Strongly Anchoring Polysulfides by Hierarchical Fe3O4/C3N4 Nanostructures for Advanced Lithium–Sulfur Batteries
Corresponding Author: Youngkwan Lee
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 139
Abstract
Li–S batteries have attracted considerable interest as next-generation energy storage devices owing to high energy density and the natural abundance of sulfur. However, the practical applications of Li–S batteries are hampered by the shuttle effect of soluble lithium polysulfides (LPS), which results in low cycle stability. Herein, a functional interlayer has been developed to efficiently regulate the LPS and enhance the sulfur utilization using hierarchical nanostructure of C3N4 (t-C3N4) embedded with Fe3O4 nanospheres. t-C3N4 exhibits high surface area and strong anchoring of LPS, and the Fe3O4/t-C3N4 accelerates the anchoring of LPS and improves the electronic pathways. The combination of these materials leads to remarkable battery performance with 400% improvement in a specific capacity and a low capacity decay per cycle of 0.02% at 2 C over 1000 cycles, and stable cycling at 6.4 mg cm−2 for high-sulfur-loading cathode.
Highlights:
1 A multi-functional interlayer for Li–S batteries has been developed to efficiently regulate the shuttle effect and enhance the sulfur utilization using hierarchical Fe3O4/C3N4 nanostructures.
2 C3N4 nanotube exhibits high surface area and high affinity toward LPS, and the decorating Fe3O4 nanospheres on the surface of C3N4 nanotube accelerate the adsorption of LPS and improve the electronic pathways.
3 The combination of Fe3O4 nanospheres and C3N4 nanotube leads to remarkable battery performance with 400% improvements in specific capacity compared with Li–S battery without using interlayer and a low capacity decay per cycle of 0.02% at 2 C over 1000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai, H. Zhao, S. Zhang, Housing sulfur in polymer composite frameworks for Li–S batteries. Nano-Micro Lett. 11, 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
- C. Wang, X. Wang, Y. Wang, J. Chen, H. Zhou, Y. Huang, Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy 11, 678–686 (2015). https://doi.org/10.1016/j.nanoen.2014.11.060
- Y. Ansari, S. Zhang, B. Wen, F. Fan, Y.-M. Chiang, Stabilizing Li–S battery through multilayer encapsulation of sulfur. Adv. Energy Mater. 9(1), 1802213 (2019). https://doi.org/10.1002/aenm.201802213
- S. Kim, M. Cho, Y. Lee, Multifunctional chitosan–RGO network binder for enhancing the cycle stability of Li–S batteries. Adv. Funct. Mater. 30(10), 1907680 (2020). https://doi.org/10.1002/adfm.201907680
- Y. Fan, Z. Yang, W. Hua, D. Liu, T. Tao et al., Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium–sulfur batteries. Adv. Energy Mater. 7(13), 1602380 (2017). https://doi.org/10.1002/aenm.201602380
- S. Lin, M.K. Shafique, Z. Cai, J. Xiao, Y. Chen, Y. Wang, X. Hu, Three-dimensional-ordered porous nanostructures for lithium–sulfur battery anodes and cathodes confer superior energy storage performance. ACS Nano 13(11), 13037–13046 (2019). https://doi.org/10.1021/acsnano.9b05718
- Y.-S. Su, A. Manthiram, Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 3(1), 1166 (2012). https://doi.org/10.1038/ncomms2163
- J.-Y. Hwang, H.M. Kim, S.-K. Lee, J.-H. Lee, A. Abouimrane et al., High-energy, high-rate, lithium–sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv. Energy Mater. 6(1), 1501480 (2016). https://doi.org/10.1002/aenm.201501480
- P. Cheng, P. Guo, D. Liu, Y. Wang, K. Sun, Y. Zhao, D. He, Fe3O4/RGO modified separators to suppress the shuttle effect for advanced lithium-sulfur batteries. J. Alloys Compd. 784, 149–156 (2019). https://doi.org/10.1016/j.jallcom.2019.01.041
- N. Zheng, G. Jiang, X. Chen, J. Mao, N. Jiang, Y. Li, Battery separators functionalized with edge-rich MoS2/C hollow microspheres for the uniform deposition of Li2S in high-performance lithium–sulfur batteries. Nano-Micro Lett. 11(1), 43 (2019). https://doi.org/10.1007/s40820-019-0275-z
- X. Zuo, M. Zhen, C. Wang, Ni@n-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 12(4), 829–836 (2019). https://doi.org/10.1007/s12274-019-2298-7
- X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier et al., Tuning transition metal oxide–sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle. Adv. Energy Mater. 6(6), 1501636 (2016). https://doi.org/10.1002/aenm.201501636
- Z. Cao, J. Zhang, Y. Ding, Y. Li, M. Shi et al., In situ synthesis of flexible elastic n-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries. J. Mater. Chem. A 4(22), 8636–8644 (2016). https://doi.org/10.1039/C6TA01855F
- H. Wu, Y. Huang, S. Xu, W. Zhang, K. Wang, M. Zong, Fabricating three-dimensional hierarchical porous n-doped graphene by a tunable assembly method for interlayer assisted lithium-sulfur batteries. Chem. Eng. J. 327, 855–867 (2017). https://doi.org/10.1016/j.cej.2017.06.164
- V. Do, M.S. Deepika, M.S. Kim, K.R. Kim, W.I.Cho Lee, Carbon nitride phosphorus as an effective lithium polysulfide adsorbent for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 11(12), 11431–11441 (2019). https://doi.org/10.1021/acsami.8b22249
- Z. Meng, Y. Xie, T. Cai, Z. Sun, K. Jiang, W.-Q. Han, Graphene-like g-C3N4 nanosheets/sulfur as cathode for lithium–sulfur battery. Electrochim. Acta 210, 829–836 (2016). https://doi.org/10.1016/j.electacta.2016.06.032
- A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9(4), 47 (2017). https://doi.org/10.1007/s40820-017-0148-2
- J. He, L. Luo, Y. Chen, A. Manthiram, Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium–sulfur batteries. Adv. Mater. 29(34), 1702707 (2017). https://doi.org/10.1002/adma.201702707
- Z. Jin, Q. Zhang, S. Yuan, T. Ohno, Synthesis high specific surface area nanotube g-C3N4 with two-step condensation treatment of melamine to enhance photocatalysis properties. RSC Adv. 5(6), 4026–4029 (2015). https://doi.org/10.1039/C4RA13355B
- G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20, 33–50 (2014). https://doi.org/10.1016/j.jphotochemrev.2014.04.002
- C.G. Liu, X.T. Wu, X.F. Li, X.G. Zhang, Synthesis of graphene-like g-C3N4/Fe3O4 nanocomposites with high photocatalytic activity and applications in drug delivery. RSC Adv. 4(107), 62492–62498 (2014). https://doi.org/10.1039/C4RA10616D
- M.J. Lima, M.J. Sampaio, C.G. Silva, A.M.T. Silva, J.L. Faria, Magnetically recoverable Fe3O4/g-C3N4 composite for photocatalytic production of benzaldehyde under UV-led radiation. Catal. Today 328, 293–299 (2019). https://doi.org/10.1016/j.cattod.2018.11.018
- P. Sharma, Y. Sasson, A photoactive catalyst Ru–g-C3N4 for hydrogen transfer reaction of aldehydes and ketones. Green Chem. 19(3), 844–852 (2017). https://doi.org/10.1039/C6GC02949C
- K. Liao, P. Mao, N. Li, M. Han, J. Yi, P. He, Y. Sun, H. Zhou, Stabilization of polysulfides via lithium bonds for Li–S batteries. J. Mater. Chem. A 4(15), 5406–5409 (2016). https://doi.org/10.1039/C6TA00054A
- M. Ding, S. Huang, Y. Wang, J. Hu, M.E. Pam et al., Promoting polysulfide conversion by catalytic ternary Fe3O4/carbon/graphene composites with ordered microchannels for ultrahigh-rate lithium–sulfur batteries. J. Mater. Chem. A 7(43), 25078–25087 (2019). https://doi.org/10.1039/C9TA06489C
- S. Kim, M. Cho, C. Chanthad, Y. Lee, New redox-mediating polymer binder for enhancing performance of Li–S batteries. J. Energy Chem. 44, 154–161 (2020). https://doi.org/10.1016/j.jechem.2019.09.001
- R. Singhal, S.-H. Chung, A. Manthiram, V. Kalra, A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J. Mater. Chem. A 3(8), 4530–4538 (2015). https://doi.org/10.1039/C4TA06511E
- L. Yang, G. Li, X. Jiang, T. Zhang, H. Lin, J.Y. Lee, Balancing the chemisorption and charge transport properties of the interlayer in lithium–sulfur batteries. J. Mater. Chem. A 5(24), 12506–12512 (2017). https://doi.org/10.1039/C7TA01352C
- J. Yan, X. Liu, B. Li, Capacity fade analysis of sulfur cathodes in lithium–sulfur batteries. Adv. Sci. 3(12), 1600101 (2016). https://doi.org/10.1002/advs.201600101
- S. Kim, M. Cho, Y. Lee, High-performance Li–Se battery enabled via a one-piece cathode design. Adv. Energy Mater. 10(5), 1903477 (2020). https://doi.org/10.1002/aenm.201903477
- Y. Guo, J. Li, R. Pitcheri, J. Zhu, P. Wen, Y. Qiu, Electrospun Ti4O7/C conductive nanofibers as interlayer for lithium-sulfur batteries with ultra long cycle life and high-rate capability. Chem. Eng. J. 355, 390–398 (2019). https://doi.org/10.1016/j.cej.2018.08.143
- Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5(1), 4759 (2014). https://doi.org/10.1038/ncomms5759
- V. Sivakumar, S. Kumar, C. Ross, Y. Shao-Horn, Electrochemical lithium insertion of iron oxide spinel thin films and nanoparticles: changes in structure and magnetic properties. ECS Trans. 2(8), 1–11 (2007). https://doi.org/10.1149/1.2424283
- M.A. Pope, I.A. Aksay, Structural design of cathodes for Li–S batteries. Adv. Energy Mater. 5(16), 1500124 (2015). https://doi.org/10.1002/aenm.201500124
References
L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai, H. Zhao, S. Zhang, Housing sulfur in polymer composite frameworks for Li–S batteries. Nano-Micro Lett. 11, 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
C. Wang, X. Wang, Y. Wang, J. Chen, H. Zhou, Y. Huang, Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy 11, 678–686 (2015). https://doi.org/10.1016/j.nanoen.2014.11.060
Y. Ansari, S. Zhang, B. Wen, F. Fan, Y.-M. Chiang, Stabilizing Li–S battery through multilayer encapsulation of sulfur. Adv. Energy Mater. 9(1), 1802213 (2019). https://doi.org/10.1002/aenm.201802213
S. Kim, M. Cho, Y. Lee, Multifunctional chitosan–RGO network binder for enhancing the cycle stability of Li–S batteries. Adv. Funct. Mater. 30(10), 1907680 (2020). https://doi.org/10.1002/adfm.201907680
Y. Fan, Z. Yang, W. Hua, D. Liu, T. Tao et al., Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium–sulfur batteries. Adv. Energy Mater. 7(13), 1602380 (2017). https://doi.org/10.1002/aenm.201602380
S. Lin, M.K. Shafique, Z. Cai, J. Xiao, Y. Chen, Y. Wang, X. Hu, Three-dimensional-ordered porous nanostructures for lithium–sulfur battery anodes and cathodes confer superior energy storage performance. ACS Nano 13(11), 13037–13046 (2019). https://doi.org/10.1021/acsnano.9b05718
Y.-S. Su, A. Manthiram, Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 3(1), 1166 (2012). https://doi.org/10.1038/ncomms2163
J.-Y. Hwang, H.M. Kim, S.-K. Lee, J.-H. Lee, A. Abouimrane et al., High-energy, high-rate, lithium–sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv. Energy Mater. 6(1), 1501480 (2016). https://doi.org/10.1002/aenm.201501480
P. Cheng, P. Guo, D. Liu, Y. Wang, K. Sun, Y. Zhao, D. He, Fe3O4/RGO modified separators to suppress the shuttle effect for advanced lithium-sulfur batteries. J. Alloys Compd. 784, 149–156 (2019). https://doi.org/10.1016/j.jallcom.2019.01.041
N. Zheng, G. Jiang, X. Chen, J. Mao, N. Jiang, Y. Li, Battery separators functionalized with edge-rich MoS2/C hollow microspheres for the uniform deposition of Li2S in high-performance lithium–sulfur batteries. Nano-Micro Lett. 11(1), 43 (2019). https://doi.org/10.1007/s40820-019-0275-z
X. Zuo, M. Zhen, C. Wang, Ni@n-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 12(4), 829–836 (2019). https://doi.org/10.1007/s12274-019-2298-7
X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier et al., Tuning transition metal oxide–sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle. Adv. Energy Mater. 6(6), 1501636 (2016). https://doi.org/10.1002/aenm.201501636
Z. Cao, J. Zhang, Y. Ding, Y. Li, M. Shi et al., In situ synthesis of flexible elastic n-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries. J. Mater. Chem. A 4(22), 8636–8644 (2016). https://doi.org/10.1039/C6TA01855F
H. Wu, Y. Huang, S. Xu, W. Zhang, K. Wang, M. Zong, Fabricating three-dimensional hierarchical porous n-doped graphene by a tunable assembly method for interlayer assisted lithium-sulfur batteries. Chem. Eng. J. 327, 855–867 (2017). https://doi.org/10.1016/j.cej.2017.06.164
V. Do, M.S. Deepika, M.S. Kim, K.R. Kim, W.I.Cho Lee, Carbon nitride phosphorus as an effective lithium polysulfide adsorbent for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 11(12), 11431–11441 (2019). https://doi.org/10.1021/acsami.8b22249
Z. Meng, Y. Xie, T. Cai, Z. Sun, K. Jiang, W.-Q. Han, Graphene-like g-C3N4 nanosheets/sulfur as cathode for lithium–sulfur battery. Electrochim. Acta 210, 829–836 (2016). https://doi.org/10.1016/j.electacta.2016.06.032
A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9(4), 47 (2017). https://doi.org/10.1007/s40820-017-0148-2
J. He, L. Luo, Y. Chen, A. Manthiram, Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium–sulfur batteries. Adv. Mater. 29(34), 1702707 (2017). https://doi.org/10.1002/adma.201702707
Z. Jin, Q. Zhang, S. Yuan, T. Ohno, Synthesis high specific surface area nanotube g-C3N4 with two-step condensation treatment of melamine to enhance photocatalysis properties. RSC Adv. 5(6), 4026–4029 (2015). https://doi.org/10.1039/C4RA13355B
G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20, 33–50 (2014). https://doi.org/10.1016/j.jphotochemrev.2014.04.002
C.G. Liu, X.T. Wu, X.F. Li, X.G. Zhang, Synthesis of graphene-like g-C3N4/Fe3O4 nanocomposites with high photocatalytic activity and applications in drug delivery. RSC Adv. 4(107), 62492–62498 (2014). https://doi.org/10.1039/C4RA10616D
M.J. Lima, M.J. Sampaio, C.G. Silva, A.M.T. Silva, J.L. Faria, Magnetically recoverable Fe3O4/g-C3N4 composite for photocatalytic production of benzaldehyde under UV-led radiation. Catal. Today 328, 293–299 (2019). https://doi.org/10.1016/j.cattod.2018.11.018
P. Sharma, Y. Sasson, A photoactive catalyst Ru–g-C3N4 for hydrogen transfer reaction of aldehydes and ketones. Green Chem. 19(3), 844–852 (2017). https://doi.org/10.1039/C6GC02949C
K. Liao, P. Mao, N. Li, M. Han, J. Yi, P. He, Y. Sun, H. Zhou, Stabilization of polysulfides via lithium bonds for Li–S batteries. J. Mater. Chem. A 4(15), 5406–5409 (2016). https://doi.org/10.1039/C6TA00054A
M. Ding, S. Huang, Y. Wang, J. Hu, M.E. Pam et al., Promoting polysulfide conversion by catalytic ternary Fe3O4/carbon/graphene composites with ordered microchannels for ultrahigh-rate lithium–sulfur batteries. J. Mater. Chem. A 7(43), 25078–25087 (2019). https://doi.org/10.1039/C9TA06489C
S. Kim, M. Cho, C. Chanthad, Y. Lee, New redox-mediating polymer binder for enhancing performance of Li–S batteries. J. Energy Chem. 44, 154–161 (2020). https://doi.org/10.1016/j.jechem.2019.09.001
R. Singhal, S.-H. Chung, A. Manthiram, V. Kalra, A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J. Mater. Chem. A 3(8), 4530–4538 (2015). https://doi.org/10.1039/C4TA06511E
L. Yang, G. Li, X. Jiang, T. Zhang, H. Lin, J.Y. Lee, Balancing the chemisorption and charge transport properties of the interlayer in lithium–sulfur batteries. J. Mater. Chem. A 5(24), 12506–12512 (2017). https://doi.org/10.1039/C7TA01352C
J. Yan, X. Liu, B. Li, Capacity fade analysis of sulfur cathodes in lithium–sulfur batteries. Adv. Sci. 3(12), 1600101 (2016). https://doi.org/10.1002/advs.201600101
S. Kim, M. Cho, Y. Lee, High-performance Li–Se battery enabled via a one-piece cathode design. Adv. Energy Mater. 10(5), 1903477 (2020). https://doi.org/10.1002/aenm.201903477
Y. Guo, J. Li, R. Pitcheri, J. Zhu, P. Wen, Y. Qiu, Electrospun Ti4O7/C conductive nanofibers as interlayer for lithium-sulfur batteries with ultra long cycle life and high-rate capability. Chem. Eng. J. 355, 390–398 (2019). https://doi.org/10.1016/j.cej.2018.08.143
Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5(1), 4759 (2014). https://doi.org/10.1038/ncomms5759
V. Sivakumar, S. Kumar, C. Ross, Y. Shao-Horn, Electrochemical lithium insertion of iron oxide spinel thin films and nanoparticles: changes in structure and magnetic properties. ECS Trans. 2(8), 1–11 (2007). https://doi.org/10.1149/1.2424283
M.A. Pope, I.A. Aksay, Structural design of cathodes for Li–S batteries. Adv. Energy Mater. 5(16), 1500124 (2015). https://doi.org/10.1002/aenm.201500124