Recent Advances in Tumor Microenvironment Hydrogen Peroxide-Responsive Materials for Cancer Photodynamic Therapy
Corresponding Author: Xiaochen Dong
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 15
Abstract
Photodynamic therapy (PDT), as one of the noninvasive clinical cancer phototherapies, suffers from the key drawback associated with hypoxia at the tumor microenvironment (TME), which plays an important role in protecting tumor cells from damage caused by common treatments. High concentration of hydrogen peroxide (H2O2), one of the hallmarks of TME, has been recognized as a double-edged sword, posing both challenges, and opportunities for cancer therapy. The promising perspectives, strategies, and approaches for enhanced tumor therapies, including PDT, have been developed based on the fast advances in H2O2-enabled theranostic nanomedicine. In this review, we outline the latest advances in H2O2-responsive materials, including organic and inorganic materials for enhanced PDT. Finally, the challenges and opportunities for further research on H2O2-responsive anticancer agents are envisioned.
Highlights:
1 The reaction mechanism of various kinds of nanomaterials with endogenous H2O2 is outlined.
2 The design and application guideline for various H2O2-responsive nanomaterials in photodynamic therapy (PDT) are reviewed.
3 The development and prospect of various H2O2-response nanomaterials for PDT and clinical application are envisioned.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.D. Miller, R.L. Siegel, C.C. Lin, A.B. Mariotto, J.L. Kramer et al., Cancer treatment and survivorship statistics. CA Cancer J. Clin. 66(4), 271–289 (2016). https://doi.org/10.3322/caac.21349
- D. Luo, K.A. Carter, D. Miranda, J.F. Lovell, Chemophototherapy: an emerging treatment option for solid tumors. Adv. Sci. 4(1), 1600106 (2017). https://doi.org/10.1002/advs.201600106
- I.F. Tannock, C.M. Lee, J.K. Tunggal, D.S.M. Cowan, M.J. Egorin, Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin. Cancer Res. 8(3), 878–884 (2002)
- A.P. Castano, P. Mroz, M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6(7), 535–545 (2006). https://doi.org/10.1038/nrc1894
- P.N. Manghnani, W. Wu, S. Xu, F. Hu, C. The, B. Liu, Visualizing photodynamic therapy in transgenic zebrafish using organic nanoparticles with aggregation-induced emission. Nano-Micro Lett. 10, 61 (2018). https://doi.org/10.1007/s40820-018-0214-4
- F. Chen, X. Zhuang, L. Lin, P. Yu, Y. Wang, Y. Shi, G. Hu, Y. Sun, New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 13, 45 (2015). https://doi.org/10.1186/s12916-015-0278-7
- R. Mroue, M.J. Bissell, Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol. Biol. 945, 221–250 (2013). https://doi.org/10.1007/978-1-62703-125-7_14
- M. Wang, J. Zhao, L. Zhang, F. Wei, Y. Lian et al., Role of tumor microenvironment in tumorigenesis. J. Cancer 8(5), 761–773 (2017). https://doi.org/10.7150/jca.17648
- D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013
- C.E. Weber, P.C. Kuo, The tumor microenvironment. Surg. Oncol. 21(3), 172–177 (2012). https://doi.org/10.1016/j.suronc.2011.09.001
- M.V. Blagosklonny, Antiangiogenic therapy and tumor progression. Cancer Cell 5(1), 13–17 (2004). https://doi.org/10.1016/S1535-6108(03)00336-2
- S. Xu, X. Zhu, C. Zhang, W. Huang, Y. Zhou, D. Yan, Oxygen and Pt(II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nat. Commun. 9(1), 2053 (2018). https://doi.org/10.1038/s41467-018-04318-1
- R. Weinstain, E.N. Sayariar, C.N. Felsen, R.Y. Tsien, In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. J. Am. Chem. Soc. 136(3), 874–877 (2014). https://doi.org/10.1021/ja411547j
- Q. Chen, L. Feng, J. Liu, W. Zhu, Z. Dong, Y. Wu, Z. Liu, Intelligent albumin–MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 28(33), 7129–7136 (2016). https://doi.org/10.1002/adma.201601902
- J. Liu, Q. Chen, W. Zhu, X. Yi, Y. Yang, Z. Dong, Z. Liu, Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles: a multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform. Adv. Funct. Mater. 27(10), 1605926 (2017). https://doi.org/10.1002/adfm.201605926
- G. Csire, L. Nagy, K. Varnagy, C. Kallay, Copper(II) interaction with the human prion 103–112 fragment coordination and oxidation. J. Inorg. Biochem. 170, 195–201 (2017). https://doi.org/10.1016/j.jinorgbio.2017.02.018
- Q.Y. Tang, W.Y. Xiao, C.H. Huang, W.L. Si, J.J. Shao et al., pH-triggered and enhanced simultaneous photodynamic and photothermal therapy guided by photoacoustic and photothermal imaging. Chem. Mater. 29(12), 5216–5224 (2017). https://doi.org/10.1021/acs.chemmater.7b01075
- F. Wang, C. Li, J. Cheng, Z. Yuan, Recent advances on inorganic nanoparticle-based cancer therapeutic agents. Int. J. Environ. Res. Public Health 13(12), 1182 (2016). https://doi.org/10.3390/ijerph13121182
- S.S. Lucky, K.C. Soo, Y. Zhang, Nanoparticles in photodynamic therapy. Chem. Rev. 115(4), 1990–2042 (2015). https://doi.org/10.1021/cr5004198
- P. Prasad, C.R. Gordijo, A.Z. Abbasi, A. Maeda, A. Ip, A.M. Rauth, R.S. DaCosta, X.Y. Wu, Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8(4), 3202–3212 (2014). https://doi.org/10.1021/nn405773r
- Q. Tang, Z. Cheng, N. Yang, Q. Li, P. Wang et al., Hydrangea-structured tumor microenvironment responsive degradable nanoplatform for hypoxic tumor multimodal imaging and therapy. Biomaterials 205, 1–10 (2019). https://doi.org/10.1016/j.biomaterials.2019.03.005
- H. Min, J. Wang, Y. Qi, Y. Zhang, X. Han et al., Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv. Mater. 31(15), e1808200 (2019). https://doi.org/10.1002/adma.201808200
- Z. Yuan, F. Lu, M. Peng, C.W. Wang, Y.T. Tseng et al., Selective colorimetric detection of hydrogen sulfide based on primary amine-active ester cross-linking of gold nanoparticles. Anal. Chem. 87(14), 7267–7273 (2015). https://doi.org/10.1021/acs.analchem.5b01302
- G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241(105), 20–22 (1973). https://doi.org/10.1038/physci241020a0
- J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc. Faraday Soc. 11, 55–75 (1951). https://doi.org/10.1039/df9511100055
- Y. Sun, B.T. Mayers, Y. Xia, Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2(5), 481–485 (2002). https://doi.org/10.1021/nl025531v
- Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002). https://doi.org/10.1126/science.1077229
- B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15(10), 1957–1962 (2003). https://doi.org/10.1021/cm020732l
- A.K. Khan, R. Rashid, G. Murtaza, A. Zahra, Gold nanoparticles: synthesis and applications in drug delivery. Trop. J. Pharm. Res. 13(7), 1169–1177 (2014). https://doi.org/10.4314/tjpr.v13i7.23
- D. Pissuwan, S.M. Valenzuela, C.M. Miller, M.B. Cortie, A golden bullet? Selective targeting of toxoplasma gondii tachyzoites using anti body-functionalized gold nanorods. Nano Lett. 7(12), 3808–3812 (2007). https://doi.org/10.1021/nl072377+
- R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C.-L. Kuo, K.C. Hwang, Metal nanoparticles sensitize the formation of singlet oxygen. Angew. Chem. Int. Ed. 50(45), 10640–10644 (2011). https://doi.org/10.1002/anie.201105236
- C.-P. Liu, T.-H. Wu, C.-Y. Liu, K.-C. Chen, Y.-X. Chen, G.-S. Chen, S.-Y. Lin, Self-supplying O-2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small 13(26), 1700278 (2017). https://doi.org/10.1002/smll.201700278
- Q. Chen, J. Chen, Z. Yang, L. Zhang, Z. Dong, Z. Liu, NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters. Nano Res. 11(10), 5657–5669 (2018). https://doi.org/10.1007/s12274-017-1917-4
- J. Wei, J. Li, D. Sun, Q. Li, J. Ma et al., A novel theranostic nanoplatform based on Pd@Pt-PEG-Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Adv. Funct. Mater. 28(17), 1706310 (2018). https://doi.org/10.1002/adfm.201706310
- X.-S. Wang, J.-Y. Zeng, M.-K. Zhang, X. Zeng, X.-Z. Zhang, A versatile Pt-based core–shell nanoplatform as a nanofactory for enhanced tumor therapy. Adv. Funct. Mater. 28(36), 1801783 (2018). https://doi.org/10.1002/adfm.201801783
- W.-P. Li, C.-H. Su, Y.-C. Chang, Y.-J. Lin, C.-S. Yeh, Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 10(2), 2017–2027 (2016). https://doi.org/10.1021/acsnano.5b06175
- Z. Ma, M. Zhang, X. Jia, J. Bai, Y. Ruan, C. Wang, X. Sun, X. Jiang, Fe-III-doped two-dimensional C3N4 nanofusiform: a new O2-evolving and mitochondria-targeting photodynamic agent for MRI and enhanced antitumor therapy. Small 12(39), 5477–5487 (2016). https://doi.org/10.1002/smll.201601681
- Y. Ruan, X. Jia, C. Wang, W. Zhen, X. Jiang, Mn–FE layered double hydroxide nanosheets: a new photothermal nanocarrier for O2-evolving phototherapy. Chem. Commun. 54(83), 11729–11732 (2018). https://doi.org/10.1039/C8CC06033A
- P. Ma, H. Xiao, C. Yu, J. Liu, Z. Cheng et al., Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 17(2), 928–937 (2017). https://doi.org/10.1021/acs.nanolett.6b04269
- N. Masomboon, C. Ratanatamskul, M.C. Lu, Chemical oxidation of 2,6-dimethylaniline in the fenton process. Environ. Sci. Technol. 43(22), 8629–8634 (2009). https://doi.org/10.1021/es802274h
- E. Brillas, M.A. Baños, S. Camps, C. Arias, P.-L. Cabot, J.A. Garrido, R.M. Rodríguez, Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J. Chem. 28(2), 314–322 (2004). https://doi.org/10.1039/B312445B
- T. Soltani, B.-K. Lee, Enhanced formation of sulfate radicals by metal-doped BiFeO3 under visible light for improving photo-fenton catalytic degradation of 2-chlorophenol. Chem. Eng. J. 313, 1258–1268 (2017). https://doi.org/10.1016/j.cej.2016.11.016
- B. Ma, S. Wang, F. Liu, S. Zhang, J. Duan et al., Self-assembled copper–amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 141(2), 849–857 (2018). https://doi.org/10.1021/jacs.8b08714
- C. Wang, F. Cao, Y. Ruan, X. Jia, W. Zhen, X. Jiang, Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by Cu-TCPP nanosheets for cancer therapy. Angew. Chem. Int. Ed. 131(29), 9951–9955 (2019). https://doi.org/10.1002/ange.201903981
- Y. Fan, P. Li, B. Hu, T. Liu, Z. Huang et al., A smart photosensitizer-cerium oxide nanoprobe for highly selective and efficient photodynamic therapy. Inorg. Chem. 58(11), 7295–7302 (2019). https://doi.org/10.1021/acs.inorgchem.9b00363
- Y. Li, L. An, J. Lin, Q. Tian, S. Yang, Smart nanomedicine agents for cancer, triggered by pH, glutathione, H2O2, or H2S. Int. J. Nanomed. 14, 5729–5749 (2019). https://doi.org/10.2147/IJN.S210116
- Y. Zeng, W. Zeng, Q. Zhou, X. Jia, J. Li, Z. Yang, Y. Hao, J. Liu, Hyaluronic acid mediated biomineralization of multifunctional ceria nanocomposites as ROS scavengers and tumor photodynamic therapy agents. J. Mater. Chem. B 7(20), 3210–3219 (2019). https://doi.org/10.1039/C8TB03374A
- T. Jia, J. Xu, S. Dong, F. He, C. Zhong et al., Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging. Chem. Sci. 10(37), 8618–8633 (2019). https://doi.org/10.1039/C9SC01615E
- W. Jiang, C. Zhang, A. Ahmed, Y. Zhao, Y. Deng, Y. Ding, J. Cai, Y. Hu, H2O2 -sensitive upconversion nanocluster bomb for tri-mode imaging-guided photodynamic therapy in deep tumor tissue. Adv. Healthc. Mater. 8(20), e1900972 (2019). https://doi.org/10.1002/adhm.201900972
- X. Lu, M. Zhao, P. Chen, Q. Fan, W. Wang, W. Huang, Enhancing hydrophilicity of photoacoustic probes for effective ratiometric imaging of hydrogen peroxide. J. Mater. Chem. B 6(27), 4531–4538 (2018). https://doi.org/10.1039/C8TB01158C
- X. Shang, X. Song, C. Faller, R. Lai, H. Li, R. Cerny, W. Niu, J. Guo, Fluorogenic protein labeling using a genetically encoded unstrained alkene. Chem. Sci. 8(2), 1141–1145 (2017). https://doi.org/10.1039/C6SC03635J
- H. Ren, Y. Wu, Y. Li, W. Cao, Z. Sun, H. Xu, X. Zhang, Visible-light-induced disruption of diselenide-containing layer-by-layer films: toward combination of chemotherapy and photodynamic therapy. Small 9(23), 3981–3986 (2013). https://doi.org/10.1002/smll.201300628
- R.L. Cunha, I.E. Gouvea, L. Juliano, A glimpse on biological activities of tellurium compounds. An. Acad. Bras. Cienc. 81(3), 393–407 (2009). https://doi.org/10.1590/S0001-37652009000300006
- C. Li, R. Pan, P. Li, Q. Guan, J. Ao et al., Hydrogen peroxide-responsive nanoprobe assists circulating tumor cell identification and colorectal cancer diagnosis. Anal. Chem. 89(11), 5966–5975 (2017). https://doi.org/10.1021/acs.analchem.7b00497
- Y. Kuang, K. Baakrishnan, V. Gandhi, X. Peng, Hydrogen peroxide inducible DNA cross-linking agents: targeted anticancer prodrugs. J. Am. Chem. Soc. 133(48), 19278–19281 (2011). https://doi.org/10.1021/ja2073824
- J. Noh, B. Kwon, E. Han, M. Park, W. Yang et al., Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat. Commun. 6, 6907 (2015). https://doi.org/10.1038/ncomms7907
- G. Saravanakumar, J. Kim, W.J. Kim, Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv. Sci. 4(1), 1600124 (2017). https://doi.org/10.1002/advs.201600124
- D. Gonzalez-Ballester, A.R. Grossman, in Chapter 5—sulfur: From Acquisition to Assimilation, ed. by E.H. Harris, D.B. Stern, G.B. Witman (Academic Press, London, 2009), pp. 159–187 https://doi.org/10.1016/B978-0-12-370873-1.00013-7
- U. Tinggi, Selenium: its role as antioxidant in human health. Environ. Health Prev. Med. 13(2), 102–108 (2008). https://doi.org/10.1007/s12199-007-0019-4
- L. Wang, W. Wang, W. Cao, H. Xu, Multi-hierarchical responsive polymers: stepwise oxidation of a selenium- and tellurium-containing block copolymer with sensitivity to both chemical and electrochemical stimuli. Polym. Chem. 8(31), 4520–4527 (2017). https://doi.org/10.1039/C7PY00971B
- L. Wang, X. Qu, Y. Xie, S. Lv, Study of 8 types of glutathione peroxidase mimics based on β-cyclodextrin. Catalysts 7(10), 289 (2017). https://doi.org/10.3390/catal7100289
- D. Lee, S. Bae, Q. Ke, J. Lee, B. Song et al., Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia–reperfusion injury. J. Control. Release 172(3), 1102–1110 (2013). https://doi.org/10.1016/j.jconrel.2013.09.020
- D. Mao, W. Wu, S. Ji, C. Chen, F. Hu, D. Kong, D. Ding, B. Liu, Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer. Chem 3(6), 991–1007 (2017). https://doi.org/10.1016/j.chempr.2017.10.002
- B. Liu, D. Wang, Y. Liu, Q. Zhang, L. Meng et al., Hydrogen peroxide-responsive anticancer hyperbranched polymer micelles for enhanced cell apoptosis. Polym. Chem. 6(18), 3460–3471 (2015). https://doi.org/10.1039/C5PY00257E
- J. Wang, H. He, X. Xu, X. Wang, Y. Chen, L. Yin, Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials 171, 72–82 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.020
- M. Iwaoka, S. Tomoda, A model study on the effect of an amino group on the antioxidant activity of glutathione-peroxidase. J. Am. Chem. Soc. 116(6), 2557–2561 (1994). https://doi.org/10.1021/ja00085a040
- T. Sun, Y. Jin, R. Qi, S. Peng, B. Fan, Oxidation responsive mono-cleavable amphiphilic di-block polymer micelles labeled with a single diselenide. Polym. Chem. 4(14), 4017–4023 (2013). https://doi.org/10.1039/c3py00406f
- T. Sun, Y. Jin, R. Qi, S. Peng, B. Fan, Post-assembly of oxidation-responsive amphiphilic triblock polymer containing a single diselenide. Macromol. Chem. Phys. 214(24), 2875–2881 (2013). https://doi.org/10.1002/macp.201300579
- C. Sun, S. Ji, F. Li, H. Xu, Diselenide-containing hyperbranched polymer with light-induced cytotoxicity. ACS Appl. Mater. Interfaces. 9(15), 12924–12929 (2017). https://doi.org/10.1021/acsami.7b02367
- K.Y. Lu, P.Y. Lin, E.Y. Chuang, C.M. Shih, T.M. Cheng et al., H2O2-depleting and O2-generating selenium nanoparticles for fluorescence imaging and photodynamic treatment of proinflammatory-activated macrophages. ACS Appl. Mater. Interfaces. 9(6), 5158–5172 (2017). https://doi.org/10.1021/acsami.6b15515
- W. Cao, Y. Gu, M. Meineck, T. Li, H. Xu, Tellurium-containing polymer micelles: competitive-ligand-regulated coordination responsive systems. J. Am. Chem. Soc. 136(13), 5132–5137 (2014). https://doi.org/10.1021/ja500939m
- W. Cao, Y. Gu, T. Li, H. Xu, Ultra-sensitive ros-responsive tellurium-containing polymers. Chem. Commun. 51(32), 7069–7071 (2015). https://doi.org/10.1039/C5CC01779C
- F. Fan, L. Wang, F. Li, Y. Fu, H. Xu, Stimuli-responsive layer-by-layer tellurium-containing polymer films for the combination of chemotherapy and photodynamic therapy. ACS Appl. Mater. Interfaces. 8(26), 17004–17010 (2016). https://doi.org/10.1021/acsami.6b04998
References
K.D. Miller, R.L. Siegel, C.C. Lin, A.B. Mariotto, J.L. Kramer et al., Cancer treatment and survivorship statistics. CA Cancer J. Clin. 66(4), 271–289 (2016). https://doi.org/10.3322/caac.21349
D. Luo, K.A. Carter, D. Miranda, J.F. Lovell, Chemophototherapy: an emerging treatment option for solid tumors. Adv. Sci. 4(1), 1600106 (2017). https://doi.org/10.1002/advs.201600106
I.F. Tannock, C.M. Lee, J.K. Tunggal, D.S.M. Cowan, M.J. Egorin, Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin. Cancer Res. 8(3), 878–884 (2002)
A.P. Castano, P. Mroz, M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6(7), 535–545 (2006). https://doi.org/10.1038/nrc1894
P.N. Manghnani, W. Wu, S. Xu, F. Hu, C. The, B. Liu, Visualizing photodynamic therapy in transgenic zebrafish using organic nanoparticles with aggregation-induced emission. Nano-Micro Lett. 10, 61 (2018). https://doi.org/10.1007/s40820-018-0214-4
F. Chen, X. Zhuang, L. Lin, P. Yu, Y. Wang, Y. Shi, G. Hu, Y. Sun, New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 13, 45 (2015). https://doi.org/10.1186/s12916-015-0278-7
R. Mroue, M.J. Bissell, Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol. Biol. 945, 221–250 (2013). https://doi.org/10.1007/978-1-62703-125-7_14
M. Wang, J. Zhao, L. Zhang, F. Wei, Y. Lian et al., Role of tumor microenvironment in tumorigenesis. J. Cancer 8(5), 761–773 (2017). https://doi.org/10.7150/jca.17648
D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013
C.E. Weber, P.C. Kuo, The tumor microenvironment. Surg. Oncol. 21(3), 172–177 (2012). https://doi.org/10.1016/j.suronc.2011.09.001
M.V. Blagosklonny, Antiangiogenic therapy and tumor progression. Cancer Cell 5(1), 13–17 (2004). https://doi.org/10.1016/S1535-6108(03)00336-2
S. Xu, X. Zhu, C. Zhang, W. Huang, Y. Zhou, D. Yan, Oxygen and Pt(II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nat. Commun. 9(1), 2053 (2018). https://doi.org/10.1038/s41467-018-04318-1
R. Weinstain, E.N. Sayariar, C.N. Felsen, R.Y. Tsien, In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. J. Am. Chem. Soc. 136(3), 874–877 (2014). https://doi.org/10.1021/ja411547j
Q. Chen, L. Feng, J. Liu, W. Zhu, Z. Dong, Y. Wu, Z. Liu, Intelligent albumin–MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 28(33), 7129–7136 (2016). https://doi.org/10.1002/adma.201601902
J. Liu, Q. Chen, W. Zhu, X. Yi, Y. Yang, Z. Dong, Z. Liu, Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles: a multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform. Adv. Funct. Mater. 27(10), 1605926 (2017). https://doi.org/10.1002/adfm.201605926
G. Csire, L. Nagy, K. Varnagy, C. Kallay, Copper(II) interaction with the human prion 103–112 fragment coordination and oxidation. J. Inorg. Biochem. 170, 195–201 (2017). https://doi.org/10.1016/j.jinorgbio.2017.02.018
Q.Y. Tang, W.Y. Xiao, C.H. Huang, W.L. Si, J.J. Shao et al., pH-triggered and enhanced simultaneous photodynamic and photothermal therapy guided by photoacoustic and photothermal imaging. Chem. Mater. 29(12), 5216–5224 (2017). https://doi.org/10.1021/acs.chemmater.7b01075
F. Wang, C. Li, J. Cheng, Z. Yuan, Recent advances on inorganic nanoparticle-based cancer therapeutic agents. Int. J. Environ. Res. Public Health 13(12), 1182 (2016). https://doi.org/10.3390/ijerph13121182
S.S. Lucky, K.C. Soo, Y. Zhang, Nanoparticles in photodynamic therapy. Chem. Rev. 115(4), 1990–2042 (2015). https://doi.org/10.1021/cr5004198
P. Prasad, C.R. Gordijo, A.Z. Abbasi, A. Maeda, A. Ip, A.M. Rauth, R.S. DaCosta, X.Y. Wu, Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8(4), 3202–3212 (2014). https://doi.org/10.1021/nn405773r
Q. Tang, Z. Cheng, N. Yang, Q. Li, P. Wang et al., Hydrangea-structured tumor microenvironment responsive degradable nanoplatform for hypoxic tumor multimodal imaging and therapy. Biomaterials 205, 1–10 (2019). https://doi.org/10.1016/j.biomaterials.2019.03.005
H. Min, J. Wang, Y. Qi, Y. Zhang, X. Han et al., Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv. Mater. 31(15), e1808200 (2019). https://doi.org/10.1002/adma.201808200
Z. Yuan, F. Lu, M. Peng, C.W. Wang, Y.T. Tseng et al., Selective colorimetric detection of hydrogen sulfide based on primary amine-active ester cross-linking of gold nanoparticles. Anal. Chem. 87(14), 7267–7273 (2015). https://doi.org/10.1021/acs.analchem.5b01302
G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241(105), 20–22 (1973). https://doi.org/10.1038/physci241020a0
J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc. Faraday Soc. 11, 55–75 (1951). https://doi.org/10.1039/df9511100055
Y. Sun, B.T. Mayers, Y. Xia, Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2(5), 481–485 (2002). https://doi.org/10.1021/nl025531v
Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002). https://doi.org/10.1126/science.1077229
B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15(10), 1957–1962 (2003). https://doi.org/10.1021/cm020732l
A.K. Khan, R. Rashid, G. Murtaza, A. Zahra, Gold nanoparticles: synthesis and applications in drug delivery. Trop. J. Pharm. Res. 13(7), 1169–1177 (2014). https://doi.org/10.4314/tjpr.v13i7.23
D. Pissuwan, S.M. Valenzuela, C.M. Miller, M.B. Cortie, A golden bullet? Selective targeting of toxoplasma gondii tachyzoites using anti body-functionalized gold nanorods. Nano Lett. 7(12), 3808–3812 (2007). https://doi.org/10.1021/nl072377+
R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C.-L. Kuo, K.C. Hwang, Metal nanoparticles sensitize the formation of singlet oxygen. Angew. Chem. Int. Ed. 50(45), 10640–10644 (2011). https://doi.org/10.1002/anie.201105236
C.-P. Liu, T.-H. Wu, C.-Y. Liu, K.-C. Chen, Y.-X. Chen, G.-S. Chen, S.-Y. Lin, Self-supplying O-2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small 13(26), 1700278 (2017). https://doi.org/10.1002/smll.201700278
Q. Chen, J. Chen, Z. Yang, L. Zhang, Z. Dong, Z. Liu, NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters. Nano Res. 11(10), 5657–5669 (2018). https://doi.org/10.1007/s12274-017-1917-4
J. Wei, J. Li, D. Sun, Q. Li, J. Ma et al., A novel theranostic nanoplatform based on Pd@Pt-PEG-Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Adv. Funct. Mater. 28(17), 1706310 (2018). https://doi.org/10.1002/adfm.201706310
X.-S. Wang, J.-Y. Zeng, M.-K. Zhang, X. Zeng, X.-Z. Zhang, A versatile Pt-based core–shell nanoplatform as a nanofactory for enhanced tumor therapy. Adv. Funct. Mater. 28(36), 1801783 (2018). https://doi.org/10.1002/adfm.201801783
W.-P. Li, C.-H. Su, Y.-C. Chang, Y.-J. Lin, C.-S. Yeh, Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 10(2), 2017–2027 (2016). https://doi.org/10.1021/acsnano.5b06175
Z. Ma, M. Zhang, X. Jia, J. Bai, Y. Ruan, C. Wang, X. Sun, X. Jiang, Fe-III-doped two-dimensional C3N4 nanofusiform: a new O2-evolving and mitochondria-targeting photodynamic agent for MRI and enhanced antitumor therapy. Small 12(39), 5477–5487 (2016). https://doi.org/10.1002/smll.201601681
Y. Ruan, X. Jia, C. Wang, W. Zhen, X. Jiang, Mn–FE layered double hydroxide nanosheets: a new photothermal nanocarrier for O2-evolving phototherapy. Chem. Commun. 54(83), 11729–11732 (2018). https://doi.org/10.1039/C8CC06033A
P. Ma, H. Xiao, C. Yu, J. Liu, Z. Cheng et al., Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 17(2), 928–937 (2017). https://doi.org/10.1021/acs.nanolett.6b04269
N. Masomboon, C. Ratanatamskul, M.C. Lu, Chemical oxidation of 2,6-dimethylaniline in the fenton process. Environ. Sci. Technol. 43(22), 8629–8634 (2009). https://doi.org/10.1021/es802274h
E. Brillas, M.A. Baños, S. Camps, C. Arias, P.-L. Cabot, J.A. Garrido, R.M. Rodríguez, Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J. Chem. 28(2), 314–322 (2004). https://doi.org/10.1039/B312445B
T. Soltani, B.-K. Lee, Enhanced formation of sulfate radicals by metal-doped BiFeO3 under visible light for improving photo-fenton catalytic degradation of 2-chlorophenol. Chem. Eng. J. 313, 1258–1268 (2017). https://doi.org/10.1016/j.cej.2016.11.016
B. Ma, S. Wang, F. Liu, S. Zhang, J. Duan et al., Self-assembled copper–amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 141(2), 849–857 (2018). https://doi.org/10.1021/jacs.8b08714
C. Wang, F. Cao, Y. Ruan, X. Jia, W. Zhen, X. Jiang, Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by Cu-TCPP nanosheets for cancer therapy. Angew. Chem. Int. Ed. 131(29), 9951–9955 (2019). https://doi.org/10.1002/ange.201903981
Y. Fan, P. Li, B. Hu, T. Liu, Z. Huang et al., A smart photosensitizer-cerium oxide nanoprobe for highly selective and efficient photodynamic therapy. Inorg. Chem. 58(11), 7295–7302 (2019). https://doi.org/10.1021/acs.inorgchem.9b00363
Y. Li, L. An, J. Lin, Q. Tian, S. Yang, Smart nanomedicine agents for cancer, triggered by pH, glutathione, H2O2, or H2S. Int. J. Nanomed. 14, 5729–5749 (2019). https://doi.org/10.2147/IJN.S210116
Y. Zeng, W. Zeng, Q. Zhou, X. Jia, J. Li, Z. Yang, Y. Hao, J. Liu, Hyaluronic acid mediated biomineralization of multifunctional ceria nanocomposites as ROS scavengers and tumor photodynamic therapy agents. J. Mater. Chem. B 7(20), 3210–3219 (2019). https://doi.org/10.1039/C8TB03374A
T. Jia, J. Xu, S. Dong, F. He, C. Zhong et al., Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging. Chem. Sci. 10(37), 8618–8633 (2019). https://doi.org/10.1039/C9SC01615E
W. Jiang, C. Zhang, A. Ahmed, Y. Zhao, Y. Deng, Y. Ding, J. Cai, Y. Hu, H2O2 -sensitive upconversion nanocluster bomb for tri-mode imaging-guided photodynamic therapy in deep tumor tissue. Adv. Healthc. Mater. 8(20), e1900972 (2019). https://doi.org/10.1002/adhm.201900972
X. Lu, M. Zhao, P. Chen, Q. Fan, W. Wang, W. Huang, Enhancing hydrophilicity of photoacoustic probes for effective ratiometric imaging of hydrogen peroxide. J. Mater. Chem. B 6(27), 4531–4538 (2018). https://doi.org/10.1039/C8TB01158C
X. Shang, X. Song, C. Faller, R. Lai, H. Li, R. Cerny, W. Niu, J. Guo, Fluorogenic protein labeling using a genetically encoded unstrained alkene. Chem. Sci. 8(2), 1141–1145 (2017). https://doi.org/10.1039/C6SC03635J
H. Ren, Y. Wu, Y. Li, W. Cao, Z. Sun, H. Xu, X. Zhang, Visible-light-induced disruption of diselenide-containing layer-by-layer films: toward combination of chemotherapy and photodynamic therapy. Small 9(23), 3981–3986 (2013). https://doi.org/10.1002/smll.201300628
R.L. Cunha, I.E. Gouvea, L. Juliano, A glimpse on biological activities of tellurium compounds. An. Acad. Bras. Cienc. 81(3), 393–407 (2009). https://doi.org/10.1590/S0001-37652009000300006
C. Li, R. Pan, P. Li, Q. Guan, J. Ao et al., Hydrogen peroxide-responsive nanoprobe assists circulating tumor cell identification and colorectal cancer diagnosis. Anal. Chem. 89(11), 5966–5975 (2017). https://doi.org/10.1021/acs.analchem.7b00497
Y. Kuang, K. Baakrishnan, V. Gandhi, X. Peng, Hydrogen peroxide inducible DNA cross-linking agents: targeted anticancer prodrugs. J. Am. Chem. Soc. 133(48), 19278–19281 (2011). https://doi.org/10.1021/ja2073824
J. Noh, B. Kwon, E. Han, M. Park, W. Yang et al., Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat. Commun. 6, 6907 (2015). https://doi.org/10.1038/ncomms7907
G. Saravanakumar, J. Kim, W.J. Kim, Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv. Sci. 4(1), 1600124 (2017). https://doi.org/10.1002/advs.201600124
D. Gonzalez-Ballester, A.R. Grossman, in Chapter 5—sulfur: From Acquisition to Assimilation, ed. by E.H. Harris, D.B. Stern, G.B. Witman (Academic Press, London, 2009), pp. 159–187 https://doi.org/10.1016/B978-0-12-370873-1.00013-7
U. Tinggi, Selenium: its role as antioxidant in human health. Environ. Health Prev. Med. 13(2), 102–108 (2008). https://doi.org/10.1007/s12199-007-0019-4
L. Wang, W. Wang, W. Cao, H. Xu, Multi-hierarchical responsive polymers: stepwise oxidation of a selenium- and tellurium-containing block copolymer with sensitivity to both chemical and electrochemical stimuli. Polym. Chem. 8(31), 4520–4527 (2017). https://doi.org/10.1039/C7PY00971B
L. Wang, X. Qu, Y. Xie, S. Lv, Study of 8 types of glutathione peroxidase mimics based on β-cyclodextrin. Catalysts 7(10), 289 (2017). https://doi.org/10.3390/catal7100289
D. Lee, S. Bae, Q. Ke, J. Lee, B. Song et al., Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia–reperfusion injury. J. Control. Release 172(3), 1102–1110 (2013). https://doi.org/10.1016/j.jconrel.2013.09.020
D. Mao, W. Wu, S. Ji, C. Chen, F. Hu, D. Kong, D. Ding, B. Liu, Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer. Chem 3(6), 991–1007 (2017). https://doi.org/10.1016/j.chempr.2017.10.002
B. Liu, D. Wang, Y. Liu, Q. Zhang, L. Meng et al., Hydrogen peroxide-responsive anticancer hyperbranched polymer micelles for enhanced cell apoptosis. Polym. Chem. 6(18), 3460–3471 (2015). https://doi.org/10.1039/C5PY00257E
J. Wang, H. He, X. Xu, X. Wang, Y. Chen, L. Yin, Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials 171, 72–82 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.020
M. Iwaoka, S. Tomoda, A model study on the effect of an amino group on the antioxidant activity of glutathione-peroxidase. J. Am. Chem. Soc. 116(6), 2557–2561 (1994). https://doi.org/10.1021/ja00085a040
T. Sun, Y. Jin, R. Qi, S. Peng, B. Fan, Oxidation responsive mono-cleavable amphiphilic di-block polymer micelles labeled with a single diselenide. Polym. Chem. 4(14), 4017–4023 (2013). https://doi.org/10.1039/c3py00406f
T. Sun, Y. Jin, R. Qi, S. Peng, B. Fan, Post-assembly of oxidation-responsive amphiphilic triblock polymer containing a single diselenide. Macromol. Chem. Phys. 214(24), 2875–2881 (2013). https://doi.org/10.1002/macp.201300579
C. Sun, S. Ji, F. Li, H. Xu, Diselenide-containing hyperbranched polymer with light-induced cytotoxicity. ACS Appl. Mater. Interfaces. 9(15), 12924–12929 (2017). https://doi.org/10.1021/acsami.7b02367
K.Y. Lu, P.Y. Lin, E.Y. Chuang, C.M. Shih, T.M. Cheng et al., H2O2-depleting and O2-generating selenium nanoparticles for fluorescence imaging and photodynamic treatment of proinflammatory-activated macrophages. ACS Appl. Mater. Interfaces. 9(6), 5158–5172 (2017). https://doi.org/10.1021/acsami.6b15515
W. Cao, Y. Gu, M. Meineck, T. Li, H. Xu, Tellurium-containing polymer micelles: competitive-ligand-regulated coordination responsive systems. J. Am. Chem. Soc. 136(13), 5132–5137 (2014). https://doi.org/10.1021/ja500939m
W. Cao, Y. Gu, T. Li, H. Xu, Ultra-sensitive ros-responsive tellurium-containing polymers. Chem. Commun. 51(32), 7069–7071 (2015). https://doi.org/10.1039/C5CC01779C
F. Fan, L. Wang, F. Li, Y. Fu, H. Xu, Stimuli-responsive layer-by-layer tellurium-containing polymer films for the combination of chemotherapy and photodynamic therapy. ACS Appl. Mater. Interfaces. 8(26), 17004–17010 (2016). https://doi.org/10.1021/acsami.6b04998