a
- G. Rachmuth, H.Z. Shouval, M.F. Bear, C.S. Poon, A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. PNAS 108(49), E1266–E1274 (2011). doi:10.1073/pnas.1106161108
- L.N. Cooper, M.F. Bear, The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798–810 (2012). doi:10.1038/nrn3353
- L.N. Cooper, F. Liberman, E. Oja, Theory for the acquisition and loss of neuron specificity in visual-cortex. Biol. Cybern. 33(1), 9–28 (1979). doi:10.1007/BF00337414
- M.F. Bear, L.N. Cooper, F.F. Ebner, A physiological-basis for a theory of synapse modification. Science 237, 42–48 (1987). doi:10.1126/science.3037696
- D. Neveu, R.S. Zucker, Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16(3), 619–629 (1996). doi:10.1016/S0896-6273(00)80081-1
References
W.A. Henderson, D.M. Seo, Q. Zhou, P.D. Boyle, J.H. Shin, H.C. De Long, P.C. Trulove, S. Passerini, An alternative ionic conductivity mechanism for plastic crystalline salt-lithium salt electrolyte mixtures. Adv. Energy Mater. 2, 1343–1350 (2012). doi:10.1002/aenm.201200130
F.M. Gray, Polymer Electrolytes (RSC Materials Monographs, The Royal Society of Chemistry, Cambridge, 1997)
W. Gorecki, P. Donoso, C. Berthier, M. Mali, J. Roos, D. Brinkmann, M.B. Armand, NMR, DSC and conductivity study of the polymer solid electrolytes p(eo) (LiCP + 1F2P + 3SO3)x. Solid State Ion. 28–30, 1018–1022 (1988). doi:10.1016/0167-2738(88)90323-2
A. van Zon, S.W. de Leeuw, A Rouse model for polymer electrolytes. Electrochim. Acta 46, 1539–1544 (2001). doi:10.1016/S0013-4686(00)00750-7
O. Borodin, G.D. Smith, Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39(4), 1620–1629 (2006). doi:10.1021/ma052277v
Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001). doi:10.1038/35087538
Y. Wang, B. Li, J.Y. Ji, W.H. Zhong, Controlled Li+ conduction pathway to achieve enhanced ionic conductivity in polymer electrolytes. J. Power Sources 247(1), 452–459 (2014). doi:10.1016/j.jpowsour.2013.08.137
F. Zeng, S.H. Lu, S.Z. Li, X.J. Li, F. Pan, Frequency selectivity in pulse responses of Pt/poly(3-hexylthiophene-2,5-diyl)/polyethylene oxide+Li+/Pt hetero junction. PLoS ONE 9, e108316 (2014). doi:10.1371/journal.pone.0108316
A. Adamatzky, L. Chua, Memristor Networks (Springer, Cham Heidelberg, New York, 2014)
J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013). doi:10.1038/nnano.2012.240
C. Zamarre-o-Ramos, L.A. Camu-as-Mesa, J.A. Pérez-Carrasco, T. Timothée Masquelier, T. Serrano-Gotarredona, B. Linares-Barranco, On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 5, 26 (2011). doi:10.3389/fnins.2011.00026
G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17(1), 211–221 (2006). doi:10.1109/TNN.2005.860850
F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R 83, 1–59 (2014). doi:10.1016/j.mser.2014.06.002
C.K. Machens, Building the human brain. Science 338, 1156–1157 (2012). doi:10.1126/science.1231865
C.D. Robitaille, D. Fauteux, Phase-diagrams and conductivity characterization of some peo-lix electrolytes. J. Electrochem. Soc. 133(2), 315–325 (1986). doi:10.1149/1.2108569
C.P. Rhodes, R. Frech, Cation–anion and cation–polymer interactions in (PEO)(n)NaCF3SO3 (n = 1–80). Solid State Ion. 121(1–4), 91–99 (1999). doi:10.1016/S0167-2738(98)00534-7
C. Guo, J. Wang, H. Liu, J.Y. Chen, Hydration and conformation of temperature-dependent micellization of PEO-PPO-PEO block copolymers in aqueous solutions by FT-Raman. Langmuir 15(8), 2703–2708 (1999). doi:10.1021/la981036w
L.F. Abbott, W.G. Regehr, Synaptic computation. Nature 431, 796–803 (2004). doi:10.1038/nature03010
Z. Rotman, P.Y. Deng, V.A. Klyachko, Short-term plasticity optimizes synaptic information transmission. J. Neurosci. 31(41), 14800–14809 (2011). doi:10.1523/JNEUROSCI.3231-11.2011
D.L. Brody, D.T. Yue, Release-independent short-term synaptic depression in cultured hippocampal neurons. J. Neurosci. 20(7), 2480–2494 (2000)
S.M. Dudek, M.F. Bear, Homosynaptic long-term depression in area ca1 of hippocampus and effects of n-methyl-d-aspartate receptor blockade. PNAS 89(10), 4363–4367 (1992). doi:10.1073/pnas.89.10.4363
G.Q. Bi, M.M. Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 15, 10464 (1998)
S.N. Yang, Y.G. Tang, R.S. Zucker, Selective induction of LTP and LTD by postsynaptic [Ca2+], elevation. J. Neurophysiol. 81, 781 (1999)
T. Chang, S.H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011). doi:10.1021/nn202983n
S.Z. Li, F. Zeng, C. Chen, H. Liu, G.S. Tang, S. Gao, C. Song, Y.S. Lin, F. Pan, D. Guo, Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C 1, 5292–5298 (2013). doi:10.1039/c3tc30575a
G. Rachmuth, H.Z. Shouval, M.F. Bear, C.S. Poon, A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. PNAS 108(49), E1266–E1274 (2011). doi:10.1073/pnas.1106161108
L.N. Cooper, M.F. Bear, The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798–810 (2012). doi:10.1038/nrn3353
L.N. Cooper, F. Liberman, E. Oja, Theory for the acquisition and loss of neuron specificity in visual-cortex. Biol. Cybern. 33(1), 9–28 (1979). doi:10.1007/BF00337414
M.F. Bear, L.N. Cooper, F.F. Ebner, A physiological-basis for a theory of synapse modification. Science 237, 42–48 (1987). doi:10.1126/science.3037696
D. Neveu, R.S. Zucker, Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16(3), 619–629 (1996). doi:10.1016/S0896-6273(00)80081-1