DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review
Corresponding Author: Shanqing Zhang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 13
Abstract
Carbon nitrides (including CN, C2N, C3N, C3N4, C4N, and C5N) are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures, morphologies, and electronic configurations. In this review, we provide a comprehensive review on these materials properties, theoretical advantages, the synthesis and modification strategies of different carbon nitride-based materials (CNBMs) and their application in existing and emerging rechargeable battery systems, such as lithium-ion batteries, sodium and potassium-ion batteries, lithium sulfur batteries, lithium oxygen batteries, lithium metal batteries, zinc-ion batteries, and solid-state batteries. The central theme of this review is to apply the theoretical and computational design to guide the experimental synthesis of CNBMs for energy storage, i.e., facilitate the application of first-principle studies and density functional theory for electrode material design, synthesis, and characterization of different CNBMs for the aforementioned rechargeable batteries. At last, we conclude with the challenges, and prospects of CNBMs, and propose future perspectives and strategies for further advancement of CNBMs for rechargeable batteries.
Highlights:
1 Comprehensive summary of crystalline structures and morphologies of carbon nitride-based materials (CNBMs).
2 Density functional theory computation for the design of functional CNBMs for rechargeable battery applications.
3 The experimental synthesis strategies of CNBMs for rechargeable battery application.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Su, J. Liu, M. Li, Y. Zhu, S. Qian et al., Defect engineering in titanium-based oxides for electrochemical energy storage devices. Electrochem. Energ. Rev. 3, 286–343 (2020). https://doi.org/10.1007/s41918-020-00064-5
- Y. Zhang, G. Shi, J. Qin, S.E. Lowe, S. Zhang, H. Zhao, Y.L. Zhong, Recent progress of direct ink writing of electronic components for advanced wearable devices. ACS Appl. Electron. Mater. 1(9), 1718–1734 (2019). https://doi.org/10.1021/acsaelm.9b00428
- Z. Wu, J. Xie, Z.J. Xu, S. Zhang, Q. Zhang, Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. J. Mater. Chem. A 7(9), 4259–4290 (2019). https://doi.org/10.1039/C8TA11994E
- C. Wu, X. Tong, Y. Ai, D.-S. Liu, P. Yu, J. Wu, Z.M. Wang, A review: enhanced anodes of Li/Na-ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10(3), 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
- C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, C. Zhang, Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode. J. Power Sources 342, 157–164 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.110
- B. He, Y. Wang, Q. Zhai, P. Qiu, G. Dong, X. Liu, Y. Chen, Z. Li, From polymeric carbon nitride to carbon materials: extended application to electrochemical energy conversion and storage. Nanoscale 12(16), 8636–8646 (2020). https://doi.org/10.1039/D0NR01612H
- Q. Hao, G. Jia, W. Wei, A. Vinu, Y. Wang, H. Arandiyan, B.-J. Ni, Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 13(1), 18–37 (2020). https://doi.org/10.1007/s12274-019-2589-z
- J. Chen, Z. Mao, L. Zhang, D. Wang, R. Xu, L. Bie, B.D. Fahlman, Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 11(12), 12650–12657 (2017). https://doi.org/10.1021/acsnano.7b07116
- H. Pang, Y. Luo, Y. Yan, S. Zheng, H. Xue, Graphitic carbon nitride based materials for electrochemical energy storage. J. Mater. Chem. A 7(3), 901–924 (2018). https://doi.org/10.1039/C8TA08464E
- B. Zhu, B. Cheng, L. Zhang, J. Yu, Review on dft calculation of s-triazine-based carbon nitride. Carbon Energy 1(1), 32–56 (2019). https://doi.org/10.1002/cey2.1
- A. Bafekry, S.F. Shayesteh, F.M. Peeters, Two-dimensional carbon nitride (2DCN) nanosheets: tuning of novel electronic and magnetic properties by hydrogenation, atom substitution and defect engineering. J. Appl. Phys. 126(21), 215104 (2019). https://doi.org/10.1063/1.5120525
- R. Shibuya, T. Kondo, J. Nakamura, Active sites in nitrogen-doped carbon materials for oxygen reduction reaction. Carbon-Based Metal-Free Catalysts 1, 227–249 (2018). https://doi.org/10.1002/9783527811458.vol1-ch8
- K.S. Lakhi, D.-H. Park, K. Al-Bahily, W. Cha, B. Viswanathan, J.-H. Choy, A. Vinu, Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chem. Soc. Rev. 46(1), 72–101 (2017). https://doi.org/10.1039/C6CS00532B
- H. Xia, Q. Xu, J. Zhang, Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano-Micro Lett. 10(4), 66 (2018). https://doi.org/10.1007/s40820-018-0219-z
- H. Qiu, Z. Wang, X. Sheng, First-principles prediction of an intrinsic half-metallic graphitic hydrogenated carbon nitride. Phys. Lett. A 377(3–4), 347–350 (2013). https://doi.org/10.1016/j.physleta.2012.11.050
- T. Hussain, D.J. Searles, M. Hankel, Insights into the trapping mechanism of light metals on C2N-h2d: utilisation as an anode material for metal ion batteries. Carbon 160, 125–132 (2020). https://doi.org/10.1016/j.carbon.2019.12.063
- Y. Zheng, H. Li, H. Yuan, H. Fan, W. Li, J. Zhang, Understanding the anchoring effect of graphene, BN, C2N and C3N4 monolayers for lithium–polysulfides in Li–S batteries. Appl. Surf. Sci. 434, 596–603 (2018). https://doi.org/10.1016/j.apsusc.2017.10.230
- B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation study of tri-s-triazine-based g-C3N4: a review. Appl. Cat. B Environ. 224, 983–999 (2018). https://doi.org/10.1016/j.apcatb.2017.11.025
- Q. Weng, G. Li, X. Feng, K. Nielsch, D. Golberg, O.G. Schmidt, Electronic and optical properties of 2D materials constructed from light atoms. Adv. Mater. 30(46), 1801600 (2018). https://doi.org/10.1002/adma.201801600
- H.-Z. Wu, L.-M. Liu, S.-J. Zhao, The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride. Phys. Chem. Chem. Phys. 16(7), 3299–3304 (2014). https://doi.org/10.1039/C3CP54333A
- A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and leds. Nano-Micro Lett. 9(4), 47 (2017). https://doi.org/10.1007/s40820-017-0148-2
- J. Zhang, Y. Chen, X. Wang, Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ. Sci. 8(11), 3092–3108 (2015). https://doi.org/10.1039/C5EE01895A
- J. Mahmood, E.K. Lee, M. Jung, D. Shin, H.-J. Choi et al., Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. Proc. Natl. Acad. Sci. 113(27), 7414–7419 (2016). https://doi.org/10.1073/pnas.1605318113
- L. Li, X. Kong, O. Leenaerts, X. Chen, B. Sanyal, F.M. Peeters, Carbon-rich carbon nitride monolayers with dirac cones: dumbbell C4N. Carbon 118, 285–290 (2017). https://doi.org/10.1016/j.carbon.2017.03.045
- B. Peng, B. Mortazavi, H. Zhang, H. Shao, K. Xu et al., Tuning thermal transport in C3N monolayers by adding and removing carbon atoms. Phys. Rev. Appl. 10(3), 034046 (2018). https://doi.org/10.1103/PhysRevApplied.10.034046
- C. Pu, D. Zhou, Y. Li, H. Liu, Z. Chen, Y. Wang, Y. Ma, Two-dimensional C4N global minima: unique structural topologies and nanoelectronic properties. J. Phys. Chem. C 121(5), 2669–2674 (2017). https://doi.org/10.1021/acs.jpcc.6b09960
- D. Wang, H. Li, L. Zhang, Z. Sun, D. Han, L. Niu, J. Zhao, 2D nitrogen-containing carbon material C5N as potential host material for lithium polysulfides: a first-principles study. Adv. Theory Simul. 2(2), 1800165 (2019). https://doi.org/10.1002/adts.201800165
- H. Lin, R. Jin, A. Wang, S. Zhu, H. Li, Transition metal embedded C2N with efficient polysulfide immobilization and catalytic oxidation for advanced lithium-sulfur batteries: a first principles study. Ceram. Int. 45(14), 17996–18002 (2019). https://doi.org/10.1016/j.ceramint.2019.06.018
- B. Tian, T. Huang, J. Guo, H. Shu, Y. Wang, J. Dai, Performance effects of doping engineering on graphene-like C3N as an anode material for alkali metal ion batteries. Mater. Sci. Semicond. Proc. 109, 104946 (2020). https://doi.org/10.1016/j.mssp.2020.104946
- M. Xu, H. Wang, S. Sun, H. Li, X. Li, Y. Chen, Y. Ni, First-principles study of metal atoms adsorption on 2D dumbbell C4N. Phys. Status Solidi B 257(1), 1900205 (2020). https://doi.org/10.1002/pssb.201900205
- W. Cha, I.Y. Kim, J.M. Lee, S. Kim, K. Ramadass, K. Gopalakrishnan, S. Premkumar, S. Umapathy, A. Vinu, Sulfur-doped mesoporous carbon nitride with an ordered porous structure for sodium-ion batteries. ACS Appl. Mater. Interfaces 11(30), 27192–27199 (2019). https://doi.org/10.1021/acsami.9b07657
- M. Molaei, S.M. Mousavi-Khoshdel, M. Ghiasi, Exploring the effect of phosphorus doping on the utility of g-C3N4 as an electrode material in Na-ion batteries using DFT method. J. Mol. Model. 25(8), 256 (2019). https://doi.org/10.1007/s00894-019-4109-1
- M.-S. Balogun, Z. Wu, Y. Luo, W. Qiu, X. Fan, B. Long, M. Huang, P. Liu, Y. Tong, High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. J. Power Sources 308, 7–17 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.043
- S. Kim, M. Hankel, W. Cha, G. Singh, J.M. Lee, I.Y. Kim, A. Vinu, Theoretical and experimental investigations of mesoporous C3N5/MoS2 hybrid for lithium and sodium ion batteries. Nano Energy 72, 104702 (2020). https://doi.org/10.1016/j.nanoen.2020.104702
- X. Wu, F. Kang, W. Duan, J. Li, Density functional theory calculations: a powerful tool to simulate and design high-performance energy storage and conversion materials. Prog. Nat. Sci. 29(3), 247–255 (2019). https://doi.org/10.1016/j.pnsc.2019.04.003
- M. Li, T. Gould, Z. Su, S. Li, F. Pan, S. Zhang, Electrochromic properties of Li4Ti5O12: from visible to infrared spectrum. Appl. Phys. Lett. 115(7), 073902 (2019). https://doi.org/10.1063/1.5099330
- Y. Wang, Z. Jiao, S. Ma, Y. Guo, Probing C3N/graphene heterostructures as anode materials for Li-ion batteries. J. Power Sources 413, 117–124 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.031
- Y. Ding, B. Xiao, J. Li, Q. Deng, Y. Xu, H. Wang, D. Rao, Improved transport properties and novel Li diffusion dynamics in van der waals C2N/graphene heterostructure as anode materials for lithium-ion batteries: a first-principles investigation. J. Phys. Chem. C 123(6), 3353–3367 (2019). https://doi.org/10.1021/acs.jpcc.8b11044
- D. Adekoya, S. Zhang, M. Hankel, 1D/2D C3N4/graphene composite as a preferred anode material for lithium ion batteries: importance of heterostructure design via DFT computation. ACS Appl. Mater. Interfaces 12(23), 25875–25883 (2020). https://doi.org/10.1021/acsami.0c04900
- Q. Liu, B. Xiao, J. Cheng, Y.-C. Li, Q. Li et al., Carbon excess C3N: a potential candidate as Li-ion battery material. ACS Appl. Mater. Interfaces 10(43), 37135–37141 (2018). https://doi.org/10.1021/acsami.8b14183
- A. Jain, Y. Shin, K.A. Persson, Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1(1), 15004 (2016). https://doi.org/10.1038/natrevmats.2015.4
- M. Wu, Q. Wang, Q. Sun, P. Jena, Functionalized graphitic carbon nitride for efficient energy storage. J. Phys. Chem. C 117(12), 6055–6059 (2013). https://doi.org/10.1021/jp311972f
- Y. Mao, H. Duan, B. Xu, L. Zhang, Y. Hu et al., Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5(7), 7950–7955 (2012). https://doi.org/10.1039/c2ee21817h
- G.M. Veith, L. Baggetto, L.A. Adamczyk, B. Guo, S.S. Brown et al., Electrochemical and solid-state lithiation of graphitic C3N4. Chem. Mater. 25(3), 503–508 (2013). https://doi.org/10.1021/cm303870x
- M. Hankel, D. Ye, L. Wang, D.J. Searles, Lithium and sodium storage on graphitic carbon nitride. J. Phys. Chem. C 119(38), 21921–21927 (2015). https://doi.org/10.1021/acs.jpcc.5b07572
- D. Adekoya, X. Gu, M. Rudge, W. Wen, C. Lai, M. Hankel, S. Zhang, Carbon nitride nanofibres with exceptional lithium storage capacity: from theoretical prediction to experimental implementation. Adv. Funct. Mater. 28(50), 1803972 (2018). https://doi.org/10.1002/adfm.201803972
- H. Pan, Graphitic carbon nitride nanotubes as Li-ion battery materials: a first-principles study. J. Phys. Chem. C 118(18), 9318–9323 (2014). https://doi.org/10.1021/jp4122722
- M. Hankel, D.J. Searles, Lithium storage on carbon nitride, graphenylene and inorganic graphenylene. J. Phys. Chem. C 18(21), 14205–14215 (2016). https://doi.org/10.1039/C5CP07356A
- D. Wu, B. Yang, H. Chen, E. Ruckenstein, Nitrogenated holey graphene C2N monolayer anodes for lithium- and sodium-ion batteries with high performance. Energy Storage Mater. 16, 574–580 (2019). https://doi.org/10.1016/j.ensm.2018.09.001
- J. Xu, J. Mahmood, Y. Dou, S. Dou, F. Li, L. Dai, J.B. Baek, 2D frameworks of C2N and C3N as new anode materials for lithium-ion batteries. Adv. Mater. 29(34), 1702007 (2017). https://doi.org/10.1002/adma.201702007
- G. Guo, R. Wang, S. Luo, B. Ming, C. Wang et al., Metallic two-dimensional C3N allotropes with electron and ion channels for high-performance Li-ion battery anode materials. Appl. Surf. Sci. 518, 146254 (2020). https://doi.org/10.1016/j.apsusc.2020.146254
- C. Yang, X. Zhang, J. Ma, B. Shi, H. Zhang et al., Ultrahigh capacity of monolayer dumbbell C4N as a promising anode material for lithium-ion battery. J. Electrochem. Soc. 167(2), 020538 (2020). https://doi.org/10.1149/1945-7111/ab6bbd
- G.M. Weng, Y. Xie, H. Wang, C. Karpovich, J. Lipton et al., A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery. Angew. Chem. Int. Ed. 131(39), 13865–13871 (2019). https://doi.org/10.1002/ange.201905803
- D. Adekoya, M. Li, M. Hankel, C. Lai, M.-S. Balogun, Y. Tong, S. Zhang, Design of a 1D/2D C3N4/rGO composite as an anode material for stable and effective potassium storage. Energy Storage Mater. 25, 495–501 (2019). https://doi.org/10.1016/j.ensm.2019.09.033
- P. Bhauriyal, A. Mahata, B. Pathak, Graphene-like carbon–nitride monolayer: a potential anode material for Na-and K-ion batteries. J. Phys. Chem. C 122(5), 2481–2489 (2018). https://doi.org/10.1021/acs.jpcc.7b09433
- T. Li, C. He, W. Zhang, A novel porous C4N4 monolayer as a potential anchoring material for lithium–sulfur battery design. J. Mater. Chem. A 7(8), 4134–4144 (2019). https://doi.org/10.1039/C8TA10933H
- J. Liang, L. Yin, X. Tang, H. Yang, W. Yan et al., Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8(38), 25193–25201 (2016). https://doi.org/10.1021/acsami.6b05647
- Z. Meng, Y. Xie, T. Cai, Z. Sun, K. Jiang, W.-Q. Han, Graphene-like g-C3N4 nanosheets/sulfur as cathode for lithium–sulfur battery. Electrochim. Acta 210, 829–836 (2016). https://doi.org/10.1016/j.electacta.2016.06.032
- S.S. Shinde, C.H. Lee, J.-Y. Yu, D.-H. Kim, S.U. Lee, J.-H. Lee, Hierarchically designed 3D holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn-air batteries. ACS Nano 12(1), 596–608 (2017). https://doi.org/10.1021/acsnano.7b07473
- M. Je, Y.-C. Chung, Investigation of the initial reactions of lithium oxides on the graphitic carbon nitrides (g-C3N4) for catalyst in non-aqueous lithium—air batteries: a first-principles calculations. Thin Solid Films 660, 186–190 (2018). https://doi.org/10.1016/j.tsf.2018.06.017
- W. Nong, Y. Li, C. Wang, C3N monolayer with substitutional doping and strain modulation serving as anode material of lithium-ion batteries. Appl. Surf. Sci. 510, 145324 (2020). https://doi.org/10.1016/j.apsusc.2020.145324
- G.-M. Weng, Y. Xie, H. Wang, C. Karpovich, J. Lipton et al., A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery. Angew. Chem. Int. Ed. 58(39), 13727–13733 (2019). https://doi.org/10.1002/anie.201905803
- W. Zhao, J. Wang, R. Yin, B. Li, X. Huang, L. Zhao, L. Qian, Single-atom pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries. J. Colloid Inter. Sci. 564, 28–36 (2020). https://doi.org/10.1016/j.jcis.2019.12.102
- G.-C. Guo, R.-Z. Wang, B.-M. Ming, C. Wang, S.-W. Luo, M. Zhang, H. Yan, C3N/phosphorene heterostructure: a promising anode material in lithium-ion batteries. J. Mater. Chem. A 7(5), 2106–2113 (2019). https://doi.org/10.1039/C8TA10972A
- H. Lin, R. Jin, S. Zhu, Y. Huang, C3N/blue phosphorene heterostructure as a high rate-capacity and stable anode material for lithium ion batteries: insight from first principles calculations. Appl. Surf. Sci. 505, 144518 (2020). https://doi.org/10.1016/j.apsusc.2019.144518
- J. Bao, H. Li, Q. Duan, D. Jiang, W. Liu et al., Graphene-like C3N/blue phosphorene heterostructure as a potential anode material for li/na-ion batteries: a first principles study. Solid State Ionics 345, 115160 (2020). https://doi.org/10.1016/j.ssi.2019.115160
- K. Liao, P. Mao, N. Li, M. Han, J. Yi, P. He, Y. Sun, H. Zhou, Stabilization of polysulfides via lithium bonds for Li–S batteries. J. Mater. Chem. A 4(15), 5406–5409 (2016). https://doi.org/10.1039/C6TA00054A
- N. Feng, F. Liu, M. Huang, A. Zheng, Q. Wang et al., Unravelling the efficient photocatalytic activity of boron-induced Ti 3+ species in the surface layer of TiO2. Sci. Rep. 6, 34765 (2016). https://doi.org/10.1038/srep34765
- M. Chen, X. Zhao, Y. Li, P. Zeng, H. Liu et al., Kinetically elevated redox conversion of polysulfides of lithium-sulfur battery using a separator modified with transition metals coordinated g-C3N4 with carbon-conjugated. Chem. Eng. J. 385, 123905 (2020). https://doi.org/10.1016/j.cej.2019.123905
- B. Xiao, T. Rojo, X. Li, Hard carbon as sodium-ion battery anodes: progress and challenges. Chemsuschem 12(1), 133–144 (2019). https://doi.org/10.1002/cssc.201801879
- V. Gabaudan, L. Stievano, L. Monconduit, R. Berthelot, Snapshot on negative electrode materials for potassium-ion batteries. Front. Energy Res. 7, 46 (2019). https://doi.org/10.3389/fenrg.2019.00046
- A.M. Garay-Tapia, A.H. Romero, V. Barone, Lithium adsorption on graphene: from isolated adatoms to metallic sheets. J. Chem. Theory Comput. 8(3), 1064–1071 (2012). https://doi.org/10.1021/ct300042p
- S. Ullah, P.A. Denis, F. Sato, Unusual enhancement of the adsorption energies of sodium and potassium in sulfur − nitrogen and silicon − boron codoped graphene. ACS Omega 3(11), 15821–15828 (2018). https://doi.org/10.1021/acsomega.8b02500
- A. Lugo-Solis, I. Vasiliev, Ab initio study of K adsorption on graphene and carbon nanotubes: role of long-range ionic forces. Phys. Rev. B 76(23), 235431 (2007). https://doi.org/10.1103/PhysRevB.76.235431
- T. Liu, Z. Jin, D.-X. Liu, C. Du, L. Wang, H. Lin, Y. Li, A density functional theory study of high-performance pre-lithiated MS2 (M = Mo, W, V) monolayers as the anode material of lithium ion batteries. Sci. Rep. 10(1), 6897 (2020). https://doi.org/10.1038/s41598-020-63743-9
- X. Sun, Z. Wang, Y.Q. Fu, Adsorption and diffusion of sodium on graphene with grain boundaries. Carbon 116, 415–421 (2017). https://doi.org/10.1016/j.carbon.2017.01.024
- J. Yang, Y. Yuan, G. Chen, First–principles study of potassium adsorption and diffusion on graphene. Mol. Phys. 118(1), 1–7 (2019). https://doi.org/10.1080/00268976.2019.1581291
- A. Eftekhari, Low voltage anode materials for lithium-ion batteries. Energy Storage Mater. 7, 157–180 (2017). https://doi.org/10.1016/j.ensm.2017.01.009
- J.-H. Kim, D.K. Kim, Conversion-alloying anode materials for na-ion batteries: recent progress, challenges, and perspective for the future. J. Korean Ceram. Soc. 55(4), 307–324 (2018). https://doi.org/10.4191/kcers.2018.55.4.07
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- H. Yin, Q. Guo, D. He, J. Li, S. Sun, Structural characterization and electrochemical performance of macroporous graphite-like C3N3 prepared by the wurtz reaction and heat treatment. RSC Adv. 7(69), 44001–44008 (2017). https://doi.org/10.1039/C7RA07707F
- J. Zhu, P. Xiao, H. Li, S.A.C. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces. 6(19), 16449–16465 (2014). https://doi.org/10.1021/am502925j
- Y. Gong, M. Li, Y. Wang, Carbon nitride in energy conversion and storage: recent advances and future prospects. Chemsuschem 8(6), 931–946 (2015). https://doi.org/10.1002/cssc.201403287
- W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
- X. Dong, F. Cheng, Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J. Mater. Chem. A 3(47), 23642–23652 (2015). https://doi.org/10.1039/C5TA07374J
- Q. Guo, Q. Yang, C. Yi, L. Zhu, Y. Xie, Synthesis of carbon nitrides with graphite-like or onion-like lamellar structures via a solvent-free route at low temperatures. Carbon 43(7), 1386–1391 (2005). https://doi.org/10.1016/j.carbon.2005.01.005
- J. Li, C. Cao, J. Hao, H. Qiu, Y. Xu, H. Zhu, Self-assembled one-dimensional carbon nitride architectures. Diam. Relat. Mater. 15(10), 1593–1600 (2006). https://doi.org/10.1016/j.diamond.2006.01.013
- P. Niu, L. Zhang, G. Liu, H.M. Cheng, Graphene like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22(22), 4763–4770 (2012). https://doi.org/10.1002/adfm.201200922
- J. Mahmood, E.K. Lee, M. Jung, D. Shin, I.-Y. Jeon et al., Nitrogenated holey two-dimensional structures. Nat. Commun. 6(1), 6486 (2015). https://doi.org/10.1038/ncomms7486
- X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135(1), 18–21 (2013). https://doi.org/10.1021/ja308249k
- K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136(5), 1730–1733 (2014). https://doi.org/10.1021/ja411321s
- Y. Yin, J. Han, X. Zhang, Y. Zhang, J. Zhou et al., Facile synthesis of few-layer-thick carbon nitride nanosheets by liquid ammonia-assisted lithiation method and their photocatalytic redox properties. RSC Adv. 4(62), 32690–32697 (2014). https://doi.org/10.1039/C4RA06036A
- Y. Fukasawa, K. Takanabe, A. Shimojima, M. Antonietti, K. Domen, T. Okubo, Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template. Chem. Asian J. 6(1), 103–109 (2011). https://doi.org/10.1002/asia.201000523
- Y.-S. Jun, W.H. Hong, M. Antonietti, A. Thomas, Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv. Mater. 21(42), 4270–4274 (2009). https://doi.org/10.1002/adma.200803500
- S.S. Park, S.-W. Chu, C. Xue, D. Zhao, C.-S. Ha, Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent. J. Mater. Chem. 21(29), 10801–10807 (2011). https://doi.org/10.1039/C1JM10849B
- X.-H. Li, J. Zhang, X. Chen, A. Fischer, A. Thomas, M. Antonietti, X. Wang, Condensed graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion. Chem. Mater. 23(19), 4344–4348 (2011). https://doi.org/10.1021/cm201688v
- J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225), 970–974 (2015). https://doi.org/10.1126/science.aaa3145
- S. Kim, W. Cha, K. Ramadass, G. Singh, I.Y. Kim, A. Vinu, Single-step synthesis of mesoporous carbon nitride/molybdenum sulfide nanohybrids for high-performance sodium-ion batteries. Chem. Asian J. 15(12), 1863–1868 (2020). https://doi.org/10.1002/asia.202000349
- J.P. Paraknowitsch, J. Zhang, D. Su, A. Thomas, M. Antonietti, Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv. Mater. 22(1), 87–92 (2010). https://doi.org/10.1002/adma.200900965
- Z. Lin, X. Wang, Ionic liquid promoted synthesis of conjugated carbon nitride photocatalysts from urea. Chemsuschem 7(6), 1547–1550 (2014). https://doi.org/10.1002/cssc.201400016
- Y. Wang, X. Wang, M. Antonietti, Y. Zhang, Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. Chemsuschem 3(4), 435–439 (2010). https://doi.org/10.1002/cssc.200900284
- H. Yan, Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun. 48(28), 3430–3432 (2012). https://doi.org/10.1039/C2CC00001F
- Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation. Angew. Chem. Int. Ed. 49(19), 3356–3359 (2010). https://doi.org/10.1002/anie.201000120
- Z. Yang, Y. Zhang, Z. Schnepp, Soft and hard templating of graphitic carbon nitride. J. Mater. Chem. A 3(27), 14081–14092 (2015). https://doi.org/10.1039/C5TA02156A
- T. Kesavan, T. Partheeban, M. Vivekanantha, N. Prabu, M. Kundu et al., Design of P-doped mesoporous carbon nitrides as high-performance anode materials for Li-ion battery. ACS Appl. Mater. Interfaces. 12(21), 24007–24018 (2020). https://doi.org/10.1021/acsami.0c05123
- Y. Dou, L. Zhang, X. Xu, Z. Sun, T. Liao, S.X. Dou, Atomically thin non-layered nanomaterials for energy storage and conversion. Chem. Soc. Rev. 46(23), 7338–7373 (2017). https://doi.org/10.1039/C7CS00418D
- Z. Wang, H. Gao, Q. Zhang, Y. Liu, J. Chen, Z. Guo, Recent advances in 3D graphene architectures and their composites for energy storage applications. Small 15(3), 1803858 (2019). https://doi.org/10.1002/smll.201803858
- D. Adekoya, H. Chen, H.Y. Hoh, T. Gould, M.-S.J.T. Balogun, C. Lai, H. Zhao, S. Zhang, Hierarchical Co3O4@ N-doped carbon composite as an advanced anode material for ultrastable potassium storage. ACS Nano 14(4), 5027–5035 (2020). https://doi.org/10.1021/acsnano.0c01395
- W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 13, 757–770 (2015). https://doi.org/10.1016/j.nanoen.2015.03.014
- Y. Fu, J. Zhu, C. Hu, X. Wu, X. Wang, Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode. Nanoscale 6(21), 12555–12564 (2014). https://doi.org/10.1039/C4NR03145H
- X. Li, Y. Feng, M. Li, W. Li, H. Wei, D. Song, Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage and excellent electrochemical performance. Adv. Funct. Mater. 25(44), 6858–6866 (2015). https://doi.org/10.1002/adfm.201502938
- J. Wang, Z. Meng, W. Yang, X. Yan, R. Guo, W.-Q. Han, Facile synthesis of rgo/g-C3N4/CNT microspheres via ethanol-assisted spray drying method for high performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces. 11(1), 819–827 (2018). https://doi.org/10.1021/acsami.8b17590
- J. Zhang, J.-Y. Li, W.-P. Wang, X.-H. Zhang, X.-H. Tan, W.-G. Chu, Y.-G. Guo, Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries. Adv. Energy Mater. 8(14), 1702839 (2018). https://doi.org/10.1002/aenm.201702839
- C. Wang, L. Zhang, M. Al-Mamun, Y. Dou, P. Liu et al., A hollow-shell structured V2O5 electrode-based symmetric full Li-ion battery with highest capacity. Adv. Energy Mater. 9(31), 1900909 (2019). https://doi.org/10.1002/aenm.201900909
- M.-S. Balogun, W. Qiu, F. Lyu, Y. Luo, H. Meng et al., All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy 26, 446–455 (2016). https://doi.org/10.1016/j.nanoen.2016.05.017
- H.S.H. Mohamed, L. Wu, C.-F. Li, Z.-Y. Hu, J. Liu et al., In-situ growing mesoporous Cuo/O-doped g-C3N4 nanospheres for highly enhanced lithium storage. ACS Appl. Mater. Interfaces 11(36), 32957–32968 (2019). https://doi.org/10.1021/acsami.9b10171
- L. Yin, R. Cheng, Q. Song, J. Yang, X. Kong et al., Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets composite as highly efficient anode for lithium ion batteries. Electrochim. Acta 293, 408–418 (2018). https://doi.org/10.1016/j.electacta.2018.10.020
- G. Wang, Z. Wen, Y.-E. Yang, J. Yin, W. Kong et al., Ultra-long life Si@rGO/g-C3N4 with a multiply synergetic effect as an anode material for lithium-ion batteries. J. Mater. Chem. A 6(17), 7557–7565 (2018). https://doi.org/10.1039/C8TA00539G
- W. Kong, J. Yu, X. Shi, J. Yin, H. Yang, Z. Wen, Encapsulated red phosphorus in rgo-C3N4 architecture as extending-life anode materials for lithium-ion batteries. J. Electrochem. Soc. 167(6), 060518 (2020). https://doi.org/10.1149/1945-7111/ab8406
- Y. Wang, J. Han, X. Gu, S. Dimitrijev, Y. Hou, S. Zhang, Ultrathin Fe2O3 nanoflakes using smart chemical stripping for high performance lithium storage. J. Mater. Chem. A 5(35), 18737–18743 (2017). https://doi.org/10.1039/C7TA05798A
- Y. Hou, J. Li, Z. Wen, S. Cui, C. Yuan, J. Chen, N-doped graphene/porous gC3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. Nano Energy 8, 157–164 (2014). https://doi.org/10.1016/j.nanoen.2014.06.003
- M.S.A.S. Shah, A.R. Park, A. Rauf, S.H. Hong, Y. Choi et al., Highly interdigitated and porous architected ternary composite of SnS2, gC3N4, and reduced graphene oxide (RGO) as high performance lithium ion battery anodes. RSC Adv. 7(6), 3125–3135 (2017). https://doi.org/10.1039/C6RA25886G
- X. Shi, Z. Zhou, J. Yin, S. Li, S. Ji, J. Sun, Z. Wen, Fabrication of rGO/g-C3N4@SnS2 and its rate-performance enhancement. Chem. Phys. Lett. 746, 137296 (2020). https://doi.org/10.1016/j.cplett.2020.137296
- M. Shi, T. Wu, X. Song, J. Liu, L. Zhao, P. Zhang, L. Gao, Active Fe2O3 nanoparticles encapsulated in porous gC3N4/graphene sandwich-type nanosheets as a superior anode for high-performance lithium-ion batteries. J. Mater. Chem. A 4(27), 10666–10672 (2016). https://doi.org/10.1039/C6TA03533G
- J.Y. Hwang, S.T. Myung, Y.K. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28(43), 1802938 (2018). https://doi.org/10.1002/adfm.201802938
- K. Song, C. Liu, L. Mi, S. Chou, W. Chen, C. Shen, Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 1, 1903194 (2019). https://doi.org/10.1002/smll.201903194
- Z. Ali, T. Zhang, M. Asif, L. Zhao, Y. Yu, Y. Hou, Transition metal chalcogenide anodes for sodium storage. Mater. Today 3(35), 131–167 (2020). https://doi.org/10.1016/j.mattod.2019.11.008
- J. Liu, Y. Zhang, L. Zhang, F. Xie, A. Vasileff, S.-Z. Qiao, Graphitic carbon nitride (g-C3N4)-derived n-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries. Adv. Mater. 31(24), 1901261 (2019). https://doi.org/10.1002/adma.201901261
- L. Chen, R. Yan, M. Oschatz, L. Jiang, M. Antonietti, K. Xiao, Ultrathin 2D graphitic carbon nitride on metal films: underpotential sodium deposition in adlayers for sodium-ion batteries. Angew. Chem. Int. Ed. 59(23), 9067 (2020). https://doi.org/10.1002/anie.202000314
- C.M. Subramaniyam, K.A. Deshmukh, Z. Tai, N. Mahmood, A.D. Deshmukh et al., 2D layered graphitic carbon nitride sandwiched with reduced graphene oxide as nanoarchitectured anode for highly stable lithium-ion battery. Electrochim. Acta 237(20), 69–77 (2017). https://doi.org/10.1016/j.electacta.2017.03.194
- C. Senthil, T. Kesavan, A. Bhaumik, M. Sasidharan, N-rich graphitic carbon nitride functionalized graphene oxide nanosheet hybrid as anode for high performance lithium-ion batteries. Mater. Res. Express 5(1), 016307 (2018). https://doi.org/10.1088/2053-1591/aaa6b9
- V. Vo, X.D. Nguyen Thi, Y.-S. Jin, G. Ly Thi, T.T. Nguyen, T.Q. Duong, S.-J. Kim, SnO2 nanosheets/g-C3N4 composite with improved lithium storage capabilities. Chem. Phys. Lett. 674, 42–47 (2017). https://doi.org/10.1016/j.cplett.2017.02.057
- K. Liu, J. Man, J. Cui, H. Zhang, T. Li, J. Yang, Z. Wen, J. Sun, Li4Ti5O12/g-C3N4 composite with an improved lithium storage capability. Mater. Lett. 234, 117–120 (2019). https://doi.org/10.1016/j.matlet.2018.09.083
- Y. Wang, X. Huang, S. Zhang, Y. Hou, Sulfur hosts against the shuttle effect. Small Methods 2(6), 1700345 (2018). https://doi.org/10.1002/smtd.201700345
- L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai, H. Zhao, S. Zhang, Housing sulfur in polymer composite frameworks for Li–S batteries. Nano-Micro Lett. 11(1), 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
- J. Liu, W. Li, L. Duan, X. Li, L. Ji et al., A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 15(8), 5137–5142 (2015). https://doi.org/10.1021/acs.nanolett.5b01919
- L. Qu, P. Liu, Y. Yi, T. Wang, P. Yang et al., Enhanced cycling performance for lithium–sulfur batteries by a laminated 2D g-C3N4/graphene cathode interlayer. Chemsuschem 12(1), 213–223 (2019). https://doi.org/10.1002/cssc.201802449
- J. Song, S. Feng, C. Zhu, J.-I. Lee, S. Fu, P. Dong, M.-K. Song, Y. Lin, Tuning the structure and composition of graphite-phase polymeric carbon nitride/reduced graphene oxide composites towards enhanced lithium-sulfur batteries performance. Electrochim. Acta 248, 541–546 (2017). https://doi.org/10.1016/j.electacta.2017.07.149
- Y. Liu, N. Li, S. Wu, K. Liao, K. Zhu, J. Yi, H. Zhou, Reducing the charging voltage of a Li–O2 battery to 1.9 V by incorporating a photocatalyst. Energy Environ. Sci. 8(9), 2664–2667 (2015). https://doi.org/10.1039/C5EE01958C
- Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7(1), 15–37 (2015). https://doi.org/10.1039/c4nr03008g
- E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage. Nat. Energy 2(7), 17089 (2017). https://doi.org/10.1038/nenergy.2017.89
- R. Gao, Y. Zhou, X. Liu, J. Wang, N-doped defective carbon layer encapsulated W2C as a multifunctional cathode catalyst for high performance Li-O2 battery. Electrochim. Acta 245, 430–437 (2017). https://doi.org/10.1016/j.electacta.2017.05.177
- W.B. Luo, S.L. Chou, J.Z. Wang, Y.C. Zhai, H.K. Liu, A metal-free, free-standing, macroporous graphene@ g-C3N4 composite air electrode for high-energy lithium oxygen batteries. Small 11(23), 2817–2824 (2015). https://doi.org/10.1002/smll.201403535
- P. Lou, Z. Cui, X. Guo, Achieving highly stable Li–O2 battery operation by designing a carbon nitride-based cathode towards a stable reaction interface. J. Mater. Chem. A 5(34), 18207–18213 (2017). https://doi.org/10.1039/C7TA05009G
- Q. Guo, C. Zhang, C. Zhang, S. Xin, P. Zhang et al., Co3O4 modified Ag/g-C3N4 composite as a bifunctional cathode for lithium-oxygen battery. J. Energy Chem. 41, 185–193 (2020). https://doi.org/10.1016/j.jechem.2019.05.018
- H. Cha, J. Kim, Y. Lee, J. Cho, M. Park, Issues and challenges facing flexible lithium-ion batteries for practical application. Small 14(43), 1702989 (2018). https://doi.org/10.1002/smll.201702989
- T. Xiong, H. Su, F. Yang, Q. Tan, P.B.S. Appadurai et al., Harmonizing self-supportive VN/MoS2 pseudocapacitance core-shell electrodes for boosting the areal capacity of lithium storage. Mater. Today Energy 17, 100461 (2020). https://doi.org/10.1016/j.mtener.2020.100461
- X.-Y. Yue, X.-L. Li, W.-W. Wang, D. Chen, Q.-Q. Qiu et al., Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy 60, 257–266 (2019). https://doi.org/10.1016/j.nanoen.2019.03.057
- K. Shen, Z. Wang, X. Bi, Y. Ying, D. Zhang et al., Magnetic field–suppressed lithium dendrite growth for stable lithium-metal batteries. Adv. Energy Mater. 9(20), 1900260 (2019). https://doi.org/10.1002/aenm.201900260
- X.-Y. Yue, W.-W. Wang, Q.-C. Wang, J.-K. Meng, X.-X. Wang et al., Cuprite-coated cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries. Energy Storage Mater. 21, 180–189 (2019). https://doi.org/10.1016/j.ensm.2018.12.007
- X. Luan, C. Wang, C. Wang, X. Gu, J. Yang, Y. Qian, Stable lithium deposition enabled by an acid-treated g-C3N4 interface layer for a lithium metal anode. ACS Appl. Mater. Interfaces 12(9), 11265–11272 (2020). https://doi.org/10.1021/acsami.9b23520
- J. Hu, J. Tian, C. Li, Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Appl. Mater. Interfaces 9(13), 11615–11625 (2017). https://doi.org/10.1021/acsami.7b00478
- Z. Lu, Q. Liang, B. Wang, Y. Tao, Y. Zhao et al., Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes. Adv. Energy Mater. 9(7), 1803186 (2019). https://doi.org/10.1002/aenm.201803186
- D. Jiao, Z. Ma, J. Li, Y. Han, J. Mao, T. Ling, S. Qiao, Test factors affecting the performance of zinc–air battery. J. Energy Chem. 44, 1–7 (2020). https://doi.org/10.1016/j.jechem.2019.09.008
- F. Ran, S. Chen, Advanced Nanomaterials for Electrochemical-based Energy Conversion and Storage (Elsevier, Amsterdam, 2019), p. 416
- Y.-J. Li, L. Cui, P.-F. Da, K.-W. Qiu, W.-J. Qin et al., Multiscale structural engineering of ni-doped coo nanosheets for zinc–air batteries with high power density. Adv. Mater. 30(46), 1804653 (2018). https://doi.org/10.1002/adma.201804653
- H.-S. Lu, H. Zhang, X. Zhang, N. Sun, X. Zhu, H. Zhao, G. Wang, Transformation of carbon-encapsulated metallic Co into ultrafine Co/CoO nanoparticles exposed on N-doped graphitic carbon for high-performance rechargeable zinc-air battery. Appl. Surf. Sci. 448, 369–379 (2018). https://doi.org/10.1016/j.apsusc.2018.04.146
- S.S. Shinde, C.-H. Lee, A. Sami, D.-H. Kim, S.-U. Lee, J.-H. Lee, Scalable 3D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano 11(1), 347–357 (2017). https://doi.org/10.1021/acsnano.6b05914
- S.S. Shinde, J.-Y. Yu, J.-W. Song, Y.-H. Nam, D.-H. Kim, J.-H. Lee, Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn–air batteries. Nanoscale Horiz. 2(6), 333–341 (2017). https://doi.org/10.1039/C7NH00058H
- C.-Y. Su, H. Cheng, W. Li, Z.-Q. Liu, N. Li et al., Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc–air battery. Adv. Energy Mater. 7(13), 1602420 (2017). https://doi.org/10.1002/aenm.201602420
- L. Zhang, J. Xiong, Y.-H. Qin, C.-W. Wang, Porous N-C catalyst synthesized by pyrolyzing g-C3N4 embedded in carbon as highly efficient oxygen reduction electrocatalysts for primary Zn-air battery. Carbon 150, 475–484 (2019). https://doi.org/10.1016/j.carbon.2019.05.044
- S. Wang, P. Xiong, J. Zhang, G. Wang, Recent progress on flexible lithium metal batteries: composite lithium metal anodes and solid-state electrolytes. Energy Storage Mater. 29, 310–331 (2020). https://doi.org/10.1016/j.ensm.2020.04.032
- Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7(42), 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517
- Y. Zhu, X. He, Y. Mo, First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4(9), 3253–3266 (2016). https://doi.org/10.1039/C5TA08574H
- Y. Huang, B. Chen, J. Duan, F. Yang, T. Wang et al., Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries. Angew. Chem. Int. Ed. 59(9), 3699–3704 (2020). https://doi.org/10.1002/anie.201914417
- Y. Lu, Z. Wen, J. Jin, Y. Cui, M. Wu, S. Sun, Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery. J. Solid State Electrochem. 16(5), 1863–1868 (2012). https://doi.org/10.1007/s10008-012-1640-8
- Z. Sun, Y. Li, S. Zhang, L. Shi, H. Wu, H. Bu, S. Ding, G-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 7(18), 11069–11076 (2019). https://doi.org/10.1039/C9TA00634F
- T. Liu, Y. Zhang, C. Chen, Z. Lin, S. Zhang, J. Lu, Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat. Commun. 10(1), 1965 (2019). https://doi.org/10.1038/s41467-019-09933-0
- Z. Su, H.Y. Ling, M. Li, S. Qian, H. Chen, C. Lai, S. Zhang, Honeycomb-like carbon materials derived from coffee extract via a “salty” thermal treatment for high-performance Li-I2 batteries. Carbon Energy 2(2), 265–275 (2020). https://doi.org/10.1002/cey2.40
- M. Sha, L. Liu, H. Zhao, Y. Lei, Anode materials for potassium-ion batteries: current status and prospects. Carbon Energy (2020). https://doi.org/10.1002/cey2.57
- Y. Shi, G. Liu, R. Jin, H. Xu, Q. Wang, S. Gao, Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review. Carbon Energy 1(2), 253–275 (2019). https://doi.org/10.1002/cey2.19
- J. Chen, N.-G. Park, Materials and methods for interface engineering towards stable and efficient perovskite solar cells. ACS Energy Lett. 5, 180–185 (2020). https://doi.org/10.1021/acsenergylett.0c01240
- J.-M. Fan, J.-J. Chen, Q. Zhang, B.-B. Chen, J. Zang, M.-S. Zheng, Q.-F. Dong. An amorphous carbon nitride composite derived from ZIF-8 as anode material for sodium-ion batteries. ChemSusChem. 8(11), 1856–1861 (2015). https://doi.org/10.1002/cssc.201500192
- L. Chen, R. Yan, M. Oschatz, L. Jiang, M. Antonietti, K. Xiao, Ultrathin 2D graphitic carbon nitride on metal films: Underpotential sodium deposition in adlayers for sodium-ion batteries. Angew. Chem. Int. 59(23), 9067 (2020). https://doi.org/10.1002/anie.202000314
- J. Liu, Y. Zhang, L. Zhang, F. Xie, A. Vasileff, S.-Z. Qiao, Graphitic carbon nitride (g-3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries. Adv Mater. 31(24), 1901261 (2019). https://doi.org/10.1002/adma.201901261
- D. Adekoya, H. Chen, H.Y. Hoh, T. Gould, M.-S.J.T. Balogun, C. Lai, H. Zhao, S. Zhang, Hierarchical 3o4@N-doped carbon composite as an advanced anode material for ultrastable potassium storage. ACS Nano 14(4), 5027–5035 (2020)
- J. Liu, W. Li, L. Duan, X. Li, L. Ji, Z. Geng, K. Huang, L. Lu, L. Zhou, Z. Liu, A graphene-like oxygenated carbon nitride material for improved cyclelife lithium/sulfur batteries. Nano Lett. 15(8), 5137–5142 (2015)
- X. Wu, S. Li, B. Wang, J. Liu, M. Yu, Free-standing 3D network-like cathode based on biomass-derived N-doped carbon/graphene/g-C3N4 hybrid ultrathin sheets as sulfur host for high-rate Li-S battery. Renew. Energy 158, 509–519 (2020). https://doi.org/10.1016/j.renene.2020.05.098
- H. Zhang, Z. Zhao, Y.-N. Hou, Y. Tang, Y. Dong, S. Wang, X. Hu, Z. Zhang, X. Wang, J. Qiu, Nanopore-confined g-C3N4 nanodots in N, S Codoped hollow porous carbon with boosted capacity for lithium–sulfur batteries. J. Mater. Chem. A 6(16), 7133–7141 (2018). https://doi.org/10.1039/C8TA00529J
- X. Wang, G. Li, M. Li, R. Liu, H. Li, T. Li, M. Sun, Y. Deng, M. Feng, Z. Chen, Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries. J. Energy Chem. 53, 234–240 (2021). https://doi.org/10.1016/j.jechem.2020.05.036
- Y. Gong, C. Fu, G. Zhang, H. Zhou, Y. Kuang, Three-dimensional porous C3N4 nanosheets@reduced graphene oxide network as sulfur hosts for high performance lithium-sulfur batteries. Electrochim. Acta 256, 1–9 (2017). https://doi.org/10.1016/j.electacta.2017.10.032
- J. Wang, Z. Meng, W. Yang, X. Yan, R. Guo, W.-Q. Han, Facile synthesis of rGO/g-C3N4/CNT microspheres via ethanol-assisted spray drying method for high performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 11(1), 819–827 (2018)
- Y. Huangfu, T. Zheng, K. Zhang, X. She, H. Xu, Z. Fang, K. Xie, Facile fabrication of permselective g-3N4 separator for improved lithium-sulfur batteries. Electrochim. Acta 272, 60–67 (2018). https://doi.org/10.1016/j.electacta.2018.03.149
- G. Angamuthu, D.B. Babu, K. Ramesha, V. Rangarajan, MoS2 anchored carbon nitride based mesoporous material as a polysulfide barrier for high capacity lithium-sulfur battery. J. Electroanal. Chem. 843, 37–46 (2019). https://doi.org/10.1016/j.jelechem.2019.05.006
References
Z. Su, J. Liu, M. Li, Y. Zhu, S. Qian et al., Defect engineering in titanium-based oxides for electrochemical energy storage devices. Electrochem. Energ. Rev. 3, 286–343 (2020). https://doi.org/10.1007/s41918-020-00064-5
Y. Zhang, G. Shi, J. Qin, S.E. Lowe, S. Zhang, H. Zhao, Y.L. Zhong, Recent progress of direct ink writing of electronic components for advanced wearable devices. ACS Appl. Electron. Mater. 1(9), 1718–1734 (2019). https://doi.org/10.1021/acsaelm.9b00428
Z. Wu, J. Xie, Z.J. Xu, S. Zhang, Q. Zhang, Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. J. Mater. Chem. A 7(9), 4259–4290 (2019). https://doi.org/10.1039/C8TA11994E
C. Wu, X. Tong, Y. Ai, D.-S. Liu, P. Yu, J. Wu, Z.M. Wang, A review: enhanced anodes of Li/Na-ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10(3), 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, C. Zhang, Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode. J. Power Sources 342, 157–164 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.110
B. He, Y. Wang, Q. Zhai, P. Qiu, G. Dong, X. Liu, Y. Chen, Z. Li, From polymeric carbon nitride to carbon materials: extended application to electrochemical energy conversion and storage. Nanoscale 12(16), 8636–8646 (2020). https://doi.org/10.1039/D0NR01612H
Q. Hao, G. Jia, W. Wei, A. Vinu, Y. Wang, H. Arandiyan, B.-J. Ni, Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 13(1), 18–37 (2020). https://doi.org/10.1007/s12274-019-2589-z
J. Chen, Z. Mao, L. Zhang, D. Wang, R. Xu, L. Bie, B.D. Fahlman, Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 11(12), 12650–12657 (2017). https://doi.org/10.1021/acsnano.7b07116
H. Pang, Y. Luo, Y. Yan, S. Zheng, H. Xue, Graphitic carbon nitride based materials for electrochemical energy storage. J. Mater. Chem. A 7(3), 901–924 (2018). https://doi.org/10.1039/C8TA08464E
B. Zhu, B. Cheng, L. Zhang, J. Yu, Review on dft calculation of s-triazine-based carbon nitride. Carbon Energy 1(1), 32–56 (2019). https://doi.org/10.1002/cey2.1
A. Bafekry, S.F. Shayesteh, F.M. Peeters, Two-dimensional carbon nitride (2DCN) nanosheets: tuning of novel electronic and magnetic properties by hydrogenation, atom substitution and defect engineering. J. Appl. Phys. 126(21), 215104 (2019). https://doi.org/10.1063/1.5120525
R. Shibuya, T. Kondo, J. Nakamura, Active sites in nitrogen-doped carbon materials for oxygen reduction reaction. Carbon-Based Metal-Free Catalysts 1, 227–249 (2018). https://doi.org/10.1002/9783527811458.vol1-ch8
K.S. Lakhi, D.-H. Park, K. Al-Bahily, W. Cha, B. Viswanathan, J.-H. Choy, A. Vinu, Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chem. Soc. Rev. 46(1), 72–101 (2017). https://doi.org/10.1039/C6CS00532B
H. Xia, Q. Xu, J. Zhang, Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano-Micro Lett. 10(4), 66 (2018). https://doi.org/10.1007/s40820-018-0219-z
H. Qiu, Z. Wang, X. Sheng, First-principles prediction of an intrinsic half-metallic graphitic hydrogenated carbon nitride. Phys. Lett. A 377(3–4), 347–350 (2013). https://doi.org/10.1016/j.physleta.2012.11.050
T. Hussain, D.J. Searles, M. Hankel, Insights into the trapping mechanism of light metals on C2N-h2d: utilisation as an anode material for metal ion batteries. Carbon 160, 125–132 (2020). https://doi.org/10.1016/j.carbon.2019.12.063
Y. Zheng, H. Li, H. Yuan, H. Fan, W. Li, J. Zhang, Understanding the anchoring effect of graphene, BN, C2N and C3N4 monolayers for lithium–polysulfides in Li–S batteries. Appl. Surf. Sci. 434, 596–603 (2018). https://doi.org/10.1016/j.apsusc.2017.10.230
B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation study of tri-s-triazine-based g-C3N4: a review. Appl. Cat. B Environ. 224, 983–999 (2018). https://doi.org/10.1016/j.apcatb.2017.11.025
Q. Weng, G. Li, X. Feng, K. Nielsch, D. Golberg, O.G. Schmidt, Electronic and optical properties of 2D materials constructed from light atoms. Adv. Mater. 30(46), 1801600 (2018). https://doi.org/10.1002/adma.201801600
H.-Z. Wu, L.-M. Liu, S.-J. Zhao, The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride. Phys. Chem. Chem. Phys. 16(7), 3299–3304 (2014). https://doi.org/10.1039/C3CP54333A
A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and leds. Nano-Micro Lett. 9(4), 47 (2017). https://doi.org/10.1007/s40820-017-0148-2
J. Zhang, Y. Chen, X. Wang, Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ. Sci. 8(11), 3092–3108 (2015). https://doi.org/10.1039/C5EE01895A
J. Mahmood, E.K. Lee, M. Jung, D. Shin, H.-J. Choi et al., Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. Proc. Natl. Acad. Sci. 113(27), 7414–7419 (2016). https://doi.org/10.1073/pnas.1605318113
L. Li, X. Kong, O. Leenaerts, X. Chen, B. Sanyal, F.M. Peeters, Carbon-rich carbon nitride monolayers with dirac cones: dumbbell C4N. Carbon 118, 285–290 (2017). https://doi.org/10.1016/j.carbon.2017.03.045
B. Peng, B. Mortazavi, H. Zhang, H. Shao, K. Xu et al., Tuning thermal transport in C3N monolayers by adding and removing carbon atoms. Phys. Rev. Appl. 10(3), 034046 (2018). https://doi.org/10.1103/PhysRevApplied.10.034046
C. Pu, D. Zhou, Y. Li, H. Liu, Z. Chen, Y. Wang, Y. Ma, Two-dimensional C4N global minima: unique structural topologies and nanoelectronic properties. J. Phys. Chem. C 121(5), 2669–2674 (2017). https://doi.org/10.1021/acs.jpcc.6b09960
D. Wang, H. Li, L. Zhang, Z. Sun, D. Han, L. Niu, J. Zhao, 2D nitrogen-containing carbon material C5N as potential host material for lithium polysulfides: a first-principles study. Adv. Theory Simul. 2(2), 1800165 (2019). https://doi.org/10.1002/adts.201800165
H. Lin, R. Jin, A. Wang, S. Zhu, H. Li, Transition metal embedded C2N with efficient polysulfide immobilization and catalytic oxidation for advanced lithium-sulfur batteries: a first principles study. Ceram. Int. 45(14), 17996–18002 (2019). https://doi.org/10.1016/j.ceramint.2019.06.018
B. Tian, T. Huang, J. Guo, H. Shu, Y. Wang, J. Dai, Performance effects of doping engineering on graphene-like C3N as an anode material for alkali metal ion batteries. Mater. Sci. Semicond. Proc. 109, 104946 (2020). https://doi.org/10.1016/j.mssp.2020.104946
M. Xu, H. Wang, S. Sun, H. Li, X. Li, Y. Chen, Y. Ni, First-principles study of metal atoms adsorption on 2D dumbbell C4N. Phys. Status Solidi B 257(1), 1900205 (2020). https://doi.org/10.1002/pssb.201900205
W. Cha, I.Y. Kim, J.M. Lee, S. Kim, K. Ramadass, K. Gopalakrishnan, S. Premkumar, S. Umapathy, A. Vinu, Sulfur-doped mesoporous carbon nitride with an ordered porous structure for sodium-ion batteries. ACS Appl. Mater. Interfaces 11(30), 27192–27199 (2019). https://doi.org/10.1021/acsami.9b07657
M. Molaei, S.M. Mousavi-Khoshdel, M. Ghiasi, Exploring the effect of phosphorus doping on the utility of g-C3N4 as an electrode material in Na-ion batteries using DFT method. J. Mol. Model. 25(8), 256 (2019). https://doi.org/10.1007/s00894-019-4109-1
M.-S. Balogun, Z. Wu, Y. Luo, W. Qiu, X. Fan, B. Long, M. Huang, P. Liu, Y. Tong, High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. J. Power Sources 308, 7–17 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.043
S. Kim, M. Hankel, W. Cha, G. Singh, J.M. Lee, I.Y. Kim, A. Vinu, Theoretical and experimental investigations of mesoporous C3N5/MoS2 hybrid for lithium and sodium ion batteries. Nano Energy 72, 104702 (2020). https://doi.org/10.1016/j.nanoen.2020.104702
X. Wu, F. Kang, W. Duan, J. Li, Density functional theory calculations: a powerful tool to simulate and design high-performance energy storage and conversion materials. Prog. Nat. Sci. 29(3), 247–255 (2019). https://doi.org/10.1016/j.pnsc.2019.04.003
M. Li, T. Gould, Z. Su, S. Li, F. Pan, S. Zhang, Electrochromic properties of Li4Ti5O12: from visible to infrared spectrum. Appl. Phys. Lett. 115(7), 073902 (2019). https://doi.org/10.1063/1.5099330
Y. Wang, Z. Jiao, S. Ma, Y. Guo, Probing C3N/graphene heterostructures as anode materials for Li-ion batteries. J. Power Sources 413, 117–124 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.031
Y. Ding, B. Xiao, J. Li, Q. Deng, Y. Xu, H. Wang, D. Rao, Improved transport properties and novel Li diffusion dynamics in van der waals C2N/graphene heterostructure as anode materials for lithium-ion batteries: a first-principles investigation. J. Phys. Chem. C 123(6), 3353–3367 (2019). https://doi.org/10.1021/acs.jpcc.8b11044
D. Adekoya, S. Zhang, M. Hankel, 1D/2D C3N4/graphene composite as a preferred anode material for lithium ion batteries: importance of heterostructure design via DFT computation. ACS Appl. Mater. Interfaces 12(23), 25875–25883 (2020). https://doi.org/10.1021/acsami.0c04900
Q. Liu, B. Xiao, J. Cheng, Y.-C. Li, Q. Li et al., Carbon excess C3N: a potential candidate as Li-ion battery material. ACS Appl. Mater. Interfaces 10(43), 37135–37141 (2018). https://doi.org/10.1021/acsami.8b14183
A. Jain, Y. Shin, K.A. Persson, Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1(1), 15004 (2016). https://doi.org/10.1038/natrevmats.2015.4
M. Wu, Q. Wang, Q. Sun, P. Jena, Functionalized graphitic carbon nitride for efficient energy storage. J. Phys. Chem. C 117(12), 6055–6059 (2013). https://doi.org/10.1021/jp311972f
Y. Mao, H. Duan, B. Xu, L. Zhang, Y. Hu et al., Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5(7), 7950–7955 (2012). https://doi.org/10.1039/c2ee21817h
G.M. Veith, L. Baggetto, L.A. Adamczyk, B. Guo, S.S. Brown et al., Electrochemical and solid-state lithiation of graphitic C3N4. Chem. Mater. 25(3), 503–508 (2013). https://doi.org/10.1021/cm303870x
M. Hankel, D. Ye, L. Wang, D.J. Searles, Lithium and sodium storage on graphitic carbon nitride. J. Phys. Chem. C 119(38), 21921–21927 (2015). https://doi.org/10.1021/acs.jpcc.5b07572
D. Adekoya, X. Gu, M. Rudge, W. Wen, C. Lai, M. Hankel, S. Zhang, Carbon nitride nanofibres with exceptional lithium storage capacity: from theoretical prediction to experimental implementation. Adv. Funct. Mater. 28(50), 1803972 (2018). https://doi.org/10.1002/adfm.201803972
H. Pan, Graphitic carbon nitride nanotubes as Li-ion battery materials: a first-principles study. J. Phys. Chem. C 118(18), 9318–9323 (2014). https://doi.org/10.1021/jp4122722
M. Hankel, D.J. Searles, Lithium storage on carbon nitride, graphenylene and inorganic graphenylene. J. Phys. Chem. C 18(21), 14205–14215 (2016). https://doi.org/10.1039/C5CP07356A
D. Wu, B. Yang, H. Chen, E. Ruckenstein, Nitrogenated holey graphene C2N monolayer anodes for lithium- and sodium-ion batteries with high performance. Energy Storage Mater. 16, 574–580 (2019). https://doi.org/10.1016/j.ensm.2018.09.001
J. Xu, J. Mahmood, Y. Dou, S. Dou, F. Li, L. Dai, J.B. Baek, 2D frameworks of C2N and C3N as new anode materials for lithium-ion batteries. Adv. Mater. 29(34), 1702007 (2017). https://doi.org/10.1002/adma.201702007
G. Guo, R. Wang, S. Luo, B. Ming, C. Wang et al., Metallic two-dimensional C3N allotropes with electron and ion channels for high-performance Li-ion battery anode materials. Appl. Surf. Sci. 518, 146254 (2020). https://doi.org/10.1016/j.apsusc.2020.146254
C. Yang, X. Zhang, J. Ma, B. Shi, H. Zhang et al., Ultrahigh capacity of monolayer dumbbell C4N as a promising anode material for lithium-ion battery. J. Electrochem. Soc. 167(2), 020538 (2020). https://doi.org/10.1149/1945-7111/ab6bbd
G.M. Weng, Y. Xie, H. Wang, C. Karpovich, J. Lipton et al., A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery. Angew. Chem. Int. Ed. 131(39), 13865–13871 (2019). https://doi.org/10.1002/ange.201905803
D. Adekoya, M. Li, M. Hankel, C. Lai, M.-S. Balogun, Y. Tong, S. Zhang, Design of a 1D/2D C3N4/rGO composite as an anode material for stable and effective potassium storage. Energy Storage Mater. 25, 495–501 (2019). https://doi.org/10.1016/j.ensm.2019.09.033
P. Bhauriyal, A. Mahata, B. Pathak, Graphene-like carbon–nitride monolayer: a potential anode material for Na-and K-ion batteries. J. Phys. Chem. C 122(5), 2481–2489 (2018). https://doi.org/10.1021/acs.jpcc.7b09433
T. Li, C. He, W. Zhang, A novel porous C4N4 monolayer as a potential anchoring material for lithium–sulfur battery design. J. Mater. Chem. A 7(8), 4134–4144 (2019). https://doi.org/10.1039/C8TA10933H
J. Liang, L. Yin, X. Tang, H. Yang, W. Yan et al., Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8(38), 25193–25201 (2016). https://doi.org/10.1021/acsami.6b05647
Z. Meng, Y. Xie, T. Cai, Z. Sun, K. Jiang, W.-Q. Han, Graphene-like g-C3N4 nanosheets/sulfur as cathode for lithium–sulfur battery. Electrochim. Acta 210, 829–836 (2016). https://doi.org/10.1016/j.electacta.2016.06.032
S.S. Shinde, C.H. Lee, J.-Y. Yu, D.-H. Kim, S.U. Lee, J.-H. Lee, Hierarchically designed 3D holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn-air batteries. ACS Nano 12(1), 596–608 (2017). https://doi.org/10.1021/acsnano.7b07473
M. Je, Y.-C. Chung, Investigation of the initial reactions of lithium oxides on the graphitic carbon nitrides (g-C3N4) for catalyst in non-aqueous lithium—air batteries: a first-principles calculations. Thin Solid Films 660, 186–190 (2018). https://doi.org/10.1016/j.tsf.2018.06.017
W. Nong, Y. Li, C. Wang, C3N monolayer with substitutional doping and strain modulation serving as anode material of lithium-ion batteries. Appl. Surf. Sci. 510, 145324 (2020). https://doi.org/10.1016/j.apsusc.2020.145324
G.-M. Weng, Y. Xie, H. Wang, C. Karpovich, J. Lipton et al., A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery. Angew. Chem. Int. Ed. 58(39), 13727–13733 (2019). https://doi.org/10.1002/anie.201905803
W. Zhao, J. Wang, R. Yin, B. Li, X. Huang, L. Zhao, L. Qian, Single-atom pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries. J. Colloid Inter. Sci. 564, 28–36 (2020). https://doi.org/10.1016/j.jcis.2019.12.102
G.-C. Guo, R.-Z. Wang, B.-M. Ming, C. Wang, S.-W. Luo, M. Zhang, H. Yan, C3N/phosphorene heterostructure: a promising anode material in lithium-ion batteries. J. Mater. Chem. A 7(5), 2106–2113 (2019). https://doi.org/10.1039/C8TA10972A
H. Lin, R. Jin, S. Zhu, Y. Huang, C3N/blue phosphorene heterostructure as a high rate-capacity and stable anode material for lithium ion batteries: insight from first principles calculations. Appl. Surf. Sci. 505, 144518 (2020). https://doi.org/10.1016/j.apsusc.2019.144518
J. Bao, H. Li, Q. Duan, D. Jiang, W. Liu et al., Graphene-like C3N/blue phosphorene heterostructure as a potential anode material for li/na-ion batteries: a first principles study. Solid State Ionics 345, 115160 (2020). https://doi.org/10.1016/j.ssi.2019.115160
K. Liao, P. Mao, N. Li, M. Han, J. Yi, P. He, Y. Sun, H. Zhou, Stabilization of polysulfides via lithium bonds for Li–S batteries. J. Mater. Chem. A 4(15), 5406–5409 (2016). https://doi.org/10.1039/C6TA00054A
N. Feng, F. Liu, M. Huang, A. Zheng, Q. Wang et al., Unravelling the efficient photocatalytic activity of boron-induced Ti 3+ species in the surface layer of TiO2. Sci. Rep. 6, 34765 (2016). https://doi.org/10.1038/srep34765
M. Chen, X. Zhao, Y. Li, P. Zeng, H. Liu et al., Kinetically elevated redox conversion of polysulfides of lithium-sulfur battery using a separator modified with transition metals coordinated g-C3N4 with carbon-conjugated. Chem. Eng. J. 385, 123905 (2020). https://doi.org/10.1016/j.cej.2019.123905
B. Xiao, T. Rojo, X. Li, Hard carbon as sodium-ion battery anodes: progress and challenges. Chemsuschem 12(1), 133–144 (2019). https://doi.org/10.1002/cssc.201801879
V. Gabaudan, L. Stievano, L. Monconduit, R. Berthelot, Snapshot on negative electrode materials for potassium-ion batteries. Front. Energy Res. 7, 46 (2019). https://doi.org/10.3389/fenrg.2019.00046
A.M. Garay-Tapia, A.H. Romero, V. Barone, Lithium adsorption on graphene: from isolated adatoms to metallic sheets. J. Chem. Theory Comput. 8(3), 1064–1071 (2012). https://doi.org/10.1021/ct300042p
S. Ullah, P.A. Denis, F. Sato, Unusual enhancement of the adsorption energies of sodium and potassium in sulfur − nitrogen and silicon − boron codoped graphene. ACS Omega 3(11), 15821–15828 (2018). https://doi.org/10.1021/acsomega.8b02500
A. Lugo-Solis, I. Vasiliev, Ab initio study of K adsorption on graphene and carbon nanotubes: role of long-range ionic forces. Phys. Rev. B 76(23), 235431 (2007). https://doi.org/10.1103/PhysRevB.76.235431
T. Liu, Z. Jin, D.-X. Liu, C. Du, L. Wang, H. Lin, Y. Li, A density functional theory study of high-performance pre-lithiated MS2 (M = Mo, W, V) monolayers as the anode material of lithium ion batteries. Sci. Rep. 10(1), 6897 (2020). https://doi.org/10.1038/s41598-020-63743-9
X. Sun, Z. Wang, Y.Q. Fu, Adsorption and diffusion of sodium on graphene with grain boundaries. Carbon 116, 415–421 (2017). https://doi.org/10.1016/j.carbon.2017.01.024
J. Yang, Y. Yuan, G. Chen, First–principles study of potassium adsorption and diffusion on graphene. Mol. Phys. 118(1), 1–7 (2019). https://doi.org/10.1080/00268976.2019.1581291
A. Eftekhari, Low voltage anode materials for lithium-ion batteries. Energy Storage Mater. 7, 157–180 (2017). https://doi.org/10.1016/j.ensm.2017.01.009
J.-H. Kim, D.K. Kim, Conversion-alloying anode materials for na-ion batteries: recent progress, challenges, and perspective for the future. J. Korean Ceram. Soc. 55(4), 307–324 (2018). https://doi.org/10.4191/kcers.2018.55.4.07
Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
H. Yin, Q. Guo, D. He, J. Li, S. Sun, Structural characterization and electrochemical performance of macroporous graphite-like C3N3 prepared by the wurtz reaction and heat treatment. RSC Adv. 7(69), 44001–44008 (2017). https://doi.org/10.1039/C7RA07707F
J. Zhu, P. Xiao, H. Li, S.A.C. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces. 6(19), 16449–16465 (2014). https://doi.org/10.1021/am502925j
Y. Gong, M. Li, Y. Wang, Carbon nitride in energy conversion and storage: recent advances and future prospects. Chemsuschem 8(6), 931–946 (2015). https://doi.org/10.1002/cssc.201403287
W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
X. Dong, F. Cheng, Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J. Mater. Chem. A 3(47), 23642–23652 (2015). https://doi.org/10.1039/C5TA07374J
Q. Guo, Q. Yang, C. Yi, L. Zhu, Y. Xie, Synthesis of carbon nitrides with graphite-like or onion-like lamellar structures via a solvent-free route at low temperatures. Carbon 43(7), 1386–1391 (2005). https://doi.org/10.1016/j.carbon.2005.01.005
J. Li, C. Cao, J. Hao, H. Qiu, Y. Xu, H. Zhu, Self-assembled one-dimensional carbon nitride architectures. Diam. Relat. Mater. 15(10), 1593–1600 (2006). https://doi.org/10.1016/j.diamond.2006.01.013
P. Niu, L. Zhang, G. Liu, H.M. Cheng, Graphene like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22(22), 4763–4770 (2012). https://doi.org/10.1002/adfm.201200922
J. Mahmood, E.K. Lee, M. Jung, D. Shin, I.-Y. Jeon et al., Nitrogenated holey two-dimensional structures. Nat. Commun. 6(1), 6486 (2015). https://doi.org/10.1038/ncomms7486
X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135(1), 18–21 (2013). https://doi.org/10.1021/ja308249k
K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136(5), 1730–1733 (2014). https://doi.org/10.1021/ja411321s
Y. Yin, J. Han, X. Zhang, Y. Zhang, J. Zhou et al., Facile synthesis of few-layer-thick carbon nitride nanosheets by liquid ammonia-assisted lithiation method and their photocatalytic redox properties. RSC Adv. 4(62), 32690–32697 (2014). https://doi.org/10.1039/C4RA06036A
Y. Fukasawa, K. Takanabe, A. Shimojima, M. Antonietti, K. Domen, T. Okubo, Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template. Chem. Asian J. 6(1), 103–109 (2011). https://doi.org/10.1002/asia.201000523
Y.-S. Jun, W.H. Hong, M. Antonietti, A. Thomas, Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv. Mater. 21(42), 4270–4274 (2009). https://doi.org/10.1002/adma.200803500
S.S. Park, S.-W. Chu, C. Xue, D. Zhao, C.-S. Ha, Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent. J. Mater. Chem. 21(29), 10801–10807 (2011). https://doi.org/10.1039/C1JM10849B
X.-H. Li, J. Zhang, X. Chen, A. Fischer, A. Thomas, M. Antonietti, X. Wang, Condensed graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion. Chem. Mater. 23(19), 4344–4348 (2011). https://doi.org/10.1021/cm201688v
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225), 970–974 (2015). https://doi.org/10.1126/science.aaa3145
S. Kim, W. Cha, K. Ramadass, G. Singh, I.Y. Kim, A. Vinu, Single-step synthesis of mesoporous carbon nitride/molybdenum sulfide nanohybrids for high-performance sodium-ion batteries. Chem. Asian J. 15(12), 1863–1868 (2020). https://doi.org/10.1002/asia.202000349
J.P. Paraknowitsch, J. Zhang, D. Su, A. Thomas, M. Antonietti, Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv. Mater. 22(1), 87–92 (2010). https://doi.org/10.1002/adma.200900965
Z. Lin, X. Wang, Ionic liquid promoted synthesis of conjugated carbon nitride photocatalysts from urea. Chemsuschem 7(6), 1547–1550 (2014). https://doi.org/10.1002/cssc.201400016
Y. Wang, X. Wang, M. Antonietti, Y. Zhang, Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. Chemsuschem 3(4), 435–439 (2010). https://doi.org/10.1002/cssc.200900284
H. Yan, Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun. 48(28), 3430–3432 (2012). https://doi.org/10.1039/C2CC00001F
Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation. Angew. Chem. Int. Ed. 49(19), 3356–3359 (2010). https://doi.org/10.1002/anie.201000120
Z. Yang, Y. Zhang, Z. Schnepp, Soft and hard templating of graphitic carbon nitride. J. Mater. Chem. A 3(27), 14081–14092 (2015). https://doi.org/10.1039/C5TA02156A
T. Kesavan, T. Partheeban, M. Vivekanantha, N. Prabu, M. Kundu et al., Design of P-doped mesoporous carbon nitrides as high-performance anode materials for Li-ion battery. ACS Appl. Mater. Interfaces. 12(21), 24007–24018 (2020). https://doi.org/10.1021/acsami.0c05123
Y. Dou, L. Zhang, X. Xu, Z. Sun, T. Liao, S.X. Dou, Atomically thin non-layered nanomaterials for energy storage and conversion. Chem. Soc. Rev. 46(23), 7338–7373 (2017). https://doi.org/10.1039/C7CS00418D
Z. Wang, H. Gao, Q. Zhang, Y. Liu, J. Chen, Z. Guo, Recent advances in 3D graphene architectures and their composites for energy storage applications. Small 15(3), 1803858 (2019). https://doi.org/10.1002/smll.201803858
D. Adekoya, H. Chen, H.Y. Hoh, T. Gould, M.-S.J.T. Balogun, C. Lai, H. Zhao, S. Zhang, Hierarchical Co3O4@ N-doped carbon composite as an advanced anode material for ultrastable potassium storage. ACS Nano 14(4), 5027–5035 (2020). https://doi.org/10.1021/acsnano.0c01395
W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 13, 757–770 (2015). https://doi.org/10.1016/j.nanoen.2015.03.014
Y. Fu, J. Zhu, C. Hu, X. Wu, X. Wang, Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode. Nanoscale 6(21), 12555–12564 (2014). https://doi.org/10.1039/C4NR03145H
X. Li, Y. Feng, M. Li, W. Li, H. Wei, D. Song, Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage and excellent electrochemical performance. Adv. Funct. Mater. 25(44), 6858–6866 (2015). https://doi.org/10.1002/adfm.201502938
J. Wang, Z. Meng, W. Yang, X. Yan, R. Guo, W.-Q. Han, Facile synthesis of rgo/g-C3N4/CNT microspheres via ethanol-assisted spray drying method for high performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces. 11(1), 819–827 (2018). https://doi.org/10.1021/acsami.8b17590
J. Zhang, J.-Y. Li, W.-P. Wang, X.-H. Zhang, X.-H. Tan, W.-G. Chu, Y.-G. Guo, Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries. Adv. Energy Mater. 8(14), 1702839 (2018). https://doi.org/10.1002/aenm.201702839
C. Wang, L. Zhang, M. Al-Mamun, Y. Dou, P. Liu et al., A hollow-shell structured V2O5 electrode-based symmetric full Li-ion battery with highest capacity. Adv. Energy Mater. 9(31), 1900909 (2019). https://doi.org/10.1002/aenm.201900909
M.-S. Balogun, W. Qiu, F. Lyu, Y. Luo, H. Meng et al., All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy 26, 446–455 (2016). https://doi.org/10.1016/j.nanoen.2016.05.017
H.S.H. Mohamed, L. Wu, C.-F. Li, Z.-Y. Hu, J. Liu et al., In-situ growing mesoporous Cuo/O-doped g-C3N4 nanospheres for highly enhanced lithium storage. ACS Appl. Mater. Interfaces 11(36), 32957–32968 (2019). https://doi.org/10.1021/acsami.9b10171
L. Yin, R. Cheng, Q. Song, J. Yang, X. Kong et al., Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets composite as highly efficient anode for lithium ion batteries. Electrochim. Acta 293, 408–418 (2018). https://doi.org/10.1016/j.electacta.2018.10.020
G. Wang, Z. Wen, Y.-E. Yang, J. Yin, W. Kong et al., Ultra-long life Si@rGO/g-C3N4 with a multiply synergetic effect as an anode material for lithium-ion batteries. J. Mater. Chem. A 6(17), 7557–7565 (2018). https://doi.org/10.1039/C8TA00539G
W. Kong, J. Yu, X. Shi, J. Yin, H. Yang, Z. Wen, Encapsulated red phosphorus in rgo-C3N4 architecture as extending-life anode materials for lithium-ion batteries. J. Electrochem. Soc. 167(6), 060518 (2020). https://doi.org/10.1149/1945-7111/ab8406
Y. Wang, J. Han, X. Gu, S. Dimitrijev, Y. Hou, S. Zhang, Ultrathin Fe2O3 nanoflakes using smart chemical stripping for high performance lithium storage. J. Mater. Chem. A 5(35), 18737–18743 (2017). https://doi.org/10.1039/C7TA05798A
Y. Hou, J. Li, Z. Wen, S. Cui, C. Yuan, J. Chen, N-doped graphene/porous gC3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. Nano Energy 8, 157–164 (2014). https://doi.org/10.1016/j.nanoen.2014.06.003
M.S.A.S. Shah, A.R. Park, A. Rauf, S.H. Hong, Y. Choi et al., Highly interdigitated and porous architected ternary composite of SnS2, gC3N4, and reduced graphene oxide (RGO) as high performance lithium ion battery anodes. RSC Adv. 7(6), 3125–3135 (2017). https://doi.org/10.1039/C6RA25886G
X. Shi, Z. Zhou, J. Yin, S. Li, S. Ji, J. Sun, Z. Wen, Fabrication of rGO/g-C3N4@SnS2 and its rate-performance enhancement. Chem. Phys. Lett. 746, 137296 (2020). https://doi.org/10.1016/j.cplett.2020.137296
M. Shi, T. Wu, X. Song, J. Liu, L. Zhao, P. Zhang, L. Gao, Active Fe2O3 nanoparticles encapsulated in porous gC3N4/graphene sandwich-type nanosheets as a superior anode for high-performance lithium-ion batteries. J. Mater. Chem. A 4(27), 10666–10672 (2016). https://doi.org/10.1039/C6TA03533G
J.Y. Hwang, S.T. Myung, Y.K. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28(43), 1802938 (2018). https://doi.org/10.1002/adfm.201802938
K. Song, C. Liu, L. Mi, S. Chou, W. Chen, C. Shen, Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 1, 1903194 (2019). https://doi.org/10.1002/smll.201903194
Z. Ali, T. Zhang, M. Asif, L. Zhao, Y. Yu, Y. Hou, Transition metal chalcogenide anodes for sodium storage. Mater. Today 3(35), 131–167 (2020). https://doi.org/10.1016/j.mattod.2019.11.008
J. Liu, Y. Zhang, L. Zhang, F. Xie, A. Vasileff, S.-Z. Qiao, Graphitic carbon nitride (g-C3N4)-derived n-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries. Adv. Mater. 31(24), 1901261 (2019). https://doi.org/10.1002/adma.201901261
L. Chen, R. Yan, M. Oschatz, L. Jiang, M. Antonietti, K. Xiao, Ultrathin 2D graphitic carbon nitride on metal films: underpotential sodium deposition in adlayers for sodium-ion batteries. Angew. Chem. Int. Ed. 59(23), 9067 (2020). https://doi.org/10.1002/anie.202000314
C.M. Subramaniyam, K.A. Deshmukh, Z. Tai, N. Mahmood, A.D. Deshmukh et al., 2D layered graphitic carbon nitride sandwiched with reduced graphene oxide as nanoarchitectured anode for highly stable lithium-ion battery. Electrochim. Acta 237(20), 69–77 (2017). https://doi.org/10.1016/j.electacta.2017.03.194
C. Senthil, T. Kesavan, A. Bhaumik, M. Sasidharan, N-rich graphitic carbon nitride functionalized graphene oxide nanosheet hybrid as anode for high performance lithium-ion batteries. Mater. Res. Express 5(1), 016307 (2018). https://doi.org/10.1088/2053-1591/aaa6b9
V. Vo, X.D. Nguyen Thi, Y.-S. Jin, G. Ly Thi, T.T. Nguyen, T.Q. Duong, S.-J. Kim, SnO2 nanosheets/g-C3N4 composite with improved lithium storage capabilities. Chem. Phys. Lett. 674, 42–47 (2017). https://doi.org/10.1016/j.cplett.2017.02.057
K. Liu, J. Man, J. Cui, H. Zhang, T. Li, J. Yang, Z. Wen, J. Sun, Li4Ti5O12/g-C3N4 composite with an improved lithium storage capability. Mater. Lett. 234, 117–120 (2019). https://doi.org/10.1016/j.matlet.2018.09.083
Y. Wang, X. Huang, S. Zhang, Y. Hou, Sulfur hosts against the shuttle effect. Small Methods 2(6), 1700345 (2018). https://doi.org/10.1002/smtd.201700345
L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai, H. Zhao, S. Zhang, Housing sulfur in polymer composite frameworks for Li–S batteries. Nano-Micro Lett. 11(1), 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
J. Liu, W. Li, L. Duan, X. Li, L. Ji et al., A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 15(8), 5137–5142 (2015). https://doi.org/10.1021/acs.nanolett.5b01919
L. Qu, P. Liu, Y. Yi, T. Wang, P. Yang et al., Enhanced cycling performance for lithium–sulfur batteries by a laminated 2D g-C3N4/graphene cathode interlayer. Chemsuschem 12(1), 213–223 (2019). https://doi.org/10.1002/cssc.201802449
J. Song, S. Feng, C. Zhu, J.-I. Lee, S. Fu, P. Dong, M.-K. Song, Y. Lin, Tuning the structure and composition of graphite-phase polymeric carbon nitride/reduced graphene oxide composites towards enhanced lithium-sulfur batteries performance. Electrochim. Acta 248, 541–546 (2017). https://doi.org/10.1016/j.electacta.2017.07.149
Y. Liu, N. Li, S. Wu, K. Liao, K. Zhu, J. Yi, H. Zhou, Reducing the charging voltage of a Li–O2 battery to 1.9 V by incorporating a photocatalyst. Energy Environ. Sci. 8(9), 2664–2667 (2015). https://doi.org/10.1039/C5EE01958C
Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7(1), 15–37 (2015). https://doi.org/10.1039/c4nr03008g
E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage. Nat. Energy 2(7), 17089 (2017). https://doi.org/10.1038/nenergy.2017.89
R. Gao, Y. Zhou, X. Liu, J. Wang, N-doped defective carbon layer encapsulated W2C as a multifunctional cathode catalyst for high performance Li-O2 battery. Electrochim. Acta 245, 430–437 (2017). https://doi.org/10.1016/j.electacta.2017.05.177
W.B. Luo, S.L. Chou, J.Z. Wang, Y.C. Zhai, H.K. Liu, A metal-free, free-standing, macroporous graphene@ g-C3N4 composite air electrode for high-energy lithium oxygen batteries. Small 11(23), 2817–2824 (2015). https://doi.org/10.1002/smll.201403535
P. Lou, Z. Cui, X. Guo, Achieving highly stable Li–O2 battery operation by designing a carbon nitride-based cathode towards a stable reaction interface. J. Mater. Chem. A 5(34), 18207–18213 (2017). https://doi.org/10.1039/C7TA05009G
Q. Guo, C. Zhang, C. Zhang, S. Xin, P. Zhang et al., Co3O4 modified Ag/g-C3N4 composite as a bifunctional cathode for lithium-oxygen battery. J. Energy Chem. 41, 185–193 (2020). https://doi.org/10.1016/j.jechem.2019.05.018
H. Cha, J. Kim, Y. Lee, J. Cho, M. Park, Issues and challenges facing flexible lithium-ion batteries for practical application. Small 14(43), 1702989 (2018). https://doi.org/10.1002/smll.201702989
T. Xiong, H. Su, F. Yang, Q. Tan, P.B.S. Appadurai et al., Harmonizing self-supportive VN/MoS2 pseudocapacitance core-shell electrodes for boosting the areal capacity of lithium storage. Mater. Today Energy 17, 100461 (2020). https://doi.org/10.1016/j.mtener.2020.100461
X.-Y. Yue, X.-L. Li, W.-W. Wang, D. Chen, Q.-Q. Qiu et al., Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy 60, 257–266 (2019). https://doi.org/10.1016/j.nanoen.2019.03.057
K. Shen, Z. Wang, X. Bi, Y. Ying, D. Zhang et al., Magnetic field–suppressed lithium dendrite growth for stable lithium-metal batteries. Adv. Energy Mater. 9(20), 1900260 (2019). https://doi.org/10.1002/aenm.201900260
X.-Y. Yue, W.-W. Wang, Q.-C. Wang, J.-K. Meng, X.-X. Wang et al., Cuprite-coated cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries. Energy Storage Mater. 21, 180–189 (2019). https://doi.org/10.1016/j.ensm.2018.12.007
X. Luan, C. Wang, C. Wang, X. Gu, J. Yang, Y. Qian, Stable lithium deposition enabled by an acid-treated g-C3N4 interface layer for a lithium metal anode. ACS Appl. Mater. Interfaces 12(9), 11265–11272 (2020). https://doi.org/10.1021/acsami.9b23520
J. Hu, J. Tian, C. Li, Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Appl. Mater. Interfaces 9(13), 11615–11625 (2017). https://doi.org/10.1021/acsami.7b00478
Z. Lu, Q. Liang, B. Wang, Y. Tao, Y. Zhao et al., Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes. Adv. Energy Mater. 9(7), 1803186 (2019). https://doi.org/10.1002/aenm.201803186
D. Jiao, Z. Ma, J. Li, Y. Han, J. Mao, T. Ling, S. Qiao, Test factors affecting the performance of zinc–air battery. J. Energy Chem. 44, 1–7 (2020). https://doi.org/10.1016/j.jechem.2019.09.008
F. Ran, S. Chen, Advanced Nanomaterials for Electrochemical-based Energy Conversion and Storage (Elsevier, Amsterdam, 2019), p. 416
Y.-J. Li, L. Cui, P.-F. Da, K.-W. Qiu, W.-J. Qin et al., Multiscale structural engineering of ni-doped coo nanosheets for zinc–air batteries with high power density. Adv. Mater. 30(46), 1804653 (2018). https://doi.org/10.1002/adma.201804653
H.-S. Lu, H. Zhang, X. Zhang, N. Sun, X. Zhu, H. Zhao, G. Wang, Transformation of carbon-encapsulated metallic Co into ultrafine Co/CoO nanoparticles exposed on N-doped graphitic carbon for high-performance rechargeable zinc-air battery. Appl. Surf. Sci. 448, 369–379 (2018). https://doi.org/10.1016/j.apsusc.2018.04.146
S.S. Shinde, C.-H. Lee, A. Sami, D.-H. Kim, S.-U. Lee, J.-H. Lee, Scalable 3D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano 11(1), 347–357 (2017). https://doi.org/10.1021/acsnano.6b05914
S.S. Shinde, J.-Y. Yu, J.-W. Song, Y.-H. Nam, D.-H. Kim, J.-H. Lee, Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn–air batteries. Nanoscale Horiz. 2(6), 333–341 (2017). https://doi.org/10.1039/C7NH00058H
C.-Y. Su, H. Cheng, W. Li, Z.-Q. Liu, N. Li et al., Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc–air battery. Adv. Energy Mater. 7(13), 1602420 (2017). https://doi.org/10.1002/aenm.201602420
L. Zhang, J. Xiong, Y.-H. Qin, C.-W. Wang, Porous N-C catalyst synthesized by pyrolyzing g-C3N4 embedded in carbon as highly efficient oxygen reduction electrocatalysts for primary Zn-air battery. Carbon 150, 475–484 (2019). https://doi.org/10.1016/j.carbon.2019.05.044
S. Wang, P. Xiong, J. Zhang, G. Wang, Recent progress on flexible lithium metal batteries: composite lithium metal anodes and solid-state electrolytes. Energy Storage Mater. 29, 310–331 (2020). https://doi.org/10.1016/j.ensm.2020.04.032
Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7(42), 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517
Y. Zhu, X. He, Y. Mo, First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4(9), 3253–3266 (2016). https://doi.org/10.1039/C5TA08574H
Y. Huang, B. Chen, J. Duan, F. Yang, T. Wang et al., Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries. Angew. Chem. Int. Ed. 59(9), 3699–3704 (2020). https://doi.org/10.1002/anie.201914417
Y. Lu, Z. Wen, J. Jin, Y. Cui, M. Wu, S. Sun, Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery. J. Solid State Electrochem. 16(5), 1863–1868 (2012). https://doi.org/10.1007/s10008-012-1640-8
Z. Sun, Y. Li, S. Zhang, L. Shi, H. Wu, H. Bu, S. Ding, G-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 7(18), 11069–11076 (2019). https://doi.org/10.1039/C9TA00634F
T. Liu, Y. Zhang, C. Chen, Z. Lin, S. Zhang, J. Lu, Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat. Commun. 10(1), 1965 (2019). https://doi.org/10.1038/s41467-019-09933-0
Z. Su, H.Y. Ling, M. Li, S. Qian, H. Chen, C. Lai, S. Zhang, Honeycomb-like carbon materials derived from coffee extract via a “salty” thermal treatment for high-performance Li-I2 batteries. Carbon Energy 2(2), 265–275 (2020). https://doi.org/10.1002/cey2.40
M. Sha, L. Liu, H. Zhao, Y. Lei, Anode materials for potassium-ion batteries: current status and prospects. Carbon Energy (2020). https://doi.org/10.1002/cey2.57
Y. Shi, G. Liu, R. Jin, H. Xu, Q. Wang, S. Gao, Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review. Carbon Energy 1(2), 253–275 (2019). https://doi.org/10.1002/cey2.19
J. Chen, N.-G. Park, Materials and methods for interface engineering towards stable and efficient perovskite solar cells. ACS Energy Lett. 5, 180–185 (2020). https://doi.org/10.1021/acsenergylett.0c01240
J.-M. Fan, J.-J. Chen, Q. Zhang, B.-B. Chen, J. Zang, M.-S. Zheng, Q.-F. Dong. An amorphous carbon nitride composite derived from ZIF-8 as anode material for sodium-ion batteries. ChemSusChem. 8(11), 1856–1861 (2015). https://doi.org/10.1002/cssc.201500192
L. Chen, R. Yan, M. Oschatz, L. Jiang, M. Antonietti, K. Xiao, Ultrathin 2D graphitic carbon nitride on metal films: Underpotential sodium deposition in adlayers for sodium-ion batteries. Angew. Chem. Int. 59(23), 9067 (2020). https://doi.org/10.1002/anie.202000314
J. Liu, Y. Zhang, L. Zhang, F. Xie, A. Vasileff, S.-Z. Qiao, Graphitic carbon nitride (g-3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries. Adv Mater. 31(24), 1901261 (2019). https://doi.org/10.1002/adma.201901261
D. Adekoya, H. Chen, H.Y. Hoh, T. Gould, M.-S.J.T. Balogun, C. Lai, H. Zhao, S. Zhang, Hierarchical 3o4@N-doped carbon composite as an advanced anode material for ultrastable potassium storage. ACS Nano 14(4), 5027–5035 (2020)
J. Liu, W. Li, L. Duan, X. Li, L. Ji, Z. Geng, K. Huang, L. Lu, L. Zhou, Z. Liu, A graphene-like oxygenated carbon nitride material for improved cyclelife lithium/sulfur batteries. Nano Lett. 15(8), 5137–5142 (2015)
X. Wu, S. Li, B. Wang, J. Liu, M. Yu, Free-standing 3D network-like cathode based on biomass-derived N-doped carbon/graphene/g-C3N4 hybrid ultrathin sheets as sulfur host for high-rate Li-S battery. Renew. Energy 158, 509–519 (2020). https://doi.org/10.1016/j.renene.2020.05.098
H. Zhang, Z. Zhao, Y.-N. Hou, Y. Tang, Y. Dong, S. Wang, X. Hu, Z. Zhang, X. Wang, J. Qiu, Nanopore-confined g-C3N4 nanodots in N, S Codoped hollow porous carbon with boosted capacity for lithium–sulfur batteries. J. Mater. Chem. A 6(16), 7133–7141 (2018). https://doi.org/10.1039/C8TA00529J
X. Wang, G. Li, M. Li, R. Liu, H. Li, T. Li, M. Sun, Y. Deng, M. Feng, Z. Chen, Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries. J. Energy Chem. 53, 234–240 (2021). https://doi.org/10.1016/j.jechem.2020.05.036
Y. Gong, C. Fu, G. Zhang, H. Zhou, Y. Kuang, Three-dimensional porous C3N4 nanosheets@reduced graphene oxide network as sulfur hosts for high performance lithium-sulfur batteries. Electrochim. Acta 256, 1–9 (2017). https://doi.org/10.1016/j.electacta.2017.10.032
J. Wang, Z. Meng, W. Yang, X. Yan, R. Guo, W.-Q. Han, Facile synthesis of rGO/g-C3N4/CNT microspheres via ethanol-assisted spray drying method for high performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 11(1), 819–827 (2018)
Y. Huangfu, T. Zheng, K. Zhang, X. She, H. Xu, Z. Fang, K. Xie, Facile fabrication of permselective g-3N4 separator for improved lithium-sulfur batteries. Electrochim. Acta 272, 60–67 (2018). https://doi.org/10.1016/j.electacta.2018.03.149
G. Angamuthu, D.B. Babu, K. Ramesha, V. Rangarajan, MoS2 anchored carbon nitride based mesoporous material as a polysulfide barrier for high capacity lithium-sulfur battery. J. Electroanal. Chem. 843, 37–46 (2019). https://doi.org/10.1016/j.jelechem.2019.05.006