Biomimic Vein-Like Transparent Conducting Electrodes with Low Sheet Resistance and Metal Consumption
Corresponding Author: Guobin Jia
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 19
Abstract
In this contribution, inspired by the excellent resource management and material transport function of leaf veins, the electrical transport function of metallized leaf veins is mimicked from the material transport function of the vein networks. By electroless copper plating on real leaf vein networks with copper thickness of only several hundred nanometre up to several micrometre, certain leaf veins can be converted to transparent conductive electrodes with an ultralow sheet resistance 100 times lower than that of state-of-the-art indium tin oxide thin films, combined with a broadband optical transmission of above 80% in the UV–VIS–IR range. Additionally, the resource efficiency of the vein-like electrode is characterized by the small amount of material needed to build up the networks and the low copper consumption during metallization. In particular, the high current density transport capability of the electrode of > 6000 A cm−2 was demonstrated. These superior properties of the vein-like structures inspire the design of high-performance transparent conductive electrodes without using critical materials and may significantly reduce the Ag consumption down to < 10% of the current level for mass production of solar cells and will contribute greatly to the electrode for high power density concentrator solar cells, high power density Li-ion batteries, and supercapacitors.
Highlights:
1 The electrical transport of the metallized vein networks is mimicked from the material transport function of the leaf vein networks.
2 The vein-like transparent conducting electrodes show ultralow sheet resistance < 0.1 Ω □−1, broadband optical transparency > 80%, and high current density transport capability > 6000 A cm−2.
3 The metal consumption for the metallization of the leaf veins can be as low as 4 g m−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0
- M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi et al., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835–16847 (2005). https://doi.org/10.1021/ja052467l
- M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001). https://doi.org/10.1038/35104607
- K.K. Sakimoto, A.B. Wong, P. Yang, Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016). https://doi.org/10.1126/science.aad3317
- C. Liu, B.C. Colón, M. Ziesack, P.A. Silver, D.G. Nocera, Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016). https://doi.org/10.1126/science.aaf5039
- R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993). https://doi.org/10.1038/361511a0
- P. Fratzl, Nature’s Hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007). https://doi.org/10.1016/j.pmatsci.2007.06.001
- L. Sack, C. Scoffoni, Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198, 983–1000 (2013). https://doi.org/10.1111/nph.12253
- A. Roth-Nebelsick, D. Uhl, V. Mosbrugger, H. Kerp, Evolution and function of leaf venation architecture: a review. Ann. Bot. 87, 553–566 (2001). https://doi.org/10.1006/anbo.2001.1391
- L.V. Thekkekara, M. Gu, Bioinspired fractal electrodes for solar energy storages. Sci. Rep. 7, 45585 (2017). https://doi.org/10.1038/srep45585
- J.F. Silvain, J. Chazelas, S. Trombert, Copper electroless deposition on NiTi shape memory alloy: an XPS study of Sn–Pd–Cu growth. Appl. Surf. Sci. 153, 211–217 (2000). https://doi.org/10.1016/S0169-4332(99)00280-9
- F.C. Krebs, Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide. Sol. Energy Mater. Sol. Cells 93, 1636–1641 (2009). https://doi.org/10.1016/j.solmat.2009.04.020
- I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123–R159 (1986). https://doi.org/10.1063/1.337534
- D. Bellet, M. Lagrange, T. Sannicolo, S. Aghazadehchors, V.H. Nguyen et al., Transparent electrodes based on silver nanowire networks: from physical considerations towards device integration. Materials 10, 570 (2017). https://doi.org/10.3390/ma10060570
- S. Inoue, N. Tamari, M. Taniguchi, 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl. Phys. Lett. 110, 141106 (2017). https://doi.org/10.1063/1.4978855
- Y. Muramoto, M. Kimura, S. Nouda, Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semicond. Sci. Technol. 29, 084004 (2014). https://doi.org/10.1088/0268-1242/29/8/084004
- Y. Zhong, P.B. Dongmo, L. Gong, S. Law, B. Chase, D. Wasserman, J.M.O. Zide, Degenerately doped InGaBiAs: Si as a highly conductive and transparent contact material in the infrared range. Opt. Mater. Express 3, 1197–1204 (2013). https://doi.org/10.1364/OME.3.001197
- F. Guo, A. Karl, Q.-F. Xue, K.C. Tam, K. Forberich, C.J. Brabec, The fabrication of color-tunable organic light-emitting diode displays via solution processing. Light Sci. Appl. 6, e17094 (2017). https://doi.org/10.1038/lsa.2017.94
- A. Antonini, M. Stefancich, D. Vincenzi, C. Malagù, F. Bizzi, A. Ronzoni, G. Martinelli, Contact grid optimization methodology for front contact concentration solar cells. Sol. Energy Mater. Sol. Cells 80, 155–166 (2003). https://doi.org/10.1016/j.solmat.2003.07.001
- J. Lee, S. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008). https://doi.org/10.1021/nl073296g
- T. Tukuno, M. Nogi, M. Karakawa, J. Jiu, T.T. Nge, Y. Aso, K. Suganuma, Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4, 1215–1222 (2011). https://doi.org/10.1007/s12274-011-0172-3
- J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee, S.H. Ko, Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 20, 6408–6414 (2012). https://doi.org/10.1039/C2NR31254A
- E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012). https://doi.org/10.1038/nmat3238
- S. Zhu, Y. Gao, B. Hu, J. Li, Z. Fan, J. Zhou, Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 24, 335202 (2013). https://doi.org/10.1088/09574484/24/33/335202
- T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J.-P. Simonato, D. Bellet, Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12, 6052–6075 (2016). https://doi.org/10.1002/smll.201602581
- B. Han, Q. Peng, R. Li, Q. Rong, Y. Ding et al., Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics. Nat. Commun. 7, 12825 (2016). https://doi.org/10.1038/ncomms12825
- Y. Jia, C. Chen, D. Jia, S. Li, C. Ye, Silver nanowire transparent conductive films with high uniformity fabricated via a dynamic heating method. ACS Appl. Mater. Interfaces 8, 9865–9871 (2016). https://doi.org/10.1021/acsami.6b00500
- M. Lagrange, D.P. Langley, G. Giusti, C. Jiménez, Y. Bréchet, D. Bellet, Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing. Nanoscale 7, 17410–17423 (2015). https://doi.org/10.1039/C5NR04084A
- T. Tokuno, M. Nogi, J. Jiu, T. Sugahara, K. Suganuma, Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template. Langmuir 28, 9298–9302 (2012). https://doi.org/10.1021/la300961m
- H. Du, T. Wan, B. Qu, F. Cao, Q. Lin, N. Chen, X. Lin, D. Chu, Engineering silver nanowire networks: from transparent electrodes to resistive switching devices. ACS Appl. Mater. Interfaces 9, 20762–20770 (2017). https://doi.org/10.1021/acsami.7b04839
- M. Layani, M. Gruchko, O. Milo, I. Balberg, D. Azulay, S. Magdassi, Transparent conductive coatings by printing coffee ring arrays obtained at room temperature. ACS Nano 3, 3537–3542 (2009). https://doi.org/10.1021/nn901239z
- X. Wang, R. Wang, H. Zhai, L. Shi, J. Sun, ‘Leaf vein’ inspired structural design of Cu nanowire electrodes for the optimization of organic solar cells. J. Mater. Chem. C 6, 5738–5745 (2018). https://doi.org/10.1039/C8TC00114F
- D.S. Ghosh, T.L. Chen, V. Pruneri, High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 96, 041109 (2010). https://doi.org/10.1063/1.3299259
- K.D.M. Rao, C. Hunger, R. Gupta, G.U. Kultarni, M. Thelakkat, A cracked polymer templated metal network as a transparent conducting electrode for ITO-free organic solar cells. Phys. Chem. Chem. Phys. 16, 15107–15110 (2014). https://doi.org/10.1039/C4CP02250E
- B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong et al., Uniform self-forming metallic network as a high-performance transparent conductive electrode. Adv. Mater. 26, 873–877 (2014). https://doi.org/10.1002/adma.201302950
- C.F. Guo, T. Sun, Q. Liu, Z. Suo, Z. Ren, Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 5, 3121 (2014). https://doi.org/10.1038/ncomms4121
- S. Kiruthika, R. Gupta, A. Anand, A. Kumar, G.U. Kulkarni, Fabrication of oxidation-resistant metal wire network-based transparent electrodes by a spray-roll coating process. ACS Appl. Mater. Interfaces. 7, 27215–27222 (2015). https://doi.org/10.1021/acsami.5b08171
- H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang et al., A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 8, 421–425 (2013). https://doi.org/10.1038/nnano.2013.84
- P.-C. Hsu, S. Wang, H. Wu, V.K. Narasimhan, D. Kong, H.R. Lee, Y. Cui, Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nat. Commun. 4, 2522 (2013). https://doi.org/10.1038/ncomms3522
- B. Han, Y. Huang, R. Li, Q. Peng, J. Luo et al., Bio-inspired networks for optoelectronic applications. Nat. Commun. 5, 5674 (2014). https://doi.org/10.1038/ncomms6674
- Y. Yu, Y. Zhang, K. Li, C. Yan, Z. Zheng, Bio-inspired chemical fabrication of stretchable transparent electrodes. Small 28, 3444–3449 (2015). https://doi.org/10.1002/smll.201500529
- International Technology Roadmap for Photovoltaics (ITRPV), in Results 2017 including maturity report 2018, Ninth Edition. https://pv.vdma.org/documents/105945/26776337/ITRPV%20Ninth%20Edition%202018%20including%20maturity%20report%2020180904_1536055215523.pdf/a907157c-a241-eec0-310d-fd76f1685b2a. Accessed Aug. 2019
- S.D. Brotherton, J.R. Ayres, A. Gill, H.W. van Kesteren, F.J.A.M. Greidanus, Deep levels of copper in silicon. J. Appl. Phys. 62, 1826–1832 (1987). https://doi.org/10.1063/1.339564
- C. Gattinoni, A. Michaelides, Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides. Surf. Sci. Rep. 70, 424–427 (2015). https://doi.org/10.1016/j.surfrep.2015.07.001
- P. Keil, R. Frahm, D. Lützenkirchen-Hecht, Native oxidation of sputter deposited polycrystalline copper thin films during short and long exposure times: comparative investigation by specular and non-specular grazing incidence X-ray absorption spectroscopy. Corros. Sci. 52, 1305–1316 (2010). https://doi.org/10.1016/j.corsci.2009.12.012
- Y. Yang, S. Jeong, L. Hu, H. Wu, S.W. Lee, Y. Cui, Transparent lithium-ion batteries. PNAS 108, 13013–13018 (2011). https://doi.org/10.1073/pnas.1102873108
- J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010). https://doi.org/10.1021/nl9034237
- Velcro® Brand Self-Engaging Hook and Loop https://www.velcro.com/business/products/self-engaging-hook-and-loop Accessed Oct. 2019
References
B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0
M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi et al., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835–16847 (2005). https://doi.org/10.1021/ja052467l
M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001). https://doi.org/10.1038/35104607
K.K. Sakimoto, A.B. Wong, P. Yang, Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016). https://doi.org/10.1126/science.aad3317
C. Liu, B.C. Colón, M. Ziesack, P.A. Silver, D.G. Nocera, Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016). https://doi.org/10.1126/science.aaf5039
R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993). https://doi.org/10.1038/361511a0
P. Fratzl, Nature’s Hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007). https://doi.org/10.1016/j.pmatsci.2007.06.001
L. Sack, C. Scoffoni, Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198, 983–1000 (2013). https://doi.org/10.1111/nph.12253
A. Roth-Nebelsick, D. Uhl, V. Mosbrugger, H. Kerp, Evolution and function of leaf venation architecture: a review. Ann. Bot. 87, 553–566 (2001). https://doi.org/10.1006/anbo.2001.1391
L.V. Thekkekara, M. Gu, Bioinspired fractal electrodes for solar energy storages. Sci. Rep. 7, 45585 (2017). https://doi.org/10.1038/srep45585
J.F. Silvain, J. Chazelas, S. Trombert, Copper electroless deposition on NiTi shape memory alloy: an XPS study of Sn–Pd–Cu growth. Appl. Surf. Sci. 153, 211–217 (2000). https://doi.org/10.1016/S0169-4332(99)00280-9
F.C. Krebs, Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide. Sol. Energy Mater. Sol. Cells 93, 1636–1641 (2009). https://doi.org/10.1016/j.solmat.2009.04.020
I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123–R159 (1986). https://doi.org/10.1063/1.337534
D. Bellet, M. Lagrange, T. Sannicolo, S. Aghazadehchors, V.H. Nguyen et al., Transparent electrodes based on silver nanowire networks: from physical considerations towards device integration. Materials 10, 570 (2017). https://doi.org/10.3390/ma10060570
S. Inoue, N. Tamari, M. Taniguchi, 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl. Phys. Lett. 110, 141106 (2017). https://doi.org/10.1063/1.4978855
Y. Muramoto, M. Kimura, S. Nouda, Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semicond. Sci. Technol. 29, 084004 (2014). https://doi.org/10.1088/0268-1242/29/8/084004
Y. Zhong, P.B. Dongmo, L. Gong, S. Law, B. Chase, D. Wasserman, J.M.O. Zide, Degenerately doped InGaBiAs: Si as a highly conductive and transparent contact material in the infrared range. Opt. Mater. Express 3, 1197–1204 (2013). https://doi.org/10.1364/OME.3.001197
F. Guo, A. Karl, Q.-F. Xue, K.C. Tam, K. Forberich, C.J. Brabec, The fabrication of color-tunable organic light-emitting diode displays via solution processing. Light Sci. Appl. 6, e17094 (2017). https://doi.org/10.1038/lsa.2017.94
A. Antonini, M. Stefancich, D. Vincenzi, C. Malagù, F. Bizzi, A. Ronzoni, G. Martinelli, Contact grid optimization methodology for front contact concentration solar cells. Sol. Energy Mater. Sol. Cells 80, 155–166 (2003). https://doi.org/10.1016/j.solmat.2003.07.001
J. Lee, S. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008). https://doi.org/10.1021/nl073296g
T. Tukuno, M. Nogi, M. Karakawa, J. Jiu, T.T. Nge, Y. Aso, K. Suganuma, Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4, 1215–1222 (2011). https://doi.org/10.1007/s12274-011-0172-3
J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee, S.H. Ko, Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 20, 6408–6414 (2012). https://doi.org/10.1039/C2NR31254A
E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012). https://doi.org/10.1038/nmat3238
S. Zhu, Y. Gao, B. Hu, J. Li, Z. Fan, J. Zhou, Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 24, 335202 (2013). https://doi.org/10.1088/09574484/24/33/335202
T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J.-P. Simonato, D. Bellet, Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12, 6052–6075 (2016). https://doi.org/10.1002/smll.201602581
B. Han, Q. Peng, R. Li, Q. Rong, Y. Ding et al., Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics. Nat. Commun. 7, 12825 (2016). https://doi.org/10.1038/ncomms12825
Y. Jia, C. Chen, D. Jia, S. Li, C. Ye, Silver nanowire transparent conductive films with high uniformity fabricated via a dynamic heating method. ACS Appl. Mater. Interfaces 8, 9865–9871 (2016). https://doi.org/10.1021/acsami.6b00500
M. Lagrange, D.P. Langley, G. Giusti, C. Jiménez, Y. Bréchet, D. Bellet, Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing. Nanoscale 7, 17410–17423 (2015). https://doi.org/10.1039/C5NR04084A
T. Tokuno, M. Nogi, J. Jiu, T. Sugahara, K. Suganuma, Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template. Langmuir 28, 9298–9302 (2012). https://doi.org/10.1021/la300961m
H. Du, T. Wan, B. Qu, F. Cao, Q. Lin, N. Chen, X. Lin, D. Chu, Engineering silver nanowire networks: from transparent electrodes to resistive switching devices. ACS Appl. Mater. Interfaces 9, 20762–20770 (2017). https://doi.org/10.1021/acsami.7b04839
M. Layani, M. Gruchko, O. Milo, I. Balberg, D. Azulay, S. Magdassi, Transparent conductive coatings by printing coffee ring arrays obtained at room temperature. ACS Nano 3, 3537–3542 (2009). https://doi.org/10.1021/nn901239z
X. Wang, R. Wang, H. Zhai, L. Shi, J. Sun, ‘Leaf vein’ inspired structural design of Cu nanowire electrodes for the optimization of organic solar cells. J. Mater. Chem. C 6, 5738–5745 (2018). https://doi.org/10.1039/C8TC00114F
D.S. Ghosh, T.L. Chen, V. Pruneri, High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 96, 041109 (2010). https://doi.org/10.1063/1.3299259
K.D.M. Rao, C. Hunger, R. Gupta, G.U. Kultarni, M. Thelakkat, A cracked polymer templated metal network as a transparent conducting electrode for ITO-free organic solar cells. Phys. Chem. Chem. Phys. 16, 15107–15110 (2014). https://doi.org/10.1039/C4CP02250E
B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong et al., Uniform self-forming metallic network as a high-performance transparent conductive electrode. Adv. Mater. 26, 873–877 (2014). https://doi.org/10.1002/adma.201302950
C.F. Guo, T. Sun, Q. Liu, Z. Suo, Z. Ren, Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 5, 3121 (2014). https://doi.org/10.1038/ncomms4121
S. Kiruthika, R. Gupta, A. Anand, A. Kumar, G.U. Kulkarni, Fabrication of oxidation-resistant metal wire network-based transparent electrodes by a spray-roll coating process. ACS Appl. Mater. Interfaces. 7, 27215–27222 (2015). https://doi.org/10.1021/acsami.5b08171
H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang et al., A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 8, 421–425 (2013). https://doi.org/10.1038/nnano.2013.84
P.-C. Hsu, S. Wang, H. Wu, V.K. Narasimhan, D. Kong, H.R. Lee, Y. Cui, Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nat. Commun. 4, 2522 (2013). https://doi.org/10.1038/ncomms3522
B. Han, Y. Huang, R. Li, Q. Peng, J. Luo et al., Bio-inspired networks for optoelectronic applications. Nat. Commun. 5, 5674 (2014). https://doi.org/10.1038/ncomms6674
Y. Yu, Y. Zhang, K. Li, C. Yan, Z. Zheng, Bio-inspired chemical fabrication of stretchable transparent electrodes. Small 28, 3444–3449 (2015). https://doi.org/10.1002/smll.201500529
International Technology Roadmap for Photovoltaics (ITRPV), in Results 2017 including maturity report 2018, Ninth Edition. https://pv.vdma.org/documents/105945/26776337/ITRPV%20Ninth%20Edition%202018%20including%20maturity%20report%2020180904_1536055215523.pdf/a907157c-a241-eec0-310d-fd76f1685b2a. Accessed Aug. 2019
S.D. Brotherton, J.R. Ayres, A. Gill, H.W. van Kesteren, F.J.A.M. Greidanus, Deep levels of copper in silicon. J. Appl. Phys. 62, 1826–1832 (1987). https://doi.org/10.1063/1.339564
C. Gattinoni, A. Michaelides, Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides. Surf. Sci. Rep. 70, 424–427 (2015). https://doi.org/10.1016/j.surfrep.2015.07.001
P. Keil, R. Frahm, D. Lützenkirchen-Hecht, Native oxidation of sputter deposited polycrystalline copper thin films during short and long exposure times: comparative investigation by specular and non-specular grazing incidence X-ray absorption spectroscopy. Corros. Sci. 52, 1305–1316 (2010). https://doi.org/10.1016/j.corsci.2009.12.012
Y. Yang, S. Jeong, L. Hu, H. Wu, S.W. Lee, Y. Cui, Transparent lithium-ion batteries. PNAS 108, 13013–13018 (2011). https://doi.org/10.1073/pnas.1102873108
J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010). https://doi.org/10.1021/nl9034237
Velcro® Brand Self-Engaging Hook and Loop https://www.velcro.com/business/products/self-engaging-hook-and-loop Accessed Oct. 2019