Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine
Corresponding Author: Wolfgang H. Goldmann
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 22
Abstract
Titanium dioxide (TiO2) nanostructures exhibit a broad range of theranostic properties that make them attractive for biomedical applications. TiO2 nanostructures promise to improve current theranostic strategies by leveraging the enhanced quantum confinement, thermal conversion, specific surface area, and surface activity. This review highlights certain important aspects of fabrication strategies, which are employed to generate multifunctional TiO2 nanostructures, while outlining post-fabrication techniques with an emphasis on their suitability for nanomedicine. The biodistribution, toxicity, biocompatibility, cellular adhesion, and endocytosis of these nanostructures, when exposed to biological microenvironments, are examined in regard to their geometry, size, and surface chemistry. The final section focuses on recent biomedical applications of TiO2 nanostructures, specifically evaluating therapeutic delivery, photodynamic and sonodynamic therapy, bioimaging, biosensing, tissue regeneration, as well as chronic wound healing.
Highlights:
1 Multifunctional TiO2 nanostructures hold promise for advancing a wide range of biomedical applications due to a feasible integration of distinct theranostic features.
2 Fabrication and post-fabrication strategies implemented to generate multifunctional TiO2 nanostructures for a broad range of biomedical applications are briefly outlined. The opportunities and challenges of TiO2 nanomaterials are highlighted in order to open the possibility of clinical translation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Nyamukamba, O. Okoh, H. Mungondori, R. Taziwa, S. Zinya, in Synthetic Methods for Titanium Dioxide Nanoparticles: A Review (BoD—Books on Demand; 2018), pp. 151. https://doi.org/10.5772/intechopen.75425
- X. Wang, Z. Li, J. Shi, Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346–9384 (2014). https://doi.org/10.1021/cr400633s
- R. Verma, J. Gangwar, A.K. Srivastava, Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv. 7, 44199–44224 (2017). https://doi.org/10.1039/c7ra06925a
- Q. Li, X. Wang, X. Lu, H. Tian, H. Jiang et al., The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers. Biomaterials 30, 4708–4715 (2009). https://doi.org/10.1016/j.biomaterials.2009.05.015
- P. Xu, R. Wang, J. Ouyang, B. Chen, A new strategy for TiO2 whiskers mediated multi-mode cancer treatment. Nanoscale Res. Lett. 10, 94 (2015). https://doi.org/10.1186/s11671-015-0796-4
- S.-S. Song, B.-Y. Xia, J. Chen, J. Yang, X. Shen et al., Two dimensional TiO2 nanosheets: in vivo toxicity investigation. RSC Adv. 4, 42598–42603 (2014). https://doi.org/10.1039/C4RA05953K
- Y. He, J. Wan, Y. Yang, P. Yuan, C. Yang, Z. Wang, L. Zhang, Multifunctional polypyrrole-coated mesoporous TiO2 nanocomposites for photothermal, sonodynamic, and chemotherapeutic treatments and dual-modal ultrasound/photoacoustic imaging of tumors. Adv. Healthcare Mater. 8, 1801254 (2019). https://doi.org/10.1002/adhm.201801254
- T. Wang, H. Jiang, L. Wan, Q. Zhao, T. Jiang, B. Wang, S. Wang, Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 13, 354–363 (2015). https://doi.org/10.1016/j.actbio.2014.11.010
- S.P. Adhikari, H.R. Pant, H.M. Mousa, J. Lee, H.J. Kim, C.H. Park, C.S. Kim, Synthesis of high porous electrospun hollow TiO2 nanofibers for bone tissue engineering application. Ind. Eng. Chem. Res. 35, 75–82 (2016). https://doi.org/10.1016/j.jiec.2015.12.004
- M.H. Kafshgari, A. Mazare, M. Distaso, W.H. Goldmann, W. Peukert, B. Fabry, P. Schmuki, Intracellular drug delivery with anodic titanium dioxide nanotubes and nanocylinders. ACS Appl. Mater. Interfaces 11, 14980–14985 (2019). https://doi.org/10.1021/acsami.9b01211
- N.P. Truong, M.R. Whittaker, C.W. Mak, T.P. Davis, The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv. 12, 129–142 (2015). https://doi.org/10.1517/17425247.2014.950564
- S. Wang, W. Ren, J. Wang, Z. Jiang, M. Saeed, L. Zhang, A. Li, A. Wu, Black TiO2-based nanoprobes for T1-weighted MRI-guided photothermal therapy in CD133 high expressed pancreatic cancer stem-like cells. Biomater. Sci. 6, 2209–2218 (2018). https://doi.org/10.1039/C8BM00454D
- M. Saeed, M.Z. Iqbal, W. Ren, Y. Xia, W.S. Khan, A. Wu, Tunable fabrication of new theranostic Fe3O4-black TiO2 nanocomposites: dual wavelength stimulated synergistic imaging-guided phototherapy in cancer. J. Mater. Chem. B 7, 210–223 (2019). https://doi.org/10.1039/C8TB02704H
- H. Chanseok, K. Jungwoo, L. Jungkeun, Z. Hongmei, H. Soonsun, L. Donheang, L. Chongmu, Photothermal therapy using TiO2 nanotubes in combination with near-infrared laser. J. Cancer Ther. 1, 52–58 (2010). https://doi.org/10.4236/jct.2010.12009
- H.K. Patra, R. Imani, J.R. Jangamreddy, M. Pazoki, A. Iglič, A.P.F. Turner, A. Tiwari, On/off-switchable anti-neoplastic nanoarchitecture. Sci. Rep. 5, 14571 (2015). https://doi.org/10.1038/srep14571
- C.M. Sayes, R. Wahi, P.A. Kurian, Y. Liu, J.L. West, K.D. Ausman, D.B. Warheit, V.L. Colvin, Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 92, 174–185 (2006). https://doi.org/10.1093/toxsci/kfj197
- Y.Y. Song, F. Schmidt-Stein, S. Bauer, P. Schmuki, Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J. Am. Chem. Soc. 131, 4230–4232 (2009). https://doi.org/10.1021/ja810130h
- F. Schmidt-Stein, R. Hahn, J.F. Gnichwitz, Y.Y. Song, N.K. Shrestha, A. Hirsch, P. Schmuki, X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: degradation of organics and drug release. Electrochem. Commun. 11, 2077–2080 (2009). https://doi.org/10.1016/j.elecom.2009.08.036
- M. Hasanzadeh Kafshgari, N.H. Voelcker, F.J. Harding, in Porous Silicon Nanoparticles for Applications in Nano-medicine (Academic Press, Oxford, 2019), pp. 211–226. https://doi.org/10.1016/B978-0-12-803581-8.10463-1
- E. Galata, E.A. Georgakopoulou, M.E. Kassalia, N. Papadopoulou-Fermeli, E.A. Pavlatou, Development of smart composites based on doped-TiO2 nanoparticles with visible light anticancer properties. Materials 12, 2589 (2019). https://doi.org/10.3390/ma12162589
- M. Hasanzadeh Kafshgari, D. Kah, A. Mazare, N.T. Nguyen, M. Distaso et al., Anodic titanium dioxide nanotubes for magnetically guided therapeutic delivery. Sci. Rep. 9, 13439 (2019). https://doi.org/10.1038/s41598-019-49513-2
- H. Zheng, H. Yi, W. Lin, H. Dai, Z. Hong, Y. Lin, X. Li, A dual-amplified electrochemiluminescence immunosensor constructed on dual-roles of rutile TiO2 mesocrystals for ultrasensitive zearalenone detection. Electrochim. Acta 260, 847–854 (2018). https://doi.org/10.1016/j.electacta.2017.12.054
- C. Zhao, F.U. Rehman, Y. Yang, X. Li, D. Zhang, H. Jiang, M. Selke, X. Wang, C. Liu, Bio-imaging and photodynamic therapy with tetra sulphonatophenyl porphyrin (TSPP)-TiO2 nanowhiskers: new approaches in rheumatoid arthritis theranostics. Sci. Rep. 5, 11518 (2015). https://doi.org/10.1038/srep11518
- P. Yuan, D. Song, Mri tracing non-invasive TiO2-based nanoparticles activated by ultrasound for multi-mechanism therapy of prostatic cancer. Nanotechnology 29, 125101 (2018). https://doi.org/10.1088/1361-6528/aaa92a
- H. Akasaka, N. Mukumoto, N.M. Akayama, T. Wang, R. Yada et al., Investigation of the potential of using TiO2 nanoparticles as a contrast agent in computed tomography and magnetic resonance imaging. Appl. Nanosci. (2019). https://doi.org/10.1007/s13204-019-01098-y
- F. Zanghelini, I.A.M. Frías, M.J.B.M. Rêgo, M.G.R. Pitta, M. Sacilloti, M.D.L. Oliveira, C.A.S. Andrade, Biosensing breast cancer cells based on a three-dimensional TiO2 nanomembrane transducer. Biosens. Bioelectron. 92, 313–320 (2017). https://doi.org/10.1016/j.bios.2016.11.006
- M.A. Ali, K. Mondal, Y. Jiao, S. Oren, Z. Xu, A. Sharma, L. Dong, Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl. Mater. Interfaces 8, 20570–20582 (2016). https://doi.org/10.1021/acsami.6b05648
- H. Shen, J. Wang, H. Liu, Z. Li, F. Jiang, F.B. Wang, Q. Yuan, Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition. ACS Appl. Mater. Interfaces 8, 19371–19378 (2016). https://doi.org/10.1021/acsami.6b06671
- C. Zhang, J.Q. Xu, Y.T. Li, L. Huang, D.W. Pang et al., Photocatalysis-induced renewable field-effect transistor for protein detection. Anal. Chem. 88, 4048–4054 (2016). https://doi.org/10.1021/acs.analchem.6b00374
- K.S. Mun, S.D. Alvarez, W.Y. Choi, M.J. Sailor, A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano 4, 2070–2076 (2010). https://doi.org/10.1021/nn901312f
- Y.C. Nah, I. Paramasivam, P. Schmuki, Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11, 2698–2713 (2010). https://doi.org/10.1002/cphc.201000276
- A. Zaleska, Doped-TiO2: a review. Recent Pat. Eng. 2, 157–164 (2008). https://doi.org/10.2174/187221208786306289
- L. Otero-González, C. García-Saucedo, J.A. Field, R. Sierra-Álvarez, Toxicity of TiO2, ZrO2, Fe0, Fe2O3, and Mn2O3 nanoparticles to the yeast, saccharomyces cerevisiae. Chemosphere 93, 1201–1206 (2013). https://doi.org/10.1016/j.chemosphere.2013.06.075
- H.L. Karlsson, P. Cronholm, J. Gustafsson, L. Möller, Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 21, 1726–1732 (2008). https://doi.org/10.1021/tx800064j
- S. Bauer, J. Park, J. Faltenbacher, S. Berger, K. von der Mark, P. Schmuki, Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays. Integr. Biol. 1, 525–532 (2009). https://doi.org/10.1039/b908196h
- J. Park, S. Bauer, A. Pittrof, M.S. Killian, P. Schmuki, K. von der Mark, Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. Small 8, 98–107 (2012). https://doi.org/10.1002/smll.201100790
- S. Nájera, M. Michel, J. Kyung-Hwan, J.N.-S. Kim, Characterization of 3D printed PLA/PCL/TiO2 composites for cancellous bone. J. Mater. Sci. Eng. 7, 417 (2018). https://doi.org/10.4172/2169-0022.1000417
- X. Wang, R.A. Gittens, R. Song, R. Tannenbaum, R. Olivares-Navarrete, Z. Schwartz, H. Chen, B.D. Boyan, Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential. Acta Biomater. 8, 878–885 (2012). https://doi.org/10.1016/j.actbio.2011.10.023
- H.N. Pantaroto, A.P. Ricomini-Filho, M.M. Bertolini, J.H. Dias da Silva, N.F. Azevedo Neto, C. Sukotjo, E.C. Rangel, V.A.R. Barão, Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm. Dent. Mater. 34, e182–e195 (2018). https://doi.org/10.1016/j.dental.2018.03.011
- W.C. Jao, M.C. Yang, C.H. Lin, C.C. Hsu, Fabrication and characterization of electrospun silk fibroin/TiO2 nanofibrous mats for wound dressings. Polym. Adv. Technol. 23, 1066–1076 (2012). https://doi.org/10.1002/pat.2014
- K. Hirakawa, in Fundamentals of Medicinal Application of Titanium Dioxide Nanoparticles (InTech, 2015), pp. 13–32. http://dx.doi.org/10.5772/61302
- S. Çeşmeli, C. Biray Avci, Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J. Drug Target 27, 762–766 (2019). https://doi.org/10.1080/1061186X.2018.1527338
- Z. Jing, D. Guo, W. Wang, S. Zhang, W. Qi, B. Ling, Comparative study of titania nanoparticles and nanotubes as antibacterial agents. Solid State Sci. 13, 1797–1803 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.07.010
- M.H. Kafshgari, N.H. Voelcker, F.J. Harding, Applications of zero-valent silicon nanostructures in biomedicine. Nanomedicine (Lond) 10, 2553–2571 (2015). https://doi.org/10.2217/nnm.15.91
- S. Bagheri, Z.A.M. Hir, A.T. Yousefi, S.B.A. Hamid, Progress on mesoporous titanium dioxide: synthesis, modification and applications. Microporous Mesoporous Mater. 218, 206–222 (2015). https://doi.org/10.1016/j.micromeso.2015.05.028
- A.R. Gharakhlou, M.N. Sarvi, Synthesis of mesoporous nanoparticles of TiO2 from ilmenite. Mater. Res. Express 4, 025027 (2017). https://doi.org/10.1088/2053-1591/aa5bab
- W. Guo, F. Wang, D. Ding, C. Song, C. Guo, S. Liu, TiO2–x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy. Chem. Mater. 29, 9262–9274 (2017). https://doi.org/10.1021/acs.chemmater.7b03241
- H. Peng, J. Hu, C. Hu, T. Wu, X. Tian, Microwave absorbing Fe3O4@mTiO2 nanoparticles as an intelligent drug carrier for microwave-triggered synergistic cancer therapy. J. Nanosci. Nanotechnol. 17, 5139–5146 (2017). https://doi.org/10.1166/jnn.2017.13809
- X.W. Lou, L.A. Archer, A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles. Adv. Mater. 20, 1853–1858 (2008). https://doi.org/10.1002/adma.200702379
- W. Song, L. Zhao, K. Fang, B. Chang, Y. Zhang, Biofunctionalization of titanium implant with chitosan/sirna complex through loading-controllable and time-saving cathodic electrodeposition. J. Mater. Chem. B 3, 8567–8576 (2015). https://doi.org/10.1039/C5TB01062D
- D. Liu, Y.G. Bi, Controllable fabrication of hollow TiO2 spheres as sustained release drug carrier. Adv. Powder Technol. 30, 2169–2177 (2019). https://doi.org/10.1016/j.apt.2019.06.032
- X. Wang, W. Wang, L. Yu, Y. Tang, J. Cao, Y. Chen, Site-specific sonocatalytic tumor suppression by chemically engineered single-crystalline mesoporous titanium dioxide sonosensitizers. J. Mater. Chem. B 5, 4579–4586 (2017). https://doi.org/10.1039/C7TB00938K
- W. Ding, C. Song, T. Li, H. Ma, Y. Yao, C. Yao, TiO2 nanowires as an effective sensing platform for rapid fluorescence detection of single-stranded DNA and double-stranded DNA. Talanta 199, 442–448 (2019). https://doi.org/10.1016/j.talanta.2019.02.002
- Z.X. Hao, W. Wang, Y. Liang, J. Fu, M. Zhu, H. Shi, S. Lei, C. Tao, Visible-light-driven charge transfer to significantly improve surface-enhanced raman scattering (SERS) activity of self-cleaning TiO2/Au nanowire arrays as highly sensitive and recyclable SERS sensor. Sens. Actuators B Chem. 279, 313–319 (2019). https://doi.org/10.1016/j.snb.2018.10.010
- W.Q. Wu, B.X. Lei, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, D.B. Kuang, Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci. Rep. 3, 1352 (2013). https://doi.org/10.1038/srep01352
- T. Zhang, Z.U. Rahman, N. Wei, Y. Liu, J. Liang, D. Wang, In situ growth of single-crystal TiO2 nanorod arrays on ti substrate: controllable synthesis and photoelectro-chemical water splitting. Nano Res. 10, 1021–1032 (2017). https://doi.org/10.1007/s12274-016-1361-x
- J. Kalb, A. Folger, E. Zimmermann, M. Gerigk, B. Trepka, C. Scheu, S. Polarz, L. Schmidt-Mende, Controlling the density of hydrothermally grown rutile TiO2 nanorods on anatase TiO2 films. Surf. Interfaces 15, 141–147 (2019). https://doi.org/10.1016/j.surfin.2019.02.010
- Y. Wang, Y. Li, Z. Guo, W. Liu, R. Zhang, L. Chu, X.A. Li, Ethanol addition for morphology regulation of TiO2 nanorod arrays towards efficient hole-conductor-free perovskite solar cells. Funct. Mater. Lett. 11, 1850080 (2018). https://doi.org/10.1142/S1793604718500807
- N. Wongkaew, Nanofiber-integrated miniaturized systems: an intelligent platform for cancer diagnosis. Anal. Bioanal. Chem. 411, 4251–4264 (2019). https://doi.org/10.1007/s00216-019-01589-5
- A. Haider, S. Haider, I.K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11, 1165–1188 (2015). https://doi.org/10.1016/j.arabjc.2015.11.015
- S. Mirmohammad Sadeghi, M. Vaezi, A. Kazemzadeh, R. Jamjah, Morphology enhancement of TiO2/PVP composite nanofibers based on solution viscosity and processing parameters of electrospinning method. J. Appl. Polym. 135, 46337 (2018). https://doi.org/10.1002/app.46337
- P. Aghasiloo, M. Yousefzadeh, M. Latifi, R. Jose, Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic properties. J. Alloys Compd. 790, 257–265 (2019). https://doi.org/10.1016/j.jallcom.2019.03.175
- G.L. Li, G.H. Wang, J.M. Hong, Synthesis and characterization of rutile TiO2 nanowhiskers. J. Mater. Res. Technol. 14, 3346–3354 (1999). https://doi.org/10.1557/JMR.1999.0453
- Y.L. Pang, S. Lim, H.C. Ong, W.T. Chong, A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts. Appl. Catal. A 481, 127–142 (2014). https://doi.org/10.1016/j.apcata.2014.05.007
- S. Kumar, P. Bhushan, S. Bhattacharya, in Fabrication of Nanostructures with Bottom-up Approach and Their Utility in Diagnostics, Therapeutics, and Others (Springer, 2018), pp. 167–198. https://doi.org/10.1007/978-981-10-7751-7_8
- L. Zhang, X. Liao, A. Fok, C. Ning, P. Ng, Y. Wang, Effect of crystalline phase changes in titania (TiO2) nanotube coatings on platelet adhesion and activation. Mater. Sci. Eng. C 82, 91–101 (2018). https://doi.org/10.1016/j.msec.2017.08.024
- N. Liu, X. Chen, J. Zhang, J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal. Today 225, 34–51 (2014). https://doi.org/10.1016/j.cattod.2013.10.090
- M. Zulfiqar, S. Chowdhury, A.A. Omar, Hydrothermal synthesis of multiwalled TiO2 nanotubes and its photocatalytic activities for orange ii removal. Sep. Sci. Technol. 53, 1412–1422 (2018). https://doi.org/10.1080/01496395.2018.1444050
- M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.Q. Zhang, S. Al-Deyab, Y. Lai, A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 4, 6772–6801 (2016). https://doi.org/10.1039/C5TA09323F
- A. Kazufumi, T.S. Suzuki, E. Nakamura, A. Hiroya, Y. Suzuki, Aao-template assisted synthesis and size control of one-dimensional TiO2 nanomaterials. J. Ceram. Soc. Jpn. 121, 915–918 (2013). https://doi.org/10.2109/jcersj2.121.915
- H.R. Jafry, M.V. Liga, Q. Li, A.R. Barron, Single walled carbon nanotubes (SWNTs) as templates for the growth of TiO2: the effect of silicon in coverage and the positive and negative synergies for the photocatalytic degradation of congo red dye. New J. Chem. 35, 400–406 (2011). https://doi.org/10.1039/C0NJ00604A
- Z. Ma, J. Gao, X. Wu, Y. Xie, H. Yuan, Y. Shi, Preparation of well-aligned TiO2 nanotubes with high length-diameter aspect ratio by anodic oxidation method. J. Nanosci. Nanotechnol. 18, 5810–5816 (2018). https://doi.org/10.1166/jnn.2018.15397
- Y. Fu, A. Mo, A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications. Nanoscale Res. Lett. 13, 187 (2018). https://doi.org/10.1186/s11671-018-2597-z
- K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385–9454 (2014). https://doi.org/10.1021/cr500061m
- G. Liu, K. Wang, N. Hoivik, H. Jakobsen, Progress on free-standing and flow-through TiO2 nanotube membranes. Sol. Energy Mater. Sol. Cells 98, 24–38 (2012). https://doi.org/10.1016/j.solmat.2011.11.004
- W.M. Seong, D.H. Kim, I.J. Park, G.D. Park, K. Kang, S. Lee, K.S. Hong, Roughness of ti substrates for control of the preferred orientation of TiO2 nanotube arrays as a new orientation factor. J. Phys. Chem. C 119, 13297–13305 (2015). https://doi.org/10.1021/acs.jpcc.5b02371
- J.H. Lim, J. Choi, Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model. Small 3, 1504–1507 (2007). https://doi.org/10.1002/smll.200700114
- Z. Xing, X. Zong, T. Butburee, J. Pan, Y. Bai, L. Wang, Nanohybrid materials of titania nanosheets and plasmonic gold nanoparticles for effective hydrogen evolution. Appl. Catal. A 521, 96–103 (2016). https://doi.org/10.1016/j.apcata.2016.01.014
- X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152 (2009). https://doi.org/10.1021/ja8092373
- X. Gan, X. Gao, J. Qiu, P. He, X. Li, X. Xiao, TiO2 nanorod-derived synthesis of upstanding hexagonal kassite nanosheet arrays: an intermediate route to novel nanoporous TiO2 nanosheet arrays. Cryst. Growth Des. 12, 289–296 (2012). https://doi.org/10.1021/cg2010612
- Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, W. Zheng, Y. Cao, The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity. J. Phys. Chem. C 118, 12727–12733 (2014). https://doi.org/10.1021/jp500252g
- J. Zhang, Z. Zhu, Y. Tang, K. Müllen, X. Feng, Titania nanosheet-mediated construction of a two-dimensional titania/cadmium sulfide heterostructure for high hydrogen evolution activity. Adv. Mater. 26, 734–738 (2014). https://doi.org/10.1002/adma.201303571
- T. Ban, T. Nakagawa, Y. Ohya, Bottom-up synthesis of titanate nanosheets in aqueous sols and their morphology change by the addition of organic ligands and dialysis. Cryst. Growth Des. 15, 1801–1807 (2015). https://doi.org/10.1021/cg501852a
- S. Zhang, H. Li, S. Wang, Y. Liu, H. Chen, Z. Lu, Bacteria-assisted synthesis of nanosheets-assembled TiO2 hierarchical architectures for constructing TiO2-based composites for photocatalytic and electrocatalytic application. ACS Appl. Mater. Interfaces 11, 37004–37012 (2019). https://doi.org/10.1021/acsami.9b15282
- C. Uboldi, P. Urbán, D. Gilliland, E. Bajak, E. Valsami-Jones, J. Ponti, F. Rossi, Role of the crystalline form of titanium dioxide nanoparticles: rutile, and not anatase, induces toxic effects in balb/3T3 mouse fibroblasts. Toxicol. In Vitro 31, 137–145 (2016). https://doi.org/10.1016/j.tiv.2015.11.005
- S. Sugapriya, R. Sriram, S. Lakshmi, Effect of annealing on TiO2 nanoparticles. Optik 124, 4971–4975 (2013). https://doi.org/10.1016/j.ijleo.2013.03.040
- A. Hamlekhan, A. Butt, S. Patel, D. Royhman, C. Takoudis et al., Fabrication of anti-aging TiO2 nanotubes on biomedical ti alloys. PLoS ONE 9, e96213 (2014). https://doi.org/10.1371/journal.pone.0096213
- M. Osada, S. Yoguchi, M. Itose, B.W. Li, Y. Ebina et al., Controlled doping of semiconducting titania nanosheets for tailored spinelectronic materials. Nanoscale 6, 14227–14236 (2014). https://doi.org/10.1039/C4NR04465G
- A. Stavrinadis, G. Konstantatos, Strategies for controlled electronic doping of colloidal quantum dot solids. ChemPhysChem 17, 632–644 (2015). https://doi.org/10.1002/cphc.201500834
- F. Dong, H. Wang, Z. Wu, One-step “green” synthetic approach for mesoporous c-doped titanium dioxide with efficient visible light photocatalytic activity. J. Phys. Chem. C 113, 16717–16723 (2009). https://doi.org/10.1021/jp9049654
- Z.G.M. Azzawi, T.I. Hamad, S.A. Kadhim, G.A.H. Naji, Osseointegration evaluation of laser-deposited titanium dioxide nanoparticles on commercially pure titanium dental implants. J. Mater. Sci. Mater. Med. 29, 96 (2018). https://doi.org/10.1007/s10856-018-6097-6
- Z.D. Gao, Y. Qu, T. Li, N.K. Shrestha, Y.Y. Song, Development of amperometric glucose biosensor based on prussian blue functionlized TiO2 nanotube arrays. Sci. Rep. 4, 6891 (2014). https://doi.org/10.1038/srep06891
- T.C. Damato, C.C. de Oliveira, R.A. Ando, P.H. Camargo, A facile approach to TiO2 colloidal spheres decorated with Au nanoparticles displaying well-defined sizes and uniform dispersion. Langmuir 29, 1642–1649 (2013). https://doi.org/10.1021/la3045219
- A. Bauer, K. Lee, C. Song, Y. Xie, J. Zhang, R. Hui, Pt nanoparticles deposited on TiO2 based nanofibers: electrochemical stability and oxygen reduction activity. J. Power Sources 195, 3105–3110 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.107
- N.T. Nguyen, M. Altomare, J. Yoo, P. Schmuki, Efficient photocatalytic H2 evolution: controlled dewetting-dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays. Adv. Mater. 27, 3208–3215 (2015). https://doi.org/10.1002/adma.201500742
- M.S. Killian, P. Schmuki, Influence of bioactive linker molecules on protein adsorption. Surf. Interface Anal. 46, 193–197 (2014). https://doi.org/10.1002/sia.5497
- M.H. Kafshgari, M. Alnakhli, B. Delalat, S. Apostolou, F. Harding et al., Small interfering RNA delivery by polyethylenimine-functionalised porous silicon nanoparticles. Biomater. Sci. 3, 1555–1565 (2015). https://doi.org/10.1039/C5BM00204D
- J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies et al., Thermal carbonization of porous silicon: the current status and recent applications. ECS Trans. 69, 167–176 (2015). https://doi.org/10.1149/06902.0167ecst
- G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang et al., Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011). https://doi.org/10.1021/nl201766h
- Y. Wang, S. Duan, Z. Tian, Y. Shen, M. Xie, X. Guo, X. Guo, Fabrication of TiO2@ carbon core-shell nanosheets for advanced lithium-ion batteries with excellent cyclability. J. Mater. Chem. A 5, 6047–6051 (2017). https://doi.org/10.1039/C6TA11187D
- G. Loget, J.E. Yoo, A. Mazare, L. Wang, P. Schmuki, Highly controlled coating of biomimetic polydopamine in TiO2 nanotubes. Electrochem. Commun. 52, 41–44 (2015). https://doi.org/10.1016/j.elecom.2015.01.011
- V.K.H. Bui, D. Park, Y.C. Lee, Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers 9, 21 (2017). https://doi.org/10.3390/polym9010021
- S. Rahim, M.S. Ghamsari, S. Radiman, Surface modification of titanium oxide nanocrystals with PEG. Sci. Iran. 19, 948–953 (2012). https://doi.org/10.1016/j.scient.2012.03.009
- A. Márquez, T. Berger, A. Feinle, N. Hüsing, M. Himly, A. Duschl, O. Diwald, Bovine serum albumin adsorption on TiO2 colloids: the effect of particle agglomeration and surface composition. Langmuir 33, 2551–2558 (2017). https://doi.org/10.1021/acs.langmuir.6b03785
- G.T. Hermanson, Bioconjugate Techniques, 3rd edn (Academic Press, 2013), pp. 1200. https://doi.org/10.1016/C2009-0-64240-9
- J. Shu, Z. Han, H. Cui, Highly chemiluminescent TiO2/tetra(4-carboxyphenyl)porphyrin/n-(4-aminobutyl)-n-ethylisoluminol nanoluminophores for detection of heart disease biomarker copeptin based on chemiluminescence resonance energy transfer. Anal. Bioanal. Chem. 411, 4175–4183 (2019). https://doi.org/10.1007/s00216-019-01821-2
- K. Brown, T. Thurn, L. Xin, W. Liu, R. Bazak et al., Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection. Nano Res. 11, 464–476 (2018). https://doi.org/10.1007/s12274-017-1654-8
- N. Zhang, Y. Deng, Q. Tai, B. Cheng, L. Zhao et al., Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv. Mater. 24, 2756–2760 (2012). https://doi.org/10.1002/adma.201200155
- L. He, C. Mao, M. Brasino, A. Harguindey, W. Park, A.P. Goodwin, J.N. Cha, TiO2-capped gold nanorods for plasmon-enhanced production of reactive oxygen species and photothermal delivery of chemotherapeutic agents. ACS Appl. Mater. Interfaces 10, 27965–27971 (2018). https://doi.org/10.1021/acsami.8b08868
- N. Mustafaoglu, T. Kiziltepe, B. Bilgicer, Site-specific conjugation of an antibody on a gold nanoparticle surface for one-step diagnosis of prostate specific antigen with dynamic light scattering. Nanoscale 9, 8684–8694 (2017). https://doi.org/10.1039/c7nr03096g
- C.H. Lai, S. Choon Lim, L.C. Wu, C.F. Wang, W.S. Tsai, H.C. Wu, Y.C. Chang, Site-specific antibody modification and immobilization on a microfluidic chip to promote the capture of circulating tumor cells and microemboli. Chem. Commun. 53, 4152–4155 (2017). https://doi.org/10.1039/C7CC00247E
- R. Toy, K. Roy, Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng. Transl. Med. 1, 47–62 (2016). https://doi.org/10.1002/btm2.10005
- M.H. Kafshgari, F.J. Harding, N.H. Voelcker, Insights into cellular uptake of nanoparticles. Curr. Drug Deliv. 12, 63–77 (2015). https://doi.org/10.2174/1567201811666140821110631
- K.T. Thurn, H. Arora, T. Paunesku, A. Wu, E.M.B. Brown, C. Doty, J. Kremer, G. Woloschak, Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine NBM 7, 123–130 (2011). https://doi.org/10.1016/j.nano.2010.09.004
- E.L.S. da Rosa, Kinetic effects of TiO2 fine particles and nanoparticles aggregates on the nanomechanical properties of human neutrophils assessed by force spectroscopy. BMC Biophys. 6, 11 (2013). https://doi.org/10.1186/2046-1682-6-11
- K. McNear, Y. Huang, C. Yang, Understanding cellular internalization pathways of silicon nanowires. J. Nanobiotechnol. 15, 17 (2017). https://doi.org/10.1186/s12951-017-0250-0
- Y. Wang, K. Sui, J. Fang, C. Yao, L. Yuan, Q. Wu, M. Wu, Cytotoxicity evaluation and subcellular location of titanium dioxide nanotubes. Appl. Biochem. Biotechnol. 171, 1568–1577 (2013). https://doi.org/10.1007/s12010-013-0447-0
- J. Zhang, X. Cai, Y. Zhang, X. Li, W. Li et al., Imaging cellular uptake and intracellular distribution of TiO2 nanoparticles. Anal. Methods 5, 6611–6616 (2013). https://doi.org/10.1039/C3AY41121D
- M. Biola-Clier, D. Beal, S. Caillat, S. Libert, L. Armand et al., Comparison of the DNA damage response in BEAS-2b and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis 32, 161–172 (2017). https://doi.org/10.1093/mutage/gew055
- K.N. Yu, S.H. Chang, S.J. Park, J. Lim, J. Lee, T.J. Yoon, J.S. Kim, M.H. Cho, Titanium dioxide nanoparticles induce endoplasmic reticulum stress-mediated autophagic cell death via mitochondria-associated endoplasmic reticulum membrane disruption in normal lung cells. PLoS ONE 10, e0131208 (2015). https://doi.org/10.1371/journal.pone.0131208
- B. Trouiller, R. Reliene, A. Westbrook, P. Solaimani, R.H. Schiestl, Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 69, 8784–8789 (2009). https://doi.org/10.1158/0008-5472.CAN-09-2496
- A. Magrez, L. Horvth, R. Smajda, V. Salicio, N. Pasquier, L. Forro, B. Schwaller, Cellular toxicity of TiO2-based nanofilaments. ACS Nano 3, 2274–2280 (2009). https://doi.org/10.1021/nn9002067
- R. Allen, The cytotoxic and genotoxic potential of titanium dioxide (TiO2) nanoparticles on human sh-sy5y neuronal cells in vitro. Plymouth Stud. Sci. 9, 5–28 (2016)
- C.W. Chen, J.H. Huang, T.C. Lai, Y.H. Jan, M. Hsiao, C.H. Chen, Y.K. Hwu, R.S. Liu, Evaluation of the intracellular uptake and cytotoxicity effect of TiO2 nanostructures for various human oral and lung cells under dark conditions. Toxicol. Res. 5, 303–311 (2016). https://doi.org/10.1039/c5tx00312a
- M.S. Mohamed, A. Torabi, M. Paulose, D.S. Kumar, O.K. Varghese, Anodically grown titania nanotube induced cytotoxicity has genotoxic origins. Sci. Rep. 7, 41844 (2017). https://doi.org/10.1038/srep41844
- L. Li, X. Mu, L. Ye, Y. Ze, F. Hong, Suppression of testosterone production by nanoparticulate TiO2 is associated with ERK1/2–PKA–PKC signaling pathways in rat primary cultured leydig cells. Int. J. Nanomed. 13, 5909–5924 (2018). https://doi.org/10.2147/IJN.S175608
- M. Allegri, M.G. Bianchi, M. Chiu, J. Varet, A.L. Costa et al., Shape-related toxicity of titanium dioxide nanofibres. PLoS ONE 11, e0151365 (2016). https://doi.org/10.1371/journal.pone.0151365
- E.J. Park, G.H. Lee, H.W. Shim, J.H. Kim, M.H. Cho, D.W. Kim, Comparison of toxicity of different nanorod-type TiO2 polymorphs in vivo and in vitro. J. Appl. Toxicol. 34, 357–366 (2014). https://doi.org/10.1002/jat.2932
- F. Fenyvesi, Z. Kónya, Z. Rázga, M. Vecsernyés, P. Kása, K. Pintye-Hódi, I. Bácskay, Investigation of the cytotoxic effects of titanate nanotubes on Caco-2 cells. AAPS PharmSciTech 15, 858–861 (2014). https://doi.org/10.1208/s12249-014-0115-x
- H. Zheng, L.J. Mortensen, S. Ravichandran, K. Bentley, L.A. DeLouise, Effect of nanoparticle surface coating on cell toxicity and mitochondria uptake. J. Biomed. Nanotechnol. 13, 155–166 (2017). https://doi.org/10.1166/jbn.2017.2337
- E.J. Park, G.H. Lee, C. Yoon, M.S. Kang, S.N. Kim, M.H. Cho, J.H. Kim, D.W. Kim, Time-dependent bioaccumulation of distinct rod-type TiO2 nanoparticles: comparison by crystalline phase. J. Appl. Toxicol. 34, 1265–1270 (2014). https://doi.org/10.1002/jat.3006
- L.K. Braydich-Stolle, N.M. Schaeublin, R.C. Murdock, J. Jiang, P. Biswas, J.J. Schlager, S.M. Hussain, Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J. Nanopart. Res. 11, 1361–1374 (2009). https://doi.org/10.1007/s11051-008-9523-8
- É. de Melo Reis, A.A.A. de Rezende, P.F. de Oliveira, H.D. Nicolella, D.C. Tavares et al., Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the drosophila wing spot test. Food Chem. Toxicol. 96, 309–319 (2016). https://doi.org/10.1016/j.fct.2016.08.023
- Q. Sun, K. Kanehira, A. Taniguchi, Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells. Sci. Technol. Adv. Mater. 17, 669–676 (2016). https://doi.org/10.1080/14686996.2016.1239499
- R. Tedja, The impact of titanium dioxide nanoparticles on human lung cell lines in vitro. Chemical Sciences Engineering, Faculty of Engineering, The University of New South Wales (2012). http://handle.unsw.edu.au/1959.4/52987
- R. Tedja, A.H. Soeriyadi, M.R. Whittaker, M. Lim, C. Marquis, C. Boyer, T.P. Davis, R. Amal, Effect of TiO2 nanoparticle surface functionalization on protein adsorption, cellular uptake and cytotoxicity: the attachment of PEG comb polymers using catalytic chain transfer and thiol-ene chemistry. Polym. Chem. 3, 2743–2751 (2012). https://doi.org/10.1039/C2PY20450A
- M.A. Alvarez Lemus, H. Monroy, T. Lopez, E.N. de la Cruz Hernández, R. López-González, Effect of surface modification on the bioactivity of sol–gel TiO2-based nanomaterials. J. Chem. Technol. Biotechnol. 91, 2148–2155 (2016). https://doi.org/10.1002/jctb.4915
- H. Shi, R. Magaye, V. Castranova, J. Zhao, Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol. 10, 15 (2013). https://doi.org/10.1186/1743-8977-10-15
- J. Mao, L. Wang, Z. Qian, M. Tu, Uptake and cytotoxicity of Ce(IV) doped TiO2 nanoparticles in human hepatocyte cell line L02. J. Nanomater. 2010, 910434 (2010). https://doi.org/10.1155/2010/910434
- K.C. Popat, M. Eltgroth, T.J. LaTempa, C.A. Grimes, T.A. Desai, Decreased staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28, 4880–4888 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.037
- K.S. Brammer, C.J. Frandsen, S. Jin, TiO2 nanotubes for bone regeneration. Trends Biotechnol. 30, 315–322 (2012). https://doi.org/10.1016/j.tibtech.2012.02.005
- A. Tan, B. Pingguan-Murphy, R. Ahmad, S. Akbar, Review of titania nanotubes: fabrication and cellular response. Ceram. Int. 38, 4421–4435 (2012). https://doi.org/10.1016/j.ceramint.2012.03.002
- K.S. Brammer, S. Oh, C.J. Cobb, L.M. Bjursten, H. van der Heyde, S. Jin, Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 5, 3215–3223 (2009). https://doi.org/10.1016/j.actbio.2009.05.008
- W. Lü, N. Wang, P. Gao, C. Li, H. Zhao, Z. Zhang, Effects of anodic titanium dioxide nanotubes of different diameters on macrophage secretion and expression of cytokines and chemokines. Cell Prolif. 48, 95–104 (2015). https://doi.org/10.1111/cpr.12149
- P. Neacsu, A. Mazare, P. Schmuki, A. Cimpean, Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways. Int. J. Nanomed. 10, 6455 (2015). https://doi.org/10.2147/IJN.S92019
- E. Fabian, R. Landsiedel, L. Ma-Hock, K. Wiench, W. Wohlleben, B. Van Ravenzwaay, Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch. Toxicol. 82, 151–157 (2008). https://doi.org/10.1007/s00204-007-0253-y
- J. Chen, X. Dong, J. Zhao, G. Tang, In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J. Appl. Toxicol. 29, 330–337 (2009). https://doi.org/10.1002/jat.1414
- J. Wang, Y. Fan, Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. Int. J. Mol. Sci. 15, 22258–22278 (2014). https://doi.org/10.3390/ijms151222258
- H. Kan, Z. Wu, S.H. Young, T.H. Chen, J.L. Cumpston, F. Chen, M.L. Kashon, V. Castranova, Pulmonary exposure of rats to ultrafine titanium dioxide enhances cardiac protein phosphorylation and substance p synthesis in nodose ganglia. Nanotoxicology 6, 736–745 (2012). https://doi.org/10.3109/17435390.2011.611915
- Q. Sun, D. Tan, Y. Ze, X. Sang, X. Liu et al., Pulmotoxicological effects caused by long-term titanium dioxide nanoparticles exposure in mice. J. Hazard. Mater. 235, 47–53 (2012). https://doi.org/10.1016/j.jhazmat.2012.05.072
- T. Tang, Z. Zhang, X. Zhu, Toxic effects of TiO2 NPs on zebrafish. Int. J. Environ. Res. Public Health 16, 523 (2019). https://doi.org/10.3390/ijerph16040523
- N. Li, Y. Duan, M. Hong, L. Zheng, M. Fei et al., Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticules. Toxicol. Lett. 195, 161–168 (2010). https://doi.org/10.1016/j.toxlet.2010.03.1116
- L. Ma, J. Liu, N. Li, J. Wang, Y. Duan et al., Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31, 99–105 (2010). https://doi.org/10.1016/j.biomaterials.2009.09.028
- A. Cetinkaya, E.B. Kurutas, M.A. Buyukbese, B. Kantarceken, E. Bulbuloglu, Levels of malondialdehyde and superoxide dismutase in subclinical hyperthyroidism. Mediat. Inflamm. 2005, 57–59 (2005). https://doi.org/10.1155/MI.2005.57
- S. Li, H.Y. Tan, N. Wang, Z.J. Zhang, L. Lao, C.W. Wong, Y. Feng, The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci. 16, 26087–26124 (2015). https://doi.org/10.3390/ijms161125942
- A. Nemmar, K. Melghit, B.H. Ali, The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats. Exp. Biol. Med. 233, 610–619 (2008). https://doi.org/10.3181/0706-RM-165
- D. Elgrabli, R. Beaudouin, N. Jbilou, M. Floriani, A. Pery, F. Rogerieux, G. Lacroix, Biodistribution and clearance of TiO2 nanoparticles in rats after intravenous injection. PLoS ONE 10, e0124490 (2015). https://doi.org/10.1371/journal.pone.0124490
- J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8
- M.C. Liu, B. Liu, X.Y. Sun, H.C. Lin, J.Z. Lu et al., Core/shell structured Fe3O4@TiO2-DNM nanospheres as multifunctional anticancer platform: chemotherapy and photodynamic therapy research. J. Nanosci. Nanotechnol. 18, 4445–4456 (2018). https://doi.org/10.1166/jnn.2018.15338
- Y.Y. Song, P. Roy, I. Paramasivam, P. Schmuki, Voltage-induced payload release and wettability control on TiO2 and TiO2 nanotubes. Angew. Chem. Int. Ed. 49, 351–354 (2010). https://doi.org/10.1002/anie.200905111
- F.F. Wang, Y. Li, H.C. Liu, A study on PLGA sustained release icariin/titanium dioxide nanotube composite coating. Eur. Rev. Med. Pharmacol. 23, 911–917 (2019). https://doi.org/10.26355/eurrev_201902_16974
- G.G. Genchi, Y. Cao, T.A. Desai, in TiO2 Nanotube Arrays as Smart Platforms for Biomedical Applications (Elsevier, 2018), pp. 143–157. https://doi.org/10.1016/B978-0-12-814156-4.00010-0
- M. SinnáAw, A multi-drug delivery system with sequential release using titania nanotube arrays. Chem. Commun. 48, 3348–3350 (2012). https://doi.org/10.1039/C2CC17690D
- F. Ge, M. Yu, C. Yu, J. Lin, W. Weng, K. Cheng, H. Wang, Improved RHBMP-2 function on mbg incorporated TiO2 nanorod films. Colloids Surf. B: Biointerfaces 150, 153–158 (2017). https://doi.org/10.1016/j.colsurfb.2016.11.030
- S. Samadi, M. Moradkhani, H. Beheshti, M. Irani, M. Aliabadi, Fabrication of chitosan/poly(lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer. Int. J. Biol. Macromol. 110, 416–424 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.048
- X. Wang, D. Zhang, Q. Xiang et al., Review of water-assisted crystallization for TiO2 nanotubes. Nano-Micro Lett. 10, 77 (2018). https://doi.org/10.1007/s40820-018-0230-4
- E. Liu, Y. Zhou, Z. Liu, J. Li, D. Zhang, J. Chen, Z. Cai, Cisplatin loaded hyaluronic acid modified TiO2 nanoparticles for neoadjuvant chemotherapy of ovarian cancer. J. Nanomater. 16, 275 (2015). https://doi.org/10.1155/2015/390358
- F.F. Cheng, P. Sun, W.W. Xiong, Y. Zhang, Q. Zhang, W. Yao, Y. Cao, L. Zhang, Multifunctional titanium phosphate nanoparticles for site-specific drug delivery and real-time therapeutic efficacy evaluation. Analyst 144, 3103–3110 (2019). https://doi.org/10.1039/c8an02450b
- Y. Du, W. Ren, Y. Li, Q. Zhang, L. Zeng, C. Chi, A. Wu, J. Tian, The enhanced chemotherapeutic effects of doxorubicin loaded PEG coated TiO2 nanocarriers in an orthotopic breast tumor bearing mouse model. J. Mater. Chem. B 3, 1518–1528 (2015). https://doi.org/10.1039/C4TB01781A
- T. Zheng, W. Wang, F. Wu, M. Zhang, J. Shen, Y. Sun, Zwitterionic polymer-gated Au@TiO2 core-shell nanoparticles for imaging-guided combined cancer therapy. Theranostics 9, 5035–5048 (2019). https://doi.org/10.7150/thno.35418
- V.V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, H. Parihar, Magnetic nanoparticle drug delivery systems for targeting tumor. Appl. Nanosci. 4, 385–392 (2014). https://doi.org/10.1007/s13204-013-0216-y
- L. Zeng, W. Ren, L. Xiang, J. Zheng, B. Chen, A. Wu, Multifunctional Fe3O4–TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. Nanoscale 5, 2107–2113 (2013). https://doi.org/10.1039/C3NR33978E
- N.K. Shrestha, J.M. Macak, F. Schmidt-Stein, R. Hahn, C.T. Mierke, B. Fabry, P. Schmuki, Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew. Chem. Int. Ed. 48, 969–972 (2009). https://doi.org/10.1002/anie.200804429
- J. Wu, Y. Liu, W. Li, C. Wang, Y. Li et al., Magnetically guided survivin-sirna delivery and simultaneous dual-modal imaging visualization based on Fe3O4@mTiO2 nanospheres for breast cancer. J. Mater. Chem. B 2, 7756–7764 (2014). https://doi.org/10.1039/C4TB01264J
- Q. Yu, J. Sun, X. Zhu, L. Qiu, M. Xu, S. Liu, J. Ouyang, J. Liu, Mesoporous titanium dioxide nanocarrier with magnetic-targeting and high loading efficiency for dual-modal imaging and photodynamic therapy. J. Mater. Chem. B 5, 6081–6096 (2017). https://doi.org/10.1039/C7TB01035D
- B.P. Chelobanov, M.N. Repkova, S.I. Baiborodin, E.I. Ryabchikova, D.A. Stetsenko, Nuclear delivery of oligonucleotides via nanocomposites based on TiO2 nanoparticles and polylysine. Mol. Biother. 51, 695–704 (2017). https://doi.org/10.1134/S0026893317050065
- X. Zhang, Z. Zhang, G. Shen, J. Zhao, Enhanced osteogenic activity and anti-inflammatory properties of lenti-BMP-2-loaded TiO2 nanotube layers fabricated by lyophilization following trehalose addition. Int. J. Nanomed. 11, 429–439 (2016). https://doi.org/10.2147/IJN.S93177
- H. Schneckenburger, Laser-assisted optoporation of cells and tissues—a mini-review. Biomed. Opt. Express 10, 2883–2888 (2019). https://doi.org/10.1364/BOE.10.002883
- A.M. Wilson, J. Mazzaferri, E.R. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. Sapieha, M. Meunier, In vivo laser-mediated retinal ganglion cell optoporation using Kv1. 1 conjugated gold nanoparticles. Nano Lett. 18, 6981–6988 (2018). https://doi.org/10.1021/acs.nanolett.8b02896
- L. Gao, R. Liu, F. Gao, Y. Wang, X. Jiang, X. Gao, Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 8, 7260–7271 (2014). https://doi.org/10.1021/nn502325j
- G. Ou, Z. Li, D. Li, L. Cheng, Z. Liu, H. Wu, Photothermal therapy by using titanium oxide nanoparticles. Nano Res. 9, 1236–1243 (2016). https://doi.org/10.1007/s12274-016-1019-8
- Z. Shah, S. Nazir, K. Mazhar, R. Abbasi, I.M. Samokhvalov, PEGylated doped- and undoped-TiO2 nanoparticles for photodynamic therapy of cancers. Photodiagnosis Photodyn. Ther. 27, 173–183 (2019). https://doi.org/10.1016/j.pdpdt.2019.05.019
- D. Rebleanu, C. Gaidau, G. Voicu, C.A. Constantinescu, C. Mansilla Sánchez, T.C. Rojas, S. Carvalho, M. Calin, The impact of photocatalytic Ag/TiO2 and Ag/n-TiO2 nanoparticles on human keratinocytes and epithelial lung cells. Toxicology 416, 30–43 (2019). https://doi.org/10.1016/j.tox.2019.01.013
- J.L. Chen, H. Zhang, X.Q. Huang, H.Y. Wan, J. Li et al., Antiangiogenesis-combined photothermal therapy in the second near-infrared window at laser powers below the skin tolerance threshold. Nano-Micro Lett. 11, 93 (2019). https://doi.org/10.1007/s40820-019-0327-4
- D.G. You, V. Deepagan, W. Um, S. Jeon, S. Son et al., Ros-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci. Rep. 6, 23200 (2016). https://doi.org/10.1038/srep23200
- Y. Cao, T. Wu, W. Dai, H. Dong, X. Zhang, TiO2 nanosheets with Au nanocrystals decorated edge for mitochondria-targeting enhanced sonodynamic therapy. Chem. Mater. 31, 9105–9114 (2019). https://doi.org/10.1021/acs.chemmater.9b03430
- Z. Yu, W. Pan, N. Li, B. Tang, A nuclear targeted dual-photosensitizer for drug-resistant cancer therapy with nir activated multiple ROS. Chem. Sci. 7, 4237–4244 (2016). https://doi.org/10.1039/C6SC00737F
- E. Rozhkova, I. Ulasov, S. Nandi, L. Zhang, T. Rajh, M. Lesniak, Development and evaluation of TiO2-nanoparticles for gene therapy of brain tumors. Mol. Ther. 16, S321 (2008). https://doi.org/10.1016/S1525-0016(16)40264-9
- Z.F. Yin, L. Wu, H.G. Yang, Y.H. Su, Recent progress in biomedical applications of titanium dioxide. Phys. Chem. Chem. Phys. 15, 4844–4858 (2013). https://doi.org/10.1039/C3CP43938K
- S. Wintzheimer, E. Genin, L. Vellutini, G. Le Bourdon, M. Kessler, S. Hackenberg, S. Dembski, K. Heuzé, Functionalisation of TiO2 nanoparticles with a fluorescent organosilane: a synergy enabling their visualisation in biological cells and an enhanced photocatalytic activity. Colloids Surf. B: Biointerfaces 181, 1019–1025 (2019). https://doi.org/10.1016/j.colsurfb.2019.05.060
- T. Kawai, Y. Kishimoto, K. Kifune, Photoluminescence studies of nitrogen-doped TiO2 powders prepared by annealing with urea. Philos. Mag. 92, 4088–4097 (2012). https://doi.org/10.1080/14786435.2012.7044231
- J.S. Roy, T.P. Majumder, R. Dabrowski, Photoluminescence behavior of TiO2 nanoparticles doped with liquid crystals. J. Mol. Struct. 1098, 351–354 (2015). https://doi.org/10.1016/j.molstruc.2015.06.028
- W.G. Kreyling, U. Holzwarth, N. Haberl, J. Kozempel, A. Wenk et al., Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats: part 3. Nanotoxicology 11, 454–464 (2017). https://doi.org/10.1080/17435390.2017.1306894
- J. Estelrich, M.J. Sánchez-Martín, M.A. Busquets, Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int. J. Nanomed. 10, 1727–1741 (2015). https://doi.org/10.2147/IJN.S76501
- T.P. Dasari Shareena, D. McShan, A.K. Dasmahapatra, P.B. Tchounwou, A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 10, 53 (2018). https://doi.org/10.1007/s40820-018-0206-4
- X. Wang, H. Zhang, H. Jing, L. Cui, Highly efficient labeling of human lung cancer cells using cationic poly-l-lysine-assisted magnetic iron oxide nanoparticles. Nano-Micro Lett. 7, 374–384 (2015). https://doi.org/10.1007/s40820-015-0053-5
- F. Yalçıner, E. Çevik, M. Şenel, A. Baykal, Development of an amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto nickel ferrite nanoparticle-chitosan composite. Nano-Micro Lett. 3, 91–98 (2011). https://doi.org/10.1007/BF03353657
- S.J. Sadeghi, in Amperometric Biosensors (Springer Berlin Heidelberg; Berlin, Heidelberg, 2013), pp. 61–67. https://doi.org/10.1007/978-3-642-16712-6_713
- J. Wang, G. Xu, X. Zhang, J. Lv, X. Zhang, Z. Zheng, Y. Wu, Electrochemical performance and biosensor application of TiO2 nanotube arrays with mesoporous structures constructed by chemical etching. Dalton Trans. 44, 7662–7672 (2015). https://doi.org/10.1039/C5DT00678C
- J. Li, X. Li, Q. Zhao, Z. Jiang, M. Tadé, S. Wang, S. Liu, Polydopamine-assisted decoration of TiO2 nanotube arrays with enzyme to construct a novel photoelectrochemical sensing platform. Sens. Actuators B: Chem. 255, 133–139 (2018). https://doi.org/10.1016/j.snb.2017.06.168
- R. Wu, G.C. Fan, L.P. Jiang, J.J. Zhu, Peptide-based photoelectrochemical cytosensor using a hollow-TiO2/EG/ZnIn2S4 cosensitized structure for ultrasensitive detection of early apoptotic cells and drug evaluation. ACS Appl. Mater. Interfaces 10, 4429–4438 (2018). https://doi.org/10.1021/acsami.7b16054
- Y. Wang, G. Zhao, Y. Zhang, B. Du, Q. Wei, Ultrasensitive photoelectrochemical immunosensor based on Cu-doped TiO2 and carbon nitride for detection of carcinoembryonic antigen. Carbon 146, 276–283 (2019). https://doi.org/10.1016/j.carbon.2019.02.008
- C.C. Lin, Y.M. Chu, H.C. Chang, In situ encapsulation of antibody on TiO2 nanowire immunosensor via electro-polymerization of polypyrrole propylic acid. Sens. Actuators B: Chem. 187, 533–539 (2013). https://doi.org/10.1016/j.snb.2013.03.045
- R. Wang, C. Ruan, D. Kanayeva, K. Lassiter, Y. Li, TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of listeria monocytogenes. Nano Lett. 8, 2625–2631 (2008). https://doi.org/10.1021/nl080366q
- W. Li, R. Li, B. Huang, Z. Wang, Y. Sun et al., TiO2 nanopillar arrays coated with gelatin film for efficient capture and undamaged release of circulating tumor cells. Nanotechnology 30, 335101 (2019). https://doi.org/10.1088/1361-6528/ab176c
- M. Rasoulianboroujeni, F. Fahimipour, P. Shah, K. Khoshroo, M. Tahriri et al., Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Mater. Sci. Eng. C 96, 105–113 (2019). https://doi.org/10.1016/j.msec.2018.10.077
- M. Vercellino, G. Ceccarelli, F. Cristofaro, M. Balli, F. Bertoglio et al., Nanostructured TiO2 surfaces promote human bone marrow mesenchymal stem cells differentiation to osteoblasts. Nanomaterials 6, 124 (2016). https://doi.org/10.3390/nano6070124
- Y. Hou, K. Cai, J. Li, X. Chen, M. Lai, Y. Hu, Z. Luo, X. Ding, D. Xu, Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int. J. Nanomed. 8, 3619 (2013). https://doi.org/10.2147/IJN.S38992
- K. Li, T. Yan, Y. Xue, L. Guo, L. Zhang, Y. Han, Intrinsically ferromagnetic Fe-doped TiO2 coatings on titanium for accelerating osteoblast response in vitro. J. Mater. Chem. B 6, 5756–5767 (2018). https://doi.org/10.1039/C8TB01414K
- A. Ma, H. Shang, Y. Song, B. Chen, Y. You et al., Icariin-functionalized coating on TiO2 nanotubes surface to improve osteoblast activity in vitro and osteogenesis ability in vivo. Coatings 9, 327 (2019). https://doi.org/10.3390/coatings9050327
- S. Babitha, M. Annamalai, M.M. Dykas, S. Saha, K. Poddar et al., Fabrication of a biomimetic zeinpda nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering. J. Tissue Eng. Regen. Med. 12, 991–1001 (2018). https://doi.org/10.1002/term.2563
- H. Zhu, T. Yan, X. Cai, X. Xu, Characterization and property of a bone sialoprotein fragment coated TiO2 nanotube. J. Biomater. Tissue Eng. 8, 632–639 (2018). https://doi.org/10.1166/jbt.2018.1791
- M. Chen, Y. Hu, M. Li, M. Chen, X. Shen et al., Regulation of osteoblast differentiation by osteocytes cultured on sclerostin antibody conjugated TiO2 nanotube array. Colloids Surf. B: Biointerfaces 175, 663–670 (2019). https://doi.org/10.1016/j.colsurfb.2018.12.023
- G.A. Seisenbaeva, K. Fromell, V.V. Vinogradov, A.N. Terekhov, A.V. Pakhomov et al., Dispersion of TiO2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins. Sci. Rep. 7, 15448 (2017). https://doi.org/10.1038/s41598-017-15792-w
- L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang et al., Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32, 5706–5716 (2011). https://doi.org/10.1016/j.biomaterials.2011.04.040
- T. Limongi, L. Tirinato, F. Pagliari, A. Giugni, M. Allione, G. Perozziello, P. Candeloro, E. Di Fabrizio, Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-Micro Lett. 9, 1 (2016). https://doi.org/10.1007/s40820-016-0103-7
- I. Unalan, S. Endlein, B. Slavik, A. Buettner, W.H. Goldmann, R. Detsch, A.R. Boccaccini, Evaluation of electrospun poly(ε-caprolactone)/gelatin nanofiber mats containing clove essential oil for antibacterial wound dressing. Pharmaceutics 11, 570 (2019). https://doi.org/10.3390/pharmaceutics11110570
- A. Lapa, M. Cresswell, I. Campbell, P. Jackson, W.H. Goldmann et al., Ga and Ce ion-doped phosphate glass fibres with antibacterial properties and their composite for wound healing applications. J. Mater. Chem. B 7, 6981–6993 (2019). https://doi.org/10.1039/C9TB00820A
- I. Unalan, B. Slavik, A. Buettner, W.H. Goldmann, G. Frank, A.R. Boccaccini, Physical and antibacterial properties of peppermint essential oil loaded poly (ε-caprolactone) (PCL) electrospun fiber mats for wound healing. Front. Bioeng. Biotechnol. 7, 346 (2019). https://doi.org/10.3389/fbioe.2019.00346
- L. Yan, S. Si, Y. Chen, T. Yuan, H. Fan, Y. Yao, Q. Zhang, Electrospun in situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers Polym. 12, 207 (2011). https://doi.org/10.1007/s12221-011-0207-0
- O. Galkina, Functional hybrid bionanomaterials based on titanium dioxide and cellulose, possessing antibacterial and drug delivery properties. Swedish University of Agricultural Sciences (2015). https://pub.epsilon.slu.se/12222/1/galkina_o_150518.pdf
- S.L. Percival, P.G. Bowler, D. Russell, Bacterial resistance to silver in wound care. J. Hosp. Infect. 60, 1–7 (2005). https://doi.org/10.1016/j.jhin.2004.11.014
- F.E. Ciraldo, K. Schnepf, W.H. Goldmann, A.R. Boccaccini, Development and characterization of bioactive glass containing composite coatings with ion releasing function for antibiotic-free antibacterial surgical sutures. Materials 12, 423 (2019). https://doi.org/10.3390/ma12030423
- V.H. Grassian, P.T. O’Shaughnessy, A. Adamcakova-Dodd, J.M. Pettibone, P.S. Thorne, Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2–5 nm. Environ. Health Perspect. 115, 397–402 (2007). https://doi.org/10.1289/ehp.9469
References
P. Nyamukamba, O. Okoh, H. Mungondori, R. Taziwa, S. Zinya, in Synthetic Methods for Titanium Dioxide Nanoparticles: A Review (BoD—Books on Demand; 2018), pp. 151. https://doi.org/10.5772/intechopen.75425
X. Wang, Z. Li, J. Shi, Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346–9384 (2014). https://doi.org/10.1021/cr400633s
R. Verma, J. Gangwar, A.K. Srivastava, Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv. 7, 44199–44224 (2017). https://doi.org/10.1039/c7ra06925a
Q. Li, X. Wang, X. Lu, H. Tian, H. Jiang et al., The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers. Biomaterials 30, 4708–4715 (2009). https://doi.org/10.1016/j.biomaterials.2009.05.015
P. Xu, R. Wang, J. Ouyang, B. Chen, A new strategy for TiO2 whiskers mediated multi-mode cancer treatment. Nanoscale Res. Lett. 10, 94 (2015). https://doi.org/10.1186/s11671-015-0796-4
S.-S. Song, B.-Y. Xia, J. Chen, J. Yang, X. Shen et al., Two dimensional TiO2 nanosheets: in vivo toxicity investigation. RSC Adv. 4, 42598–42603 (2014). https://doi.org/10.1039/C4RA05953K
Y. He, J. Wan, Y. Yang, P. Yuan, C. Yang, Z. Wang, L. Zhang, Multifunctional polypyrrole-coated mesoporous TiO2 nanocomposites for photothermal, sonodynamic, and chemotherapeutic treatments and dual-modal ultrasound/photoacoustic imaging of tumors. Adv. Healthcare Mater. 8, 1801254 (2019). https://doi.org/10.1002/adhm.201801254
T. Wang, H. Jiang, L. Wan, Q. Zhao, T. Jiang, B. Wang, S. Wang, Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 13, 354–363 (2015). https://doi.org/10.1016/j.actbio.2014.11.010
S.P. Adhikari, H.R. Pant, H.M. Mousa, J. Lee, H.J. Kim, C.H. Park, C.S. Kim, Synthesis of high porous electrospun hollow TiO2 nanofibers for bone tissue engineering application. Ind. Eng. Chem. Res. 35, 75–82 (2016). https://doi.org/10.1016/j.jiec.2015.12.004
M.H. Kafshgari, A. Mazare, M. Distaso, W.H. Goldmann, W. Peukert, B. Fabry, P. Schmuki, Intracellular drug delivery with anodic titanium dioxide nanotubes and nanocylinders. ACS Appl. Mater. Interfaces 11, 14980–14985 (2019). https://doi.org/10.1021/acsami.9b01211
N.P. Truong, M.R. Whittaker, C.W. Mak, T.P. Davis, The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv. 12, 129–142 (2015). https://doi.org/10.1517/17425247.2014.950564
S. Wang, W. Ren, J. Wang, Z. Jiang, M. Saeed, L. Zhang, A. Li, A. Wu, Black TiO2-based nanoprobes for T1-weighted MRI-guided photothermal therapy in CD133 high expressed pancreatic cancer stem-like cells. Biomater. Sci. 6, 2209–2218 (2018). https://doi.org/10.1039/C8BM00454D
M. Saeed, M.Z. Iqbal, W. Ren, Y. Xia, W.S. Khan, A. Wu, Tunable fabrication of new theranostic Fe3O4-black TiO2 nanocomposites: dual wavelength stimulated synergistic imaging-guided phototherapy in cancer. J. Mater. Chem. B 7, 210–223 (2019). https://doi.org/10.1039/C8TB02704H
H. Chanseok, K. Jungwoo, L. Jungkeun, Z. Hongmei, H. Soonsun, L. Donheang, L. Chongmu, Photothermal therapy using TiO2 nanotubes in combination with near-infrared laser. J. Cancer Ther. 1, 52–58 (2010). https://doi.org/10.4236/jct.2010.12009
H.K. Patra, R. Imani, J.R. Jangamreddy, M. Pazoki, A. Iglič, A.P.F. Turner, A. Tiwari, On/off-switchable anti-neoplastic nanoarchitecture. Sci. Rep. 5, 14571 (2015). https://doi.org/10.1038/srep14571
C.M. Sayes, R. Wahi, P.A. Kurian, Y. Liu, J.L. West, K.D. Ausman, D.B. Warheit, V.L. Colvin, Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 92, 174–185 (2006). https://doi.org/10.1093/toxsci/kfj197
Y.Y. Song, F. Schmidt-Stein, S. Bauer, P. Schmuki, Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J. Am. Chem. Soc. 131, 4230–4232 (2009). https://doi.org/10.1021/ja810130h
F. Schmidt-Stein, R. Hahn, J.F. Gnichwitz, Y.Y. Song, N.K. Shrestha, A. Hirsch, P. Schmuki, X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: degradation of organics and drug release. Electrochem. Commun. 11, 2077–2080 (2009). https://doi.org/10.1016/j.elecom.2009.08.036
M. Hasanzadeh Kafshgari, N.H. Voelcker, F.J. Harding, in Porous Silicon Nanoparticles for Applications in Nano-medicine (Academic Press, Oxford, 2019), pp. 211–226. https://doi.org/10.1016/B978-0-12-803581-8.10463-1
E. Galata, E.A. Georgakopoulou, M.E. Kassalia, N. Papadopoulou-Fermeli, E.A. Pavlatou, Development of smart composites based on doped-TiO2 nanoparticles with visible light anticancer properties. Materials 12, 2589 (2019). https://doi.org/10.3390/ma12162589
M. Hasanzadeh Kafshgari, D. Kah, A. Mazare, N.T. Nguyen, M. Distaso et al., Anodic titanium dioxide nanotubes for magnetically guided therapeutic delivery. Sci. Rep. 9, 13439 (2019). https://doi.org/10.1038/s41598-019-49513-2
H. Zheng, H. Yi, W. Lin, H. Dai, Z. Hong, Y. Lin, X. Li, A dual-amplified electrochemiluminescence immunosensor constructed on dual-roles of rutile TiO2 mesocrystals for ultrasensitive zearalenone detection. Electrochim. Acta 260, 847–854 (2018). https://doi.org/10.1016/j.electacta.2017.12.054
C. Zhao, F.U. Rehman, Y. Yang, X. Li, D. Zhang, H. Jiang, M. Selke, X. Wang, C. Liu, Bio-imaging and photodynamic therapy with tetra sulphonatophenyl porphyrin (TSPP)-TiO2 nanowhiskers: new approaches in rheumatoid arthritis theranostics. Sci. Rep. 5, 11518 (2015). https://doi.org/10.1038/srep11518
P. Yuan, D. Song, Mri tracing non-invasive TiO2-based nanoparticles activated by ultrasound for multi-mechanism therapy of prostatic cancer. Nanotechnology 29, 125101 (2018). https://doi.org/10.1088/1361-6528/aaa92a
H. Akasaka, N. Mukumoto, N.M. Akayama, T. Wang, R. Yada et al., Investigation of the potential of using TiO2 nanoparticles as a contrast agent in computed tomography and magnetic resonance imaging. Appl. Nanosci. (2019). https://doi.org/10.1007/s13204-019-01098-y
F. Zanghelini, I.A.M. Frías, M.J.B.M. Rêgo, M.G.R. Pitta, M. Sacilloti, M.D.L. Oliveira, C.A.S. Andrade, Biosensing breast cancer cells based on a three-dimensional TiO2 nanomembrane transducer. Biosens. Bioelectron. 92, 313–320 (2017). https://doi.org/10.1016/j.bios.2016.11.006
M.A. Ali, K. Mondal, Y. Jiao, S. Oren, Z. Xu, A. Sharma, L. Dong, Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl. Mater. Interfaces 8, 20570–20582 (2016). https://doi.org/10.1021/acsami.6b05648
H. Shen, J. Wang, H. Liu, Z. Li, F. Jiang, F.B. Wang, Q. Yuan, Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition. ACS Appl. Mater. Interfaces 8, 19371–19378 (2016). https://doi.org/10.1021/acsami.6b06671
C. Zhang, J.Q. Xu, Y.T. Li, L. Huang, D.W. Pang et al., Photocatalysis-induced renewable field-effect transistor for protein detection. Anal. Chem. 88, 4048–4054 (2016). https://doi.org/10.1021/acs.analchem.6b00374
K.S. Mun, S.D. Alvarez, W.Y. Choi, M.J. Sailor, A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano 4, 2070–2076 (2010). https://doi.org/10.1021/nn901312f
Y.C. Nah, I. Paramasivam, P. Schmuki, Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11, 2698–2713 (2010). https://doi.org/10.1002/cphc.201000276
A. Zaleska, Doped-TiO2: a review. Recent Pat. Eng. 2, 157–164 (2008). https://doi.org/10.2174/187221208786306289
L. Otero-González, C. García-Saucedo, J.A. Field, R. Sierra-Álvarez, Toxicity of TiO2, ZrO2, Fe0, Fe2O3, and Mn2O3 nanoparticles to the yeast, saccharomyces cerevisiae. Chemosphere 93, 1201–1206 (2013). https://doi.org/10.1016/j.chemosphere.2013.06.075
H.L. Karlsson, P. Cronholm, J. Gustafsson, L. Möller, Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 21, 1726–1732 (2008). https://doi.org/10.1021/tx800064j
S. Bauer, J. Park, J. Faltenbacher, S. Berger, K. von der Mark, P. Schmuki, Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays. Integr. Biol. 1, 525–532 (2009). https://doi.org/10.1039/b908196h
J. Park, S. Bauer, A. Pittrof, M.S. Killian, P. Schmuki, K. von der Mark, Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. Small 8, 98–107 (2012). https://doi.org/10.1002/smll.201100790
S. Nájera, M. Michel, J. Kyung-Hwan, J.N.-S. Kim, Characterization of 3D printed PLA/PCL/TiO2 composites for cancellous bone. J. Mater. Sci. Eng. 7, 417 (2018). https://doi.org/10.4172/2169-0022.1000417
X. Wang, R.A. Gittens, R. Song, R. Tannenbaum, R. Olivares-Navarrete, Z. Schwartz, H. Chen, B.D. Boyan, Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential. Acta Biomater. 8, 878–885 (2012). https://doi.org/10.1016/j.actbio.2011.10.023
H.N. Pantaroto, A.P. Ricomini-Filho, M.M. Bertolini, J.H. Dias da Silva, N.F. Azevedo Neto, C. Sukotjo, E.C. Rangel, V.A.R. Barão, Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm. Dent. Mater. 34, e182–e195 (2018). https://doi.org/10.1016/j.dental.2018.03.011
W.C. Jao, M.C. Yang, C.H. Lin, C.C. Hsu, Fabrication and characterization of electrospun silk fibroin/TiO2 nanofibrous mats for wound dressings. Polym. Adv. Technol. 23, 1066–1076 (2012). https://doi.org/10.1002/pat.2014
K. Hirakawa, in Fundamentals of Medicinal Application of Titanium Dioxide Nanoparticles (InTech, 2015), pp. 13–32. http://dx.doi.org/10.5772/61302
S. Çeşmeli, C. Biray Avci, Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J. Drug Target 27, 762–766 (2019). https://doi.org/10.1080/1061186X.2018.1527338
Z. Jing, D. Guo, W. Wang, S. Zhang, W. Qi, B. Ling, Comparative study of titania nanoparticles and nanotubes as antibacterial agents. Solid State Sci. 13, 1797–1803 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.07.010
M.H. Kafshgari, N.H. Voelcker, F.J. Harding, Applications of zero-valent silicon nanostructures in biomedicine. Nanomedicine (Lond) 10, 2553–2571 (2015). https://doi.org/10.2217/nnm.15.91
S. Bagheri, Z.A.M. Hir, A.T. Yousefi, S.B.A. Hamid, Progress on mesoporous titanium dioxide: synthesis, modification and applications. Microporous Mesoporous Mater. 218, 206–222 (2015). https://doi.org/10.1016/j.micromeso.2015.05.028
A.R. Gharakhlou, M.N. Sarvi, Synthesis of mesoporous nanoparticles of TiO2 from ilmenite. Mater. Res. Express 4, 025027 (2017). https://doi.org/10.1088/2053-1591/aa5bab
W. Guo, F. Wang, D. Ding, C. Song, C. Guo, S. Liu, TiO2–x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy. Chem. Mater. 29, 9262–9274 (2017). https://doi.org/10.1021/acs.chemmater.7b03241
H. Peng, J. Hu, C. Hu, T. Wu, X. Tian, Microwave absorbing Fe3O4@mTiO2 nanoparticles as an intelligent drug carrier for microwave-triggered synergistic cancer therapy. J. Nanosci. Nanotechnol. 17, 5139–5146 (2017). https://doi.org/10.1166/jnn.2017.13809
X.W. Lou, L.A. Archer, A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles. Adv. Mater. 20, 1853–1858 (2008). https://doi.org/10.1002/adma.200702379
W. Song, L. Zhao, K. Fang, B. Chang, Y. Zhang, Biofunctionalization of titanium implant with chitosan/sirna complex through loading-controllable and time-saving cathodic electrodeposition. J. Mater. Chem. B 3, 8567–8576 (2015). https://doi.org/10.1039/C5TB01062D
D. Liu, Y.G. Bi, Controllable fabrication of hollow TiO2 spheres as sustained release drug carrier. Adv. Powder Technol. 30, 2169–2177 (2019). https://doi.org/10.1016/j.apt.2019.06.032
X. Wang, W. Wang, L. Yu, Y. Tang, J. Cao, Y. Chen, Site-specific sonocatalytic tumor suppression by chemically engineered single-crystalline mesoporous titanium dioxide sonosensitizers. J. Mater. Chem. B 5, 4579–4586 (2017). https://doi.org/10.1039/C7TB00938K
W. Ding, C. Song, T. Li, H. Ma, Y. Yao, C. Yao, TiO2 nanowires as an effective sensing platform for rapid fluorescence detection of single-stranded DNA and double-stranded DNA. Talanta 199, 442–448 (2019). https://doi.org/10.1016/j.talanta.2019.02.002
Z.X. Hao, W. Wang, Y. Liang, J. Fu, M. Zhu, H. Shi, S. Lei, C. Tao, Visible-light-driven charge transfer to significantly improve surface-enhanced raman scattering (SERS) activity of self-cleaning TiO2/Au nanowire arrays as highly sensitive and recyclable SERS sensor. Sens. Actuators B Chem. 279, 313–319 (2019). https://doi.org/10.1016/j.snb.2018.10.010
W.Q. Wu, B.X. Lei, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, D.B. Kuang, Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci. Rep. 3, 1352 (2013). https://doi.org/10.1038/srep01352
T. Zhang, Z.U. Rahman, N. Wei, Y. Liu, J. Liang, D. Wang, In situ growth of single-crystal TiO2 nanorod arrays on ti substrate: controllable synthesis and photoelectro-chemical water splitting. Nano Res. 10, 1021–1032 (2017). https://doi.org/10.1007/s12274-016-1361-x
J. Kalb, A. Folger, E. Zimmermann, M. Gerigk, B. Trepka, C. Scheu, S. Polarz, L. Schmidt-Mende, Controlling the density of hydrothermally grown rutile TiO2 nanorods on anatase TiO2 films. Surf. Interfaces 15, 141–147 (2019). https://doi.org/10.1016/j.surfin.2019.02.010
Y. Wang, Y. Li, Z. Guo, W. Liu, R. Zhang, L. Chu, X.A. Li, Ethanol addition for morphology regulation of TiO2 nanorod arrays towards efficient hole-conductor-free perovskite solar cells. Funct. Mater. Lett. 11, 1850080 (2018). https://doi.org/10.1142/S1793604718500807
N. Wongkaew, Nanofiber-integrated miniaturized systems: an intelligent platform for cancer diagnosis. Anal. Bioanal. Chem. 411, 4251–4264 (2019). https://doi.org/10.1007/s00216-019-01589-5
A. Haider, S. Haider, I.K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11, 1165–1188 (2015). https://doi.org/10.1016/j.arabjc.2015.11.015
S. Mirmohammad Sadeghi, M. Vaezi, A. Kazemzadeh, R. Jamjah, Morphology enhancement of TiO2/PVP composite nanofibers based on solution viscosity and processing parameters of electrospinning method. J. Appl. Polym. 135, 46337 (2018). https://doi.org/10.1002/app.46337
P. Aghasiloo, M. Yousefzadeh, M. Latifi, R. Jose, Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic properties. J. Alloys Compd. 790, 257–265 (2019). https://doi.org/10.1016/j.jallcom.2019.03.175
G.L. Li, G.H. Wang, J.M. Hong, Synthesis and characterization of rutile TiO2 nanowhiskers. J. Mater. Res. Technol. 14, 3346–3354 (1999). https://doi.org/10.1557/JMR.1999.0453
Y.L. Pang, S. Lim, H.C. Ong, W.T. Chong, A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts. Appl. Catal. A 481, 127–142 (2014). https://doi.org/10.1016/j.apcata.2014.05.007
S. Kumar, P. Bhushan, S. Bhattacharya, in Fabrication of Nanostructures with Bottom-up Approach and Their Utility in Diagnostics, Therapeutics, and Others (Springer, 2018), pp. 167–198. https://doi.org/10.1007/978-981-10-7751-7_8
L. Zhang, X. Liao, A. Fok, C. Ning, P. Ng, Y. Wang, Effect of crystalline phase changes in titania (TiO2) nanotube coatings on platelet adhesion and activation. Mater. Sci. Eng. C 82, 91–101 (2018). https://doi.org/10.1016/j.msec.2017.08.024
N. Liu, X. Chen, J. Zhang, J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal. Today 225, 34–51 (2014). https://doi.org/10.1016/j.cattod.2013.10.090
M. Zulfiqar, S. Chowdhury, A.A. Omar, Hydrothermal synthesis of multiwalled TiO2 nanotubes and its photocatalytic activities for orange ii removal. Sep. Sci. Technol. 53, 1412–1422 (2018). https://doi.org/10.1080/01496395.2018.1444050
M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.Q. Zhang, S. Al-Deyab, Y. Lai, A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 4, 6772–6801 (2016). https://doi.org/10.1039/C5TA09323F
A. Kazufumi, T.S. Suzuki, E. Nakamura, A. Hiroya, Y. Suzuki, Aao-template assisted synthesis and size control of one-dimensional TiO2 nanomaterials. J. Ceram. Soc. Jpn. 121, 915–918 (2013). https://doi.org/10.2109/jcersj2.121.915
H.R. Jafry, M.V. Liga, Q. Li, A.R. Barron, Single walled carbon nanotubes (SWNTs) as templates for the growth of TiO2: the effect of silicon in coverage and the positive and negative synergies for the photocatalytic degradation of congo red dye. New J. Chem. 35, 400–406 (2011). https://doi.org/10.1039/C0NJ00604A
Z. Ma, J. Gao, X. Wu, Y. Xie, H. Yuan, Y. Shi, Preparation of well-aligned TiO2 nanotubes with high length-diameter aspect ratio by anodic oxidation method. J. Nanosci. Nanotechnol. 18, 5810–5816 (2018). https://doi.org/10.1166/jnn.2018.15397
Y. Fu, A. Mo, A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications. Nanoscale Res. Lett. 13, 187 (2018). https://doi.org/10.1186/s11671-018-2597-z
K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385–9454 (2014). https://doi.org/10.1021/cr500061m
G. Liu, K. Wang, N. Hoivik, H. Jakobsen, Progress on free-standing and flow-through TiO2 nanotube membranes. Sol. Energy Mater. Sol. Cells 98, 24–38 (2012). https://doi.org/10.1016/j.solmat.2011.11.004
W.M. Seong, D.H. Kim, I.J. Park, G.D. Park, K. Kang, S. Lee, K.S. Hong, Roughness of ti substrates for control of the preferred orientation of TiO2 nanotube arrays as a new orientation factor. J. Phys. Chem. C 119, 13297–13305 (2015). https://doi.org/10.1021/acs.jpcc.5b02371
J.H. Lim, J. Choi, Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model. Small 3, 1504–1507 (2007). https://doi.org/10.1002/smll.200700114
Z. Xing, X. Zong, T. Butburee, J. Pan, Y. Bai, L. Wang, Nanohybrid materials of titania nanosheets and plasmonic gold nanoparticles for effective hydrogen evolution. Appl. Catal. A 521, 96–103 (2016). https://doi.org/10.1016/j.apcata.2016.01.014
X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152 (2009). https://doi.org/10.1021/ja8092373
X. Gan, X. Gao, J. Qiu, P. He, X. Li, X. Xiao, TiO2 nanorod-derived synthesis of upstanding hexagonal kassite nanosheet arrays: an intermediate route to novel nanoporous TiO2 nanosheet arrays. Cryst. Growth Des. 12, 289–296 (2012). https://doi.org/10.1021/cg2010612
Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, W. Zheng, Y. Cao, The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity. J. Phys. Chem. C 118, 12727–12733 (2014). https://doi.org/10.1021/jp500252g
J. Zhang, Z. Zhu, Y. Tang, K. Müllen, X. Feng, Titania nanosheet-mediated construction of a two-dimensional titania/cadmium sulfide heterostructure for high hydrogen evolution activity. Adv. Mater. 26, 734–738 (2014). https://doi.org/10.1002/adma.201303571
T. Ban, T. Nakagawa, Y. Ohya, Bottom-up synthesis of titanate nanosheets in aqueous sols and their morphology change by the addition of organic ligands and dialysis. Cryst. Growth Des. 15, 1801–1807 (2015). https://doi.org/10.1021/cg501852a
S. Zhang, H. Li, S. Wang, Y. Liu, H. Chen, Z. Lu, Bacteria-assisted synthesis of nanosheets-assembled TiO2 hierarchical architectures for constructing TiO2-based composites for photocatalytic and electrocatalytic application. ACS Appl. Mater. Interfaces 11, 37004–37012 (2019). https://doi.org/10.1021/acsami.9b15282
C. Uboldi, P. Urbán, D. Gilliland, E. Bajak, E. Valsami-Jones, J. Ponti, F. Rossi, Role of the crystalline form of titanium dioxide nanoparticles: rutile, and not anatase, induces toxic effects in balb/3T3 mouse fibroblasts. Toxicol. In Vitro 31, 137–145 (2016). https://doi.org/10.1016/j.tiv.2015.11.005
S. Sugapriya, R. Sriram, S. Lakshmi, Effect of annealing on TiO2 nanoparticles. Optik 124, 4971–4975 (2013). https://doi.org/10.1016/j.ijleo.2013.03.040
A. Hamlekhan, A. Butt, S. Patel, D. Royhman, C. Takoudis et al., Fabrication of anti-aging TiO2 nanotubes on biomedical ti alloys. PLoS ONE 9, e96213 (2014). https://doi.org/10.1371/journal.pone.0096213
M. Osada, S. Yoguchi, M. Itose, B.W. Li, Y. Ebina et al., Controlled doping of semiconducting titania nanosheets for tailored spinelectronic materials. Nanoscale 6, 14227–14236 (2014). https://doi.org/10.1039/C4NR04465G
A. Stavrinadis, G. Konstantatos, Strategies for controlled electronic doping of colloidal quantum dot solids. ChemPhysChem 17, 632–644 (2015). https://doi.org/10.1002/cphc.201500834
F. Dong, H. Wang, Z. Wu, One-step “green” synthetic approach for mesoporous c-doped titanium dioxide with efficient visible light photocatalytic activity. J. Phys. Chem. C 113, 16717–16723 (2009). https://doi.org/10.1021/jp9049654
Z.G.M. Azzawi, T.I. Hamad, S.A. Kadhim, G.A.H. Naji, Osseointegration evaluation of laser-deposited titanium dioxide nanoparticles on commercially pure titanium dental implants. J. Mater. Sci. Mater. Med. 29, 96 (2018). https://doi.org/10.1007/s10856-018-6097-6
Z.D. Gao, Y. Qu, T. Li, N.K. Shrestha, Y.Y. Song, Development of amperometric glucose biosensor based on prussian blue functionlized TiO2 nanotube arrays. Sci. Rep. 4, 6891 (2014). https://doi.org/10.1038/srep06891
T.C. Damato, C.C. de Oliveira, R.A. Ando, P.H. Camargo, A facile approach to TiO2 colloidal spheres decorated with Au nanoparticles displaying well-defined sizes and uniform dispersion. Langmuir 29, 1642–1649 (2013). https://doi.org/10.1021/la3045219
A. Bauer, K. Lee, C. Song, Y. Xie, J. Zhang, R. Hui, Pt nanoparticles deposited on TiO2 based nanofibers: electrochemical stability and oxygen reduction activity. J. Power Sources 195, 3105–3110 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.107
N.T. Nguyen, M. Altomare, J. Yoo, P. Schmuki, Efficient photocatalytic H2 evolution: controlled dewetting-dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays. Adv. Mater. 27, 3208–3215 (2015). https://doi.org/10.1002/adma.201500742
M.S. Killian, P. Schmuki, Influence of bioactive linker molecules on protein adsorption. Surf. Interface Anal. 46, 193–197 (2014). https://doi.org/10.1002/sia.5497
M.H. Kafshgari, M. Alnakhli, B. Delalat, S. Apostolou, F. Harding et al., Small interfering RNA delivery by polyethylenimine-functionalised porous silicon nanoparticles. Biomater. Sci. 3, 1555–1565 (2015). https://doi.org/10.1039/C5BM00204D
J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies et al., Thermal carbonization of porous silicon: the current status and recent applications. ECS Trans. 69, 167–176 (2015). https://doi.org/10.1149/06902.0167ecst
G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang et al., Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011). https://doi.org/10.1021/nl201766h
Y. Wang, S. Duan, Z. Tian, Y. Shen, M. Xie, X. Guo, X. Guo, Fabrication of TiO2@ carbon core-shell nanosheets for advanced lithium-ion batteries with excellent cyclability. J. Mater. Chem. A 5, 6047–6051 (2017). https://doi.org/10.1039/C6TA11187D
G. Loget, J.E. Yoo, A. Mazare, L. Wang, P. Schmuki, Highly controlled coating of biomimetic polydopamine in TiO2 nanotubes. Electrochem. Commun. 52, 41–44 (2015). https://doi.org/10.1016/j.elecom.2015.01.011
V.K.H. Bui, D. Park, Y.C. Lee, Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers 9, 21 (2017). https://doi.org/10.3390/polym9010021
S. Rahim, M.S. Ghamsari, S. Radiman, Surface modification of titanium oxide nanocrystals with PEG. Sci. Iran. 19, 948–953 (2012). https://doi.org/10.1016/j.scient.2012.03.009
A. Márquez, T. Berger, A. Feinle, N. Hüsing, M. Himly, A. Duschl, O. Diwald, Bovine serum albumin adsorption on TiO2 colloids: the effect of particle agglomeration and surface composition. Langmuir 33, 2551–2558 (2017). https://doi.org/10.1021/acs.langmuir.6b03785
G.T. Hermanson, Bioconjugate Techniques, 3rd edn (Academic Press, 2013), pp. 1200. https://doi.org/10.1016/C2009-0-64240-9
J. Shu, Z. Han, H. Cui, Highly chemiluminescent TiO2/tetra(4-carboxyphenyl)porphyrin/n-(4-aminobutyl)-n-ethylisoluminol nanoluminophores for detection of heart disease biomarker copeptin based on chemiluminescence resonance energy transfer. Anal. Bioanal. Chem. 411, 4175–4183 (2019). https://doi.org/10.1007/s00216-019-01821-2
K. Brown, T. Thurn, L. Xin, W. Liu, R. Bazak et al., Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection. Nano Res. 11, 464–476 (2018). https://doi.org/10.1007/s12274-017-1654-8
N. Zhang, Y. Deng, Q. Tai, B. Cheng, L. Zhao et al., Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv. Mater. 24, 2756–2760 (2012). https://doi.org/10.1002/adma.201200155
L. He, C. Mao, M. Brasino, A. Harguindey, W. Park, A.P. Goodwin, J.N. Cha, TiO2-capped gold nanorods for plasmon-enhanced production of reactive oxygen species and photothermal delivery of chemotherapeutic agents. ACS Appl. Mater. Interfaces 10, 27965–27971 (2018). https://doi.org/10.1021/acsami.8b08868
N. Mustafaoglu, T. Kiziltepe, B. Bilgicer, Site-specific conjugation of an antibody on a gold nanoparticle surface for one-step diagnosis of prostate specific antigen with dynamic light scattering. Nanoscale 9, 8684–8694 (2017). https://doi.org/10.1039/c7nr03096g
C.H. Lai, S. Choon Lim, L.C. Wu, C.F. Wang, W.S. Tsai, H.C. Wu, Y.C. Chang, Site-specific antibody modification and immobilization on a microfluidic chip to promote the capture of circulating tumor cells and microemboli. Chem. Commun. 53, 4152–4155 (2017). https://doi.org/10.1039/C7CC00247E
R. Toy, K. Roy, Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng. Transl. Med. 1, 47–62 (2016). https://doi.org/10.1002/btm2.10005
M.H. Kafshgari, F.J. Harding, N.H. Voelcker, Insights into cellular uptake of nanoparticles. Curr. Drug Deliv. 12, 63–77 (2015). https://doi.org/10.2174/1567201811666140821110631
K.T. Thurn, H. Arora, T. Paunesku, A. Wu, E.M.B. Brown, C. Doty, J. Kremer, G. Woloschak, Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine NBM 7, 123–130 (2011). https://doi.org/10.1016/j.nano.2010.09.004
E.L.S. da Rosa, Kinetic effects of TiO2 fine particles and nanoparticles aggregates on the nanomechanical properties of human neutrophils assessed by force spectroscopy. BMC Biophys. 6, 11 (2013). https://doi.org/10.1186/2046-1682-6-11
K. McNear, Y. Huang, C. Yang, Understanding cellular internalization pathways of silicon nanowires. J. Nanobiotechnol. 15, 17 (2017). https://doi.org/10.1186/s12951-017-0250-0
Y. Wang, K. Sui, J. Fang, C. Yao, L. Yuan, Q. Wu, M. Wu, Cytotoxicity evaluation and subcellular location of titanium dioxide nanotubes. Appl. Biochem. Biotechnol. 171, 1568–1577 (2013). https://doi.org/10.1007/s12010-013-0447-0
J. Zhang, X. Cai, Y. Zhang, X. Li, W. Li et al., Imaging cellular uptake and intracellular distribution of TiO2 nanoparticles. Anal. Methods 5, 6611–6616 (2013). https://doi.org/10.1039/C3AY41121D
M. Biola-Clier, D. Beal, S. Caillat, S. Libert, L. Armand et al., Comparison of the DNA damage response in BEAS-2b and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis 32, 161–172 (2017). https://doi.org/10.1093/mutage/gew055
K.N. Yu, S.H. Chang, S.J. Park, J. Lim, J. Lee, T.J. Yoon, J.S. Kim, M.H. Cho, Titanium dioxide nanoparticles induce endoplasmic reticulum stress-mediated autophagic cell death via mitochondria-associated endoplasmic reticulum membrane disruption in normal lung cells. PLoS ONE 10, e0131208 (2015). https://doi.org/10.1371/journal.pone.0131208
B. Trouiller, R. Reliene, A. Westbrook, P. Solaimani, R.H. Schiestl, Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 69, 8784–8789 (2009). https://doi.org/10.1158/0008-5472.CAN-09-2496
A. Magrez, L. Horvth, R. Smajda, V. Salicio, N. Pasquier, L. Forro, B. Schwaller, Cellular toxicity of TiO2-based nanofilaments. ACS Nano 3, 2274–2280 (2009). https://doi.org/10.1021/nn9002067
R. Allen, The cytotoxic and genotoxic potential of titanium dioxide (TiO2) nanoparticles on human sh-sy5y neuronal cells in vitro. Plymouth Stud. Sci. 9, 5–28 (2016)
C.W. Chen, J.H. Huang, T.C. Lai, Y.H. Jan, M. Hsiao, C.H. Chen, Y.K. Hwu, R.S. Liu, Evaluation of the intracellular uptake and cytotoxicity effect of TiO2 nanostructures for various human oral and lung cells under dark conditions. Toxicol. Res. 5, 303–311 (2016). https://doi.org/10.1039/c5tx00312a
M.S. Mohamed, A. Torabi, M. Paulose, D.S. Kumar, O.K. Varghese, Anodically grown titania nanotube induced cytotoxicity has genotoxic origins. Sci. Rep. 7, 41844 (2017). https://doi.org/10.1038/srep41844
L. Li, X. Mu, L. Ye, Y. Ze, F. Hong, Suppression of testosterone production by nanoparticulate TiO2 is associated with ERK1/2–PKA–PKC signaling pathways in rat primary cultured leydig cells. Int. J. Nanomed. 13, 5909–5924 (2018). https://doi.org/10.2147/IJN.S175608
M. Allegri, M.G. Bianchi, M. Chiu, J. Varet, A.L. Costa et al., Shape-related toxicity of titanium dioxide nanofibres. PLoS ONE 11, e0151365 (2016). https://doi.org/10.1371/journal.pone.0151365
E.J. Park, G.H. Lee, H.W. Shim, J.H. Kim, M.H. Cho, D.W. Kim, Comparison of toxicity of different nanorod-type TiO2 polymorphs in vivo and in vitro. J. Appl. Toxicol. 34, 357–366 (2014). https://doi.org/10.1002/jat.2932
F. Fenyvesi, Z. Kónya, Z. Rázga, M. Vecsernyés, P. Kása, K. Pintye-Hódi, I. Bácskay, Investigation of the cytotoxic effects of titanate nanotubes on Caco-2 cells. AAPS PharmSciTech 15, 858–861 (2014). https://doi.org/10.1208/s12249-014-0115-x
H. Zheng, L.J. Mortensen, S. Ravichandran, K. Bentley, L.A. DeLouise, Effect of nanoparticle surface coating on cell toxicity and mitochondria uptake. J. Biomed. Nanotechnol. 13, 155–166 (2017). https://doi.org/10.1166/jbn.2017.2337
E.J. Park, G.H. Lee, C. Yoon, M.S. Kang, S.N. Kim, M.H. Cho, J.H. Kim, D.W. Kim, Time-dependent bioaccumulation of distinct rod-type TiO2 nanoparticles: comparison by crystalline phase. J. Appl. Toxicol. 34, 1265–1270 (2014). https://doi.org/10.1002/jat.3006
L.K. Braydich-Stolle, N.M. Schaeublin, R.C. Murdock, J. Jiang, P. Biswas, J.J. Schlager, S.M. Hussain, Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J. Nanopart. Res. 11, 1361–1374 (2009). https://doi.org/10.1007/s11051-008-9523-8
É. de Melo Reis, A.A.A. de Rezende, P.F. de Oliveira, H.D. Nicolella, D.C. Tavares et al., Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the drosophila wing spot test. Food Chem. Toxicol. 96, 309–319 (2016). https://doi.org/10.1016/j.fct.2016.08.023
Q. Sun, K. Kanehira, A. Taniguchi, Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells. Sci. Technol. Adv. Mater. 17, 669–676 (2016). https://doi.org/10.1080/14686996.2016.1239499
R. Tedja, The impact of titanium dioxide nanoparticles on human lung cell lines in vitro. Chemical Sciences Engineering, Faculty of Engineering, The University of New South Wales (2012). http://handle.unsw.edu.au/1959.4/52987
R. Tedja, A.H. Soeriyadi, M.R. Whittaker, M. Lim, C. Marquis, C. Boyer, T.P. Davis, R. Amal, Effect of TiO2 nanoparticle surface functionalization on protein adsorption, cellular uptake and cytotoxicity: the attachment of PEG comb polymers using catalytic chain transfer and thiol-ene chemistry. Polym. Chem. 3, 2743–2751 (2012). https://doi.org/10.1039/C2PY20450A
M.A. Alvarez Lemus, H. Monroy, T. Lopez, E.N. de la Cruz Hernández, R. López-González, Effect of surface modification on the bioactivity of sol–gel TiO2-based nanomaterials. J. Chem. Technol. Biotechnol. 91, 2148–2155 (2016). https://doi.org/10.1002/jctb.4915
H. Shi, R. Magaye, V. Castranova, J. Zhao, Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol. 10, 15 (2013). https://doi.org/10.1186/1743-8977-10-15
J. Mao, L. Wang, Z. Qian, M. Tu, Uptake and cytotoxicity of Ce(IV) doped TiO2 nanoparticles in human hepatocyte cell line L02. J. Nanomater. 2010, 910434 (2010). https://doi.org/10.1155/2010/910434
K.C. Popat, M. Eltgroth, T.J. LaTempa, C.A. Grimes, T.A. Desai, Decreased staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28, 4880–4888 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.037
K.S. Brammer, C.J. Frandsen, S. Jin, TiO2 nanotubes for bone regeneration. Trends Biotechnol. 30, 315–322 (2012). https://doi.org/10.1016/j.tibtech.2012.02.005
A. Tan, B. Pingguan-Murphy, R. Ahmad, S. Akbar, Review of titania nanotubes: fabrication and cellular response. Ceram. Int. 38, 4421–4435 (2012). https://doi.org/10.1016/j.ceramint.2012.03.002
K.S. Brammer, S. Oh, C.J. Cobb, L.M. Bjursten, H. van der Heyde, S. Jin, Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 5, 3215–3223 (2009). https://doi.org/10.1016/j.actbio.2009.05.008
W. Lü, N. Wang, P. Gao, C. Li, H. Zhao, Z. Zhang, Effects of anodic titanium dioxide nanotubes of different diameters on macrophage secretion and expression of cytokines and chemokines. Cell Prolif. 48, 95–104 (2015). https://doi.org/10.1111/cpr.12149
P. Neacsu, A. Mazare, P. Schmuki, A. Cimpean, Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways. Int. J. Nanomed. 10, 6455 (2015). https://doi.org/10.2147/IJN.S92019
E. Fabian, R. Landsiedel, L. Ma-Hock, K. Wiench, W. Wohlleben, B. Van Ravenzwaay, Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch. Toxicol. 82, 151–157 (2008). https://doi.org/10.1007/s00204-007-0253-y
J. Chen, X. Dong, J. Zhao, G. Tang, In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J. Appl. Toxicol. 29, 330–337 (2009). https://doi.org/10.1002/jat.1414
J. Wang, Y. Fan, Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. Int. J. Mol. Sci. 15, 22258–22278 (2014). https://doi.org/10.3390/ijms151222258
H. Kan, Z. Wu, S.H. Young, T.H. Chen, J.L. Cumpston, F. Chen, M.L. Kashon, V. Castranova, Pulmonary exposure of rats to ultrafine titanium dioxide enhances cardiac protein phosphorylation and substance p synthesis in nodose ganglia. Nanotoxicology 6, 736–745 (2012). https://doi.org/10.3109/17435390.2011.611915
Q. Sun, D. Tan, Y. Ze, X. Sang, X. Liu et al., Pulmotoxicological effects caused by long-term titanium dioxide nanoparticles exposure in mice. J. Hazard. Mater. 235, 47–53 (2012). https://doi.org/10.1016/j.jhazmat.2012.05.072
T. Tang, Z. Zhang, X. Zhu, Toxic effects of TiO2 NPs on zebrafish. Int. J. Environ. Res. Public Health 16, 523 (2019). https://doi.org/10.3390/ijerph16040523
N. Li, Y. Duan, M. Hong, L. Zheng, M. Fei et al., Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticules. Toxicol. Lett. 195, 161–168 (2010). https://doi.org/10.1016/j.toxlet.2010.03.1116
L. Ma, J. Liu, N. Li, J. Wang, Y. Duan et al., Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31, 99–105 (2010). https://doi.org/10.1016/j.biomaterials.2009.09.028
A. Cetinkaya, E.B. Kurutas, M.A. Buyukbese, B. Kantarceken, E. Bulbuloglu, Levels of malondialdehyde and superoxide dismutase in subclinical hyperthyroidism. Mediat. Inflamm. 2005, 57–59 (2005). https://doi.org/10.1155/MI.2005.57
S. Li, H.Y. Tan, N. Wang, Z.J. Zhang, L. Lao, C.W. Wong, Y. Feng, The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci. 16, 26087–26124 (2015). https://doi.org/10.3390/ijms161125942
A. Nemmar, K. Melghit, B.H. Ali, The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats. Exp. Biol. Med. 233, 610–619 (2008). https://doi.org/10.3181/0706-RM-165
D. Elgrabli, R. Beaudouin, N. Jbilou, M. Floriani, A. Pery, F. Rogerieux, G. Lacroix, Biodistribution and clearance of TiO2 nanoparticles in rats after intravenous injection. PLoS ONE 10, e0124490 (2015). https://doi.org/10.1371/journal.pone.0124490
J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8
M.C. Liu, B. Liu, X.Y. Sun, H.C. Lin, J.Z. Lu et al., Core/shell structured Fe3O4@TiO2-DNM nanospheres as multifunctional anticancer platform: chemotherapy and photodynamic therapy research. J. Nanosci. Nanotechnol. 18, 4445–4456 (2018). https://doi.org/10.1166/jnn.2018.15338
Y.Y. Song, P. Roy, I. Paramasivam, P. Schmuki, Voltage-induced payload release and wettability control on TiO2 and TiO2 nanotubes. Angew. Chem. Int. Ed. 49, 351–354 (2010). https://doi.org/10.1002/anie.200905111
F.F. Wang, Y. Li, H.C. Liu, A study on PLGA sustained release icariin/titanium dioxide nanotube composite coating. Eur. Rev. Med. Pharmacol. 23, 911–917 (2019). https://doi.org/10.26355/eurrev_201902_16974
G.G. Genchi, Y. Cao, T.A. Desai, in TiO2 Nanotube Arrays as Smart Platforms for Biomedical Applications (Elsevier, 2018), pp. 143–157. https://doi.org/10.1016/B978-0-12-814156-4.00010-0
M. SinnáAw, A multi-drug delivery system with sequential release using titania nanotube arrays. Chem. Commun. 48, 3348–3350 (2012). https://doi.org/10.1039/C2CC17690D
F. Ge, M. Yu, C. Yu, J. Lin, W. Weng, K. Cheng, H. Wang, Improved RHBMP-2 function on mbg incorporated TiO2 nanorod films. Colloids Surf. B: Biointerfaces 150, 153–158 (2017). https://doi.org/10.1016/j.colsurfb.2016.11.030
S. Samadi, M. Moradkhani, H. Beheshti, M. Irani, M. Aliabadi, Fabrication of chitosan/poly(lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer. Int. J. Biol. Macromol. 110, 416–424 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.048
X. Wang, D. Zhang, Q. Xiang et al., Review of water-assisted crystallization for TiO2 nanotubes. Nano-Micro Lett. 10, 77 (2018). https://doi.org/10.1007/s40820-018-0230-4
E. Liu, Y. Zhou, Z. Liu, J. Li, D. Zhang, J. Chen, Z. Cai, Cisplatin loaded hyaluronic acid modified TiO2 nanoparticles for neoadjuvant chemotherapy of ovarian cancer. J. Nanomater. 16, 275 (2015). https://doi.org/10.1155/2015/390358
F.F. Cheng, P. Sun, W.W. Xiong, Y. Zhang, Q. Zhang, W. Yao, Y. Cao, L. Zhang, Multifunctional titanium phosphate nanoparticles for site-specific drug delivery and real-time therapeutic efficacy evaluation. Analyst 144, 3103–3110 (2019). https://doi.org/10.1039/c8an02450b
Y. Du, W. Ren, Y. Li, Q. Zhang, L. Zeng, C. Chi, A. Wu, J. Tian, The enhanced chemotherapeutic effects of doxorubicin loaded PEG coated TiO2 nanocarriers in an orthotopic breast tumor bearing mouse model. J. Mater. Chem. B 3, 1518–1528 (2015). https://doi.org/10.1039/C4TB01781A
T. Zheng, W. Wang, F. Wu, M. Zhang, J. Shen, Y. Sun, Zwitterionic polymer-gated Au@TiO2 core-shell nanoparticles for imaging-guided combined cancer therapy. Theranostics 9, 5035–5048 (2019). https://doi.org/10.7150/thno.35418
V.V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, H. Parihar, Magnetic nanoparticle drug delivery systems for targeting tumor. Appl. Nanosci. 4, 385–392 (2014). https://doi.org/10.1007/s13204-013-0216-y
L. Zeng, W. Ren, L. Xiang, J. Zheng, B. Chen, A. Wu, Multifunctional Fe3O4–TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. Nanoscale 5, 2107–2113 (2013). https://doi.org/10.1039/C3NR33978E
N.K. Shrestha, J.M. Macak, F. Schmidt-Stein, R. Hahn, C.T. Mierke, B. Fabry, P. Schmuki, Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew. Chem. Int. Ed. 48, 969–972 (2009). https://doi.org/10.1002/anie.200804429
J. Wu, Y. Liu, W. Li, C. Wang, Y. Li et al., Magnetically guided survivin-sirna delivery and simultaneous dual-modal imaging visualization based on Fe3O4@mTiO2 nanospheres for breast cancer. J. Mater. Chem. B 2, 7756–7764 (2014). https://doi.org/10.1039/C4TB01264J
Q. Yu, J. Sun, X. Zhu, L. Qiu, M. Xu, S. Liu, J. Ouyang, J. Liu, Mesoporous titanium dioxide nanocarrier with magnetic-targeting and high loading efficiency for dual-modal imaging and photodynamic therapy. J. Mater. Chem. B 5, 6081–6096 (2017). https://doi.org/10.1039/C7TB01035D
B.P. Chelobanov, M.N. Repkova, S.I. Baiborodin, E.I. Ryabchikova, D.A. Stetsenko, Nuclear delivery of oligonucleotides via nanocomposites based on TiO2 nanoparticles and polylysine. Mol. Biother. 51, 695–704 (2017). https://doi.org/10.1134/S0026893317050065
X. Zhang, Z. Zhang, G. Shen, J. Zhao, Enhanced osteogenic activity and anti-inflammatory properties of lenti-BMP-2-loaded TiO2 nanotube layers fabricated by lyophilization following trehalose addition. Int. J. Nanomed. 11, 429–439 (2016). https://doi.org/10.2147/IJN.S93177
H. Schneckenburger, Laser-assisted optoporation of cells and tissues—a mini-review. Biomed. Opt. Express 10, 2883–2888 (2019). https://doi.org/10.1364/BOE.10.002883
A.M. Wilson, J. Mazzaferri, E.R. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. Sapieha, M. Meunier, In vivo laser-mediated retinal ganglion cell optoporation using Kv1. 1 conjugated gold nanoparticles. Nano Lett. 18, 6981–6988 (2018). https://doi.org/10.1021/acs.nanolett.8b02896
L. Gao, R. Liu, F. Gao, Y. Wang, X. Jiang, X. Gao, Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 8, 7260–7271 (2014). https://doi.org/10.1021/nn502325j
G. Ou, Z. Li, D. Li, L. Cheng, Z. Liu, H. Wu, Photothermal therapy by using titanium oxide nanoparticles. Nano Res. 9, 1236–1243 (2016). https://doi.org/10.1007/s12274-016-1019-8
Z. Shah, S. Nazir, K. Mazhar, R. Abbasi, I.M. Samokhvalov, PEGylated doped- and undoped-TiO2 nanoparticles for photodynamic therapy of cancers. Photodiagnosis Photodyn. Ther. 27, 173–183 (2019). https://doi.org/10.1016/j.pdpdt.2019.05.019
D. Rebleanu, C. Gaidau, G. Voicu, C.A. Constantinescu, C. Mansilla Sánchez, T.C. Rojas, S. Carvalho, M. Calin, The impact of photocatalytic Ag/TiO2 and Ag/n-TiO2 nanoparticles on human keratinocytes and epithelial lung cells. Toxicology 416, 30–43 (2019). https://doi.org/10.1016/j.tox.2019.01.013
J.L. Chen, H. Zhang, X.Q. Huang, H.Y. Wan, J. Li et al., Antiangiogenesis-combined photothermal therapy in the second near-infrared window at laser powers below the skin tolerance threshold. Nano-Micro Lett. 11, 93 (2019). https://doi.org/10.1007/s40820-019-0327-4
D.G. You, V. Deepagan, W. Um, S. Jeon, S. Son et al., Ros-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci. Rep. 6, 23200 (2016). https://doi.org/10.1038/srep23200
Y. Cao, T. Wu, W. Dai, H. Dong, X. Zhang, TiO2 nanosheets with Au nanocrystals decorated edge for mitochondria-targeting enhanced sonodynamic therapy. Chem. Mater. 31, 9105–9114 (2019). https://doi.org/10.1021/acs.chemmater.9b03430
Z. Yu, W. Pan, N. Li, B. Tang, A nuclear targeted dual-photosensitizer for drug-resistant cancer therapy with nir activated multiple ROS. Chem. Sci. 7, 4237–4244 (2016). https://doi.org/10.1039/C6SC00737F
E. Rozhkova, I. Ulasov, S. Nandi, L. Zhang, T. Rajh, M. Lesniak, Development and evaluation of TiO2-nanoparticles for gene therapy of brain tumors. Mol. Ther. 16, S321 (2008). https://doi.org/10.1016/S1525-0016(16)40264-9
Z.F. Yin, L. Wu, H.G. Yang, Y.H. Su, Recent progress in biomedical applications of titanium dioxide. Phys. Chem. Chem. Phys. 15, 4844–4858 (2013). https://doi.org/10.1039/C3CP43938K
S. Wintzheimer, E. Genin, L. Vellutini, G. Le Bourdon, M. Kessler, S. Hackenberg, S. Dembski, K. Heuzé, Functionalisation of TiO2 nanoparticles with a fluorescent organosilane: a synergy enabling their visualisation in biological cells and an enhanced photocatalytic activity. Colloids Surf. B: Biointerfaces 181, 1019–1025 (2019). https://doi.org/10.1016/j.colsurfb.2019.05.060
T. Kawai, Y. Kishimoto, K. Kifune, Photoluminescence studies of nitrogen-doped TiO2 powders prepared by annealing with urea. Philos. Mag. 92, 4088–4097 (2012). https://doi.org/10.1080/14786435.2012.7044231
J.S. Roy, T.P. Majumder, R. Dabrowski, Photoluminescence behavior of TiO2 nanoparticles doped with liquid crystals. J. Mol. Struct. 1098, 351–354 (2015). https://doi.org/10.1016/j.molstruc.2015.06.028
W.G. Kreyling, U. Holzwarth, N. Haberl, J. Kozempel, A. Wenk et al., Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats: part 3. Nanotoxicology 11, 454–464 (2017). https://doi.org/10.1080/17435390.2017.1306894
J. Estelrich, M.J. Sánchez-Martín, M.A. Busquets, Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int. J. Nanomed. 10, 1727–1741 (2015). https://doi.org/10.2147/IJN.S76501
T.P. Dasari Shareena, D. McShan, A.K. Dasmahapatra, P.B. Tchounwou, A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 10, 53 (2018). https://doi.org/10.1007/s40820-018-0206-4
X. Wang, H. Zhang, H. Jing, L. Cui, Highly efficient labeling of human lung cancer cells using cationic poly-l-lysine-assisted magnetic iron oxide nanoparticles. Nano-Micro Lett. 7, 374–384 (2015). https://doi.org/10.1007/s40820-015-0053-5
F. Yalçıner, E. Çevik, M. Şenel, A. Baykal, Development of an amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto nickel ferrite nanoparticle-chitosan composite. Nano-Micro Lett. 3, 91–98 (2011). https://doi.org/10.1007/BF03353657
S.J. Sadeghi, in Amperometric Biosensors (Springer Berlin Heidelberg; Berlin, Heidelberg, 2013), pp. 61–67. https://doi.org/10.1007/978-3-642-16712-6_713
J. Wang, G. Xu, X. Zhang, J. Lv, X. Zhang, Z. Zheng, Y. Wu, Electrochemical performance and biosensor application of TiO2 nanotube arrays with mesoporous structures constructed by chemical etching. Dalton Trans. 44, 7662–7672 (2015). https://doi.org/10.1039/C5DT00678C
J. Li, X. Li, Q. Zhao, Z. Jiang, M. Tadé, S. Wang, S. Liu, Polydopamine-assisted decoration of TiO2 nanotube arrays with enzyme to construct a novel photoelectrochemical sensing platform. Sens. Actuators B: Chem. 255, 133–139 (2018). https://doi.org/10.1016/j.snb.2017.06.168
R. Wu, G.C. Fan, L.P. Jiang, J.J. Zhu, Peptide-based photoelectrochemical cytosensor using a hollow-TiO2/EG/ZnIn2S4 cosensitized structure for ultrasensitive detection of early apoptotic cells and drug evaluation. ACS Appl. Mater. Interfaces 10, 4429–4438 (2018). https://doi.org/10.1021/acsami.7b16054
Y. Wang, G. Zhao, Y. Zhang, B. Du, Q. Wei, Ultrasensitive photoelectrochemical immunosensor based on Cu-doped TiO2 and carbon nitride for detection of carcinoembryonic antigen. Carbon 146, 276–283 (2019). https://doi.org/10.1016/j.carbon.2019.02.008
C.C. Lin, Y.M. Chu, H.C. Chang, In situ encapsulation of antibody on TiO2 nanowire immunosensor via electro-polymerization of polypyrrole propylic acid. Sens. Actuators B: Chem. 187, 533–539 (2013). https://doi.org/10.1016/j.snb.2013.03.045
R. Wang, C. Ruan, D. Kanayeva, K. Lassiter, Y. Li, TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of listeria monocytogenes. Nano Lett. 8, 2625–2631 (2008). https://doi.org/10.1021/nl080366q
W. Li, R. Li, B. Huang, Z. Wang, Y. Sun et al., TiO2 nanopillar arrays coated with gelatin film for efficient capture and undamaged release of circulating tumor cells. Nanotechnology 30, 335101 (2019). https://doi.org/10.1088/1361-6528/ab176c
M. Rasoulianboroujeni, F. Fahimipour, P. Shah, K. Khoshroo, M. Tahriri et al., Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Mater. Sci. Eng. C 96, 105–113 (2019). https://doi.org/10.1016/j.msec.2018.10.077
M. Vercellino, G. Ceccarelli, F. Cristofaro, M. Balli, F. Bertoglio et al., Nanostructured TiO2 surfaces promote human bone marrow mesenchymal stem cells differentiation to osteoblasts. Nanomaterials 6, 124 (2016). https://doi.org/10.3390/nano6070124
Y. Hou, K. Cai, J. Li, X. Chen, M. Lai, Y. Hu, Z. Luo, X. Ding, D. Xu, Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int. J. Nanomed. 8, 3619 (2013). https://doi.org/10.2147/IJN.S38992
K. Li, T. Yan, Y. Xue, L. Guo, L. Zhang, Y. Han, Intrinsically ferromagnetic Fe-doped TiO2 coatings on titanium for accelerating osteoblast response in vitro. J. Mater. Chem. B 6, 5756–5767 (2018). https://doi.org/10.1039/C8TB01414K
A. Ma, H. Shang, Y. Song, B. Chen, Y. You et al., Icariin-functionalized coating on TiO2 nanotubes surface to improve osteoblast activity in vitro and osteogenesis ability in vivo. Coatings 9, 327 (2019). https://doi.org/10.3390/coatings9050327
S. Babitha, M. Annamalai, M.M. Dykas, S. Saha, K. Poddar et al., Fabrication of a biomimetic zeinpda nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering. J. Tissue Eng. Regen. Med. 12, 991–1001 (2018). https://doi.org/10.1002/term.2563
H. Zhu, T. Yan, X. Cai, X. Xu, Characterization and property of a bone sialoprotein fragment coated TiO2 nanotube. J. Biomater. Tissue Eng. 8, 632–639 (2018). https://doi.org/10.1166/jbt.2018.1791
M. Chen, Y. Hu, M. Li, M. Chen, X. Shen et al., Regulation of osteoblast differentiation by osteocytes cultured on sclerostin antibody conjugated TiO2 nanotube array. Colloids Surf. B: Biointerfaces 175, 663–670 (2019). https://doi.org/10.1016/j.colsurfb.2018.12.023
G.A. Seisenbaeva, K. Fromell, V.V. Vinogradov, A.N. Terekhov, A.V. Pakhomov et al., Dispersion of TiO2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins. Sci. Rep. 7, 15448 (2017). https://doi.org/10.1038/s41598-017-15792-w
L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang et al., Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32, 5706–5716 (2011). https://doi.org/10.1016/j.biomaterials.2011.04.040
T. Limongi, L. Tirinato, F. Pagliari, A. Giugni, M. Allione, G. Perozziello, P. Candeloro, E. Di Fabrizio, Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-Micro Lett. 9, 1 (2016). https://doi.org/10.1007/s40820-016-0103-7
I. Unalan, S. Endlein, B. Slavik, A. Buettner, W.H. Goldmann, R. Detsch, A.R. Boccaccini, Evaluation of electrospun poly(ε-caprolactone)/gelatin nanofiber mats containing clove essential oil for antibacterial wound dressing. Pharmaceutics 11, 570 (2019). https://doi.org/10.3390/pharmaceutics11110570
A. Lapa, M. Cresswell, I. Campbell, P. Jackson, W.H. Goldmann et al., Ga and Ce ion-doped phosphate glass fibres with antibacterial properties and their composite for wound healing applications. J. Mater. Chem. B 7, 6981–6993 (2019). https://doi.org/10.1039/C9TB00820A
I. Unalan, B. Slavik, A. Buettner, W.H. Goldmann, G. Frank, A.R. Boccaccini, Physical and antibacterial properties of peppermint essential oil loaded poly (ε-caprolactone) (PCL) electrospun fiber mats for wound healing. Front. Bioeng. Biotechnol. 7, 346 (2019). https://doi.org/10.3389/fbioe.2019.00346
L. Yan, S. Si, Y. Chen, T. Yuan, H. Fan, Y. Yao, Q. Zhang, Electrospun in situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers Polym. 12, 207 (2011). https://doi.org/10.1007/s12221-011-0207-0
O. Galkina, Functional hybrid bionanomaterials based on titanium dioxide and cellulose, possessing antibacterial and drug delivery properties. Swedish University of Agricultural Sciences (2015). https://pub.epsilon.slu.se/12222/1/galkina_o_150518.pdf
S.L. Percival, P.G. Bowler, D. Russell, Bacterial resistance to silver in wound care. J. Hosp. Infect. 60, 1–7 (2005). https://doi.org/10.1016/j.jhin.2004.11.014
F.E. Ciraldo, K. Schnepf, W.H. Goldmann, A.R. Boccaccini, Development and characterization of bioactive glass containing composite coatings with ion releasing function for antibiotic-free antibacterial surgical sutures. Materials 12, 423 (2019). https://doi.org/10.3390/ma12030423
V.H. Grassian, P.T. O’Shaughnessy, A. Adamcakova-Dodd, J.M. Pettibone, P.S. Thorne, Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2–5 nm. Environ. Health Perspect. 115, 397–402 (2007). https://doi.org/10.1289/ehp.9469