Biosynthesis of Flower-Shaped CuO Nanostructures and Their Photocatalytic and Antibacterial Activities
Corresponding Author: Hafsa Siddiqui
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 29
Abstract
Copper oxide nanoflowers (CuO-NFs) have been synthesized through a novel green route using Tulsi leaves-extracted eugenol (4-allyl-2-methoxyphenol) as reducing agent. Characterizations results reveal the growth of crystalline single-phase CuO-NFs with monoclinic structure. The prepared CuO-NFs can effectively degrade methylene blue with 90% efficiency. They also show strong barrier against E. coli (27 ± 2 mm) at the concentration of 100 µg mL−1, while at the concentration of 25 µg mL−1 weak barrier has been found against all examined bacterial organisms. The results provide important evidence that CuO-NFs have sustainable performance in methylene blue degradation as well as bacterial organisms.
Highlights:
1 Eugenol (4-allyl-2-methoxyphenol) extracted from O. sanctum leaves is used as a natural reducing agent for the synthesis of CuO nanoflowers (NFs).
2 CuO-NFs can degrade methylene blue with an efficiency of 90%.
3 CuO-NFs offer a new vision to deactivate multi-drug microorganisms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O’Mullane, K. Kalantar-zadeh, Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J. Mater. Chem. C 2, 5247–5270 (2014). https://doi.org/10.1039/C4TC00345D
- H. Siddiqui, M.S. Qureshi, F.Z. Haque, Hexamine (HMT) assisted wet chemically synthesized CuO nanostructures with controlled morphology and adjustable optical behavior. Opt. Quant. Electron. 48(7), 349 (2016). https://doi.org/10.1007/s11082-016-0618-7
- V. Senthilkumar, Y.S. Kim, S. Chandrasekaran, B. Rajagopalan, E.J. Kim, J.S. Chung, Comparative supercapacitance performance of CuO nanostructures for energy storage device applications. RSC Adv. 5, 20545–20553 (2015). https://doi.org/10.1039/C5RA00035A
- Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater Sci. 60, 208–337 (2014). https://doi.org/10.1016/j.pmatsci.2013.09.003
- J. Zhang, H. Feng, Q. Qin, G. Zhang, Y. Cui, Z. Chai, W. Zheng, Interior design of three-dimensional CuO ordered architectures with enhanced performance for supercapacitors. J. Mater. Chem. A 4, 6357–6367 (2016). https://doi.org/10.1039/C6TA00397D
- J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57(4), 724–803 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.003
- X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116(18), 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731
- H. Kidowaki, T. Oku, T. Akiyama, A.S.B. Jeyadevan, J. Cuya, Fabrication and characterization of CuO-based solar cells. J. Nanosci. Nanotechnol. 8, 131–148 (2008). https://doi.org/10.5539/jmsr.v1n1p138
- P. Sahatiya, S. Badhulika, Fabrication of a solution-processed, highly flexible few layer MoS2 (n)–CuO (p) piezotronic diode on a paper substrate for an active analog frequency modulator and enhanced broadband photodetector. J. Mater. Chem. C 5, 11436–11447 (2017). https://doi.org/10.1039/C7TC02881D
- S. Das, S. Saha, D. Sen, U.K. Ghorai, D. Banerjee, K.K. Chattopadhyay, Highly oriented cupric oxide nanoknife arrays on flexible carbon fabric as high performing cold cathode emitter. J. Mater. Chem. C 2, 1321–1330 (2014). https://doi.org/10.1039/C3TC31972E
- L. Wang, K. Tang, M. Zhang, X. Zhang, J. Xu, Facile synthesis of CuO nanoparticles as anode for lithium ion batteries with enhanced performance. Funct. Mater. Lett. 7(6), 14400086 (2014). https://doi.org/10.1142/S1793604714400086
- M.M. Rahman, A.M. Asiri, Fabrication of highly sensitive ethanol sensor based on doped nanostructure materials using tiny chips. RSC Adv. 5, 63252–63263 (2015). https://doi.org/10.1039/C5RA08224B
- S.R.K. Kumar, G.P. Mamatha, H.B. Muralidhara, M.S. Anantha, S. Yallappa, B.S. Hungund, K.Y. Kumar, Highly efficient multipurpose graphene oxide embedded with copper oxide nanohybrid for electrochemical sensors and biomedical applications. J. Sci. Adv. Mater. Dev. 2(4), 493–500 (2017). https://doi.org/10.1016/j.jsamd.2017.08.003
- D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, C.-J. Park, Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors. Dalton Trans. 42, 6459–6467 (2013). https://doi.org/10.1039/C3DT50275A
- A.D. Manasrah, I.W. Almanassra, N.N. Marei, U.A. Al-Mubaiyedh, T. Laoui, M.A. Atieh, Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids. RSC Adv. 8, 1791–1802 (2018). https://doi.org/10.1039/C7RA10406E
- N. Phutanon, P. Pisitsak, H. Manuspiya, S. Ummartyotin, Synthesis of three-dimensional hierarchical CuO flower-like architecture and its photocatalytic activity for rhodamine b degradation. J. Sci. Adv. Mater. Dev. 3(3), 310–316 (2018). https://doi.org/10.1016/j.jsamd.2018.05.001
- P. Deka, A. Hazarika, R.C. Deka, P. Bharali, Influence of CuO morphology on the enhanced catalytic degradation of methylene blue and methyl orange. RSC Adv. 6, 95292–95305 (2016). https://doi.org/10.1039/C6RA20173C
- S. Sundar, G. Venkatachalam, S.J. Kwon, Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials 8(10), 823 (2018). https://doi.org/10.3390/nano8100823
- R. Cuevas, N. Durán, M.C. Diez, G.R. Tortella, O. Rubilar, Extracellular biosynthesis of copper and copper oxide nanoparticles by stereum hirsutum, a native white-rot fungus from chilean forests. J. Nanomater. (2015). https://doi.org/10.1155/2015/789089
- C. Jing, C.J. Yan, X.T. Yuan, L.P. Zhu, Biosynthesis of copper oxide nanoparticles and their potential synergistic effect on alloxan induced oxidative stress conditions during cardiac injury in Sprague-Dawley rats. J. Photochem. Photobiol. B 198, 111557 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111557
- J.K. Sharma, M.S. Akhtar, S. Ameen, P. Srivastava, G. Singh, Green Synthesis of CuO nanoparticles with leaf extract of calotropis gigantea and its dye-sensitized solar cells applications. J. Alloy. Compd. 632, 321–325 (2015). https://doi.org/10.1016/j.jallcom.2015.01.172
- M. Nasrollahzadeh, S.M. Sajadi, A.R. Vartooni, M. Bagherzadeh, Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions. J. Colloid Interf. Sci. 448, 106–113 (2015). https://doi.org/10.1016/j.jcis.2015.02.009
- B. Kumar, K. Smita, L. Cumbal, A. Debut, Y. Angulo, Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. J. Saudi Chem. Soc. 21, S475–S480 (2017). https://doi.org/10.1016/j.jscs.2015.01.009
- D. Rehana, D. Mahendiran, R.S. Kumar, A.K. Rahimana, Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacothe. 89, 1067–1077 (2017). https://doi.org/10.1016/j.biopha.2017.02.101
- D. Devipriya, S.M. Roopan, Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger. Aspergillus flavus. Mater. Sci. Eng. C 80, 38–44 (2017). https://doi.org/10.1016/j.msec.2017.05.130
- H. Raja Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, H. Nagabhushan, Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J. Taibah Univ. Sci. 9, 7–12 (2015). https://doi.org/10.1016/j.jtusci.2014.04.006
- G. Sharmila, R.S. Pradeep, K. Sandiya, S. Santhiya, C. Muthukumaran, J. Jeyanthi, N.M. Kumar, M. Thirumarimurugan, Biogenic synthesis of CuO nanoparticles using Bauhinia tomentosa leaves extract: characterization and its antibacterial application. J. Mol. Struct. 1165, 288–292 (2018). https://doi.org/10.1016/j.molstruc.2018.04.011
- K.R. Reddy, Green synthesis, morphological and optical studies of CuO nanoparticles. J. Mol. Struct. 1150, 553–557 (2017). https://doi.org/10.1016/j.molstruc.2017.09.005
- S. Hemmati, L. Mehrazin, M. Hekmati, M. Izadi, H. Veisi, Biosynthesis of CuO nanoparticles using Rosa canina fruit extract as a recyclable and heterogeneous nanocatalyst for C-N Ullmann coupling reactions. Mater. Chem. Phys. 214, 527–532 (2018). https://doi.org/10.1016/j.matchemphys.2018.04.114
- P.R. Choudhury, P. Mondal, S. Majumdar, S. Saha, G.C. Sahoo, Preparation of ceramic ultrafiltration membrane using green synthesized CuO nanoparticles for chromium (VI) removal and optimization by response surface methodology. J. Clean. Prod. 203, 511–520 (2018). https://doi.org/10.1016/j.jclepro.2018.08.289
- A.B. Rezaie, M. Montazer, M.M. Rad, Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in situ synthesis of cauliflower-like CuO nanoparticles. J. Photochem. Photobiol. B 176, 100–111 (2017). https://doi.org/10.1016/j.jphotobiol.2017.09.021
- F. Duman, I. Ocsoy, F.O. Kup, Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater. Sci. Eng. C 60, 333–338 (2016). https://doi.org/10.1016/j.msec.2015.11.052
- S. Prakash, N. Elavarasan, A. Venkatesan, K. Subashini, M. Sowndharya, V. Sujatha, Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Adv. Powder Technol. 29(12), 3315–3326 (2018). https://doi.org/10.1016/j.apt.2018.09.009
- B.T. Sone, A. Diallo, X.G. Fuku, A. Gurib-Fakim, M. Maaza, Biosynthesized CuO nano-platelets: physical properties & enhanced thermal conductivity nanofluidics. Arabian J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.03.004
- M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, S.M. Hussin, Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. J. Colloid Interf. Sci. 466, 113–119 (2016). https://doi.org/10.1016/j.jcis.2015.12.018
- M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, Green synthesis of CuO nanoparticles by aqueous extract of Anthemis nobilis flowers and their catalytic activity for the A3 coupling reaction. J. Colloid Interf. Sci. 459, 183–188 (2015). https://doi.org/10.1016/j.jcis.2015.08.020
- M. Nasrollahzadeh, M. Maham, S.M. Sajadi, Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol. J. Colloid Interf. Sci. 455, 245–253 (2015). https://doi.org/10.1016/j.jcis.2015.05.045
- V.D. Kulkarni, P. Kulkarni, Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Int. J. Chem. Stud. 1, 1–4 (2013)
- S.U. Yanpallewar, S. Rai, M. Kumar, S.B. Acharya, Evaluation of antioxidant and neuroprotective effect of Ocimum sanctum on transient cerebral ischemia and long-term cerebral hypoperfusion. Pharmacol. Biochem. Behav. 79(1), 155–164 (2004). https://doi.org/10.1016/j.pbb.2004.07.008
- M.A. Kelm, M.G. Nair, G.M. Strasburg, D.L. DeWitt, Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine 7(1), 7–13 (2000). https://doi.org/10.1016/S0944-7113(00)80015-X
- A.A. Khalil, U. Rahman, M.R. Khan, A. Sahar, T. Mehmood, M. Khan, Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Adv. 7, 32669–32681 (2017). https://doi.org/10.1039/C7RA04803C
- S. Ghosh, D. Chatterjee, S. Das, P. Bhattacharjee, Supercritical carbon dioxide extraction of eugenol-rich fraction from Ocimum sanctum Linn and a comparative evaluation with other extraction techniques: process optimization and phytochemical characterization. Ind. Crops Prod. 47, 78–85 (2013). https://doi.org/10.1016/j.indcrop.2013.02.030
- S. Kapoor, S. Saraf, Topical herbal therapies an alternative and complementary choice to combat acne. Res. J. Med. Plants 5, 650–669 (2011). https://doi.org/10.3923/rjmp.2011.650.669
- P. Pattanayak, P. Behera, D. Das, S.K. Panda, Ocimum sanctum Linn A reservoir plant for therapeutic applications: an overview. Pharmacogn. Rev. 4(7), 95–105 (2010). https://doi.org/10.4103/0973-7847.65323
- H. Rani, S.P. Singh, T.P. Yadav, M.S. Khan, M.I. Ansari, A.K. Singh, In-vitro catalytic, antimicrobial and antioxidant activities of bioengineered copper quantum dots using Mangifera indica (L.) leaf extract. Mater. Chem. Phys. 239, 122052 (2020). https://doi.org/10.1016/j.matchemphys.2019.122052
- B. Arunkumar, S. Johnson Jeyakumar, M. Jothibas, A sol–gel approach to the synthesis of CuO nanoparticles using Lantana camara leaf extract and their photo catalytic activity. Optik 183, 698–705 (2019). https://doi.org/10.1016/j.ijleo.2019.02.046
- M. Kamali, F. Samari, F. Sedaghati, Low-temperature phyto-synthesis of copper oxide nanosheets: its catalytic effect and application for colorimetric sensing. Mater. Sci. Eng. C 103, 109744 (2019). https://doi.org/10.1016/j.msec.2019.109744
- N. Sreeju, A. Rufus, D. Philip, Studies on catalytic degradation of organic pollutants and anti-bacterial property using biosynthesized CuO nanostructures. J. Mol. Liq. 242, 690–700 (2017). https://doi.org/10.1016/j.molliq.2017.07.077
- S.M. Pawar, J. Kim, A.I. Inamdar, H. Woo, Y. Jo et al., Multi-functional reactively-sputtered copper oxide electrodes for supercapacitor and electro-catalyst in direct methanol fuel cell applications. Sci. Rep. 6, 21310 (2016). https://doi.org/10.1038/srep21310
- M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy, G.E.J. Poinern, Green synthesis of metallic nanoparticles via biological entities. Materials 8, 7278–7308 (2015). https://doi.org/10.3390/ma8115377
- S. Upadhyaya, J. Behara, S.N. Tewari, Synthesis and biological activity of eugenol-copper complex. Chem. Sci. Trans. 3(1), 213–220 (2014). https://doi.org/10.3390/ma8115377
- R. Sadri, M. Hosseini, S.N. Kazi, S. Bagheri, A.H. Abdelrazek et al., A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties. J. Colloid Interf. Sci. 509, 140–152 (2018). https://doi.org/10.1016/j.jcis.2017.07.052
- M. Ito, K. Murakami, M. Yoshino, Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation. Food Chem. Toxicol. 43, 461–466 (2005). https://doi.org/10.1016/j.fct.2004.11.019
- D.P. Volanti, M.O. Orlandi, J. Andrés, E. Longo, Efficient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly. CrystEngComm 12, 1696–1699 (2010). https://doi.org/10.1039/B922978G
- L. Zhang, X.-F. Cao, Y.-L. Ma, X.-T. Chen, Z.-L. Xue, Microwave-assisted solution-phase preparation and growth mechanism of FeMoO4 hierarchical hollow spheres. CrystEngComm 12, 207–210 (2010). https://doi.org/10.1039/B912555H
- C.C. Vidyasagar, Y. Arthoba Naik, T.G. Venkatesha, R. Viswanatha, Solid-state synthesis and effect of temperature on optical properties of CuO nanoparticles. Nano-Micro Lett. 4(2), 73–77 (2012). https://doi.org/10.1007/BF03353695
- H. Siddiqui, M.R. Parra, M.S. Qureshi, M.M. Malik, F.Z. Haque, Studies of structural, optical, and electrical properties associated with defects in sodium-doped copper oxide (CuO:Na) nanostructures. J. Mater. Sci. 53(12), 8826–8843 (2018). https://doi.org/10.1007/s10853-018-2179-6
- H. Siddiqui, M.S. Qureshi, F.Z. Haque, Effect of copper precursor salts: facile and sustainable synthesis of controlled shaped copper oxide nanoparticles. Optik 127(11), 4726–4730 (2016). https://doi.org/10.1016/j.ijleo.2016.01.118
- H. Siddiqui, M.S. Qureshi, F.Z. Haque, One step, template free hydrothermal synthesis of CuO tetrapods. Optik 125(17), 4663–4667 (2014). https://doi.org/10.1016/j.ijleo.2014.04.090
- S.P. Lonkar, V.V. Pillai, S. Stephen, A. Abdala, V. Mittal, Facile in situ fabrication of nanostructured graphene-CuO hybrid with hydrogen sulfide removal capacity. Nano-Micro Lett. 8(4), 312–319 (2016). https://doi.org/10.1007/s40820-016-0090-8
- H. Siddiqui, M. Shrivastava, M.R. Parra, P. Pandey, S. Ayaz, M.S. Qureshi, The effect of La3+ ion doping on the crystallographic, optical and electronic properties of CuO nanorods. Mater. Lett. 229, 225–228 (2019). https://doi.org/10.1016/j.matlet.2018.07.029
- N.M. Vuong, N.D. Chinh, B.T. Huy, Y.-I. Lee, CuO-Decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S gas sensors. Sci. Rep. 6, 26736 (2016). https://doi.org/10.1038/srep26736
- A. Escobedo-Morales, I.I. Ruiz-Lopez, M. del Ruiz-Peralta, L. Tepech-Carrillo, M. Sanchez-Cantu, J.E. Moreno-Orea, Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. Heliyon 5(4), e01505 (2019). https://doi.org/10.1016/j.heliyon.2019.e01505
- G. Manjari, S. Saran, T. Arun, A.V.B. Rao, S.P. Devipriya, Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract. J. Saudi Chem. Soc. 21(5), 610–618 (2017). https://doi.org/10.1016/j.jscs.2017.02.004
- Y. Lu, X. Liu, K. Qiu, J. Cheng, W. Wang et al., Facile Synthesis of Graphene-Like Copper Oxide Nanofilms with Enhanced Electrochemical and Photocatalytic Properties in Energy and Environmental Applications. ACS Appl. Mater. Interfaces 7, 9682–9690 (2015). https://doi.org/10.1021/acsami.5b01451
- H. Siddiqui, M.R. Parra, F.Z. Haque, Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol-gel technique. J. Sol-Gel. Sci. Technol. 87(1), 125–135 (2018). https://doi.org/10.1007/s10971-018-4663-5
- H. Siddiqui, M.R. Parra, M.M. Malik, F.Z. Haque, Structural and optical properties of Li substituted CuO nanoparticles. Opt. Quant. Electron. 50(6), 260 (2018). https://doi.org/10.1007/s11082-018-1527-8
- B.K. Sharma, D.V. Shah, D.R. Roy, Green synthesis of CuO nanoparticles using Azadirachta indica and its antibacterial activity for medicinal applications. Mater. Res. Express 5, 095033 (2018). https://doi.org/10.1088/2053-1591/aad91d
- A. Marchese, R. Barbieri, E. Coppo, I.E. Orhan, M. Daglia, S.F. Nabavi, M. Izadi, Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit. Rev. Microbiol. 43(6), 1–22 (2017). https://doi.org/10.1080/1040841X.2017.1295225
- T. Chang, Z. Li, G. Yun, Y. Jia, H. Yang, Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method. Nano-Micro Lett. 5(3), 163–168 (2013). https://doi.org/10.1007/BF03353746
- H. Zhang, E.G. Dudley, P.M. Davidson, F. Harte, Critical Concentration of Lecithin Enhances the Antimicrobial Activity of Eugenol against Escherichia coli. Appl. Environ. Microbiol. 83(8), 03467–16 (2017). https://doi.org/10.1128/AEM.03467-16
- M.I. Nabila, K. Kannabiran, Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal. Agric. Biotechnol. 15, 56–62 (2018). https://doi.org/10.1016/j.bcab.2018.05.011
- S. Suresh, S. Karthikeyan, K. Jayamoorthy, FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. J. Sci. Adv. Mater. Dev. 1(3), 343–350 (2016). https://doi.org/10.1016/j.jsamd.2016.08.004
- D.M. El-Mekkawi, M.M. Selim, N. Hamdi, S.A. Hassan, A. Ezzat, Studies on the influence of the physicochemical characteristics of nanostructured copper, zinc and magnesium oxides on their antibacterial activities. J. Environ. Chem. Eng. 6(4), 5608–5615 (2018). https://doi.org/10.1016/j.jece.2018.08.044
References
S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O’Mullane, K. Kalantar-zadeh, Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J. Mater. Chem. C 2, 5247–5270 (2014). https://doi.org/10.1039/C4TC00345D
H. Siddiqui, M.S. Qureshi, F.Z. Haque, Hexamine (HMT) assisted wet chemically synthesized CuO nanostructures with controlled morphology and adjustable optical behavior. Opt. Quant. Electron. 48(7), 349 (2016). https://doi.org/10.1007/s11082-016-0618-7
V. Senthilkumar, Y.S. Kim, S. Chandrasekaran, B. Rajagopalan, E.J. Kim, J.S. Chung, Comparative supercapacitance performance of CuO nanostructures for energy storage device applications. RSC Adv. 5, 20545–20553 (2015). https://doi.org/10.1039/C5RA00035A
Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater Sci. 60, 208–337 (2014). https://doi.org/10.1016/j.pmatsci.2013.09.003
J. Zhang, H. Feng, Q. Qin, G. Zhang, Y. Cui, Z. Chai, W. Zheng, Interior design of three-dimensional CuO ordered architectures with enhanced performance for supercapacitors. J. Mater. Chem. A 4, 6357–6367 (2016). https://doi.org/10.1039/C6TA00397D
J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57(4), 724–803 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.003
X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116(18), 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731
H. Kidowaki, T. Oku, T. Akiyama, A.S.B. Jeyadevan, J. Cuya, Fabrication and characterization of CuO-based solar cells. J. Nanosci. Nanotechnol. 8, 131–148 (2008). https://doi.org/10.5539/jmsr.v1n1p138
P. Sahatiya, S. Badhulika, Fabrication of a solution-processed, highly flexible few layer MoS2 (n)–CuO (p) piezotronic diode on a paper substrate for an active analog frequency modulator and enhanced broadband photodetector. J. Mater. Chem. C 5, 11436–11447 (2017). https://doi.org/10.1039/C7TC02881D
S. Das, S. Saha, D. Sen, U.K. Ghorai, D. Banerjee, K.K. Chattopadhyay, Highly oriented cupric oxide nanoknife arrays on flexible carbon fabric as high performing cold cathode emitter. J. Mater. Chem. C 2, 1321–1330 (2014). https://doi.org/10.1039/C3TC31972E
L. Wang, K. Tang, M. Zhang, X. Zhang, J. Xu, Facile synthesis of CuO nanoparticles as anode for lithium ion batteries with enhanced performance. Funct. Mater. Lett. 7(6), 14400086 (2014). https://doi.org/10.1142/S1793604714400086
M.M. Rahman, A.M. Asiri, Fabrication of highly sensitive ethanol sensor based on doped nanostructure materials using tiny chips. RSC Adv. 5, 63252–63263 (2015). https://doi.org/10.1039/C5RA08224B
S.R.K. Kumar, G.P. Mamatha, H.B. Muralidhara, M.S. Anantha, S. Yallappa, B.S. Hungund, K.Y. Kumar, Highly efficient multipurpose graphene oxide embedded with copper oxide nanohybrid for electrochemical sensors and biomedical applications. J. Sci. Adv. Mater. Dev. 2(4), 493–500 (2017). https://doi.org/10.1016/j.jsamd.2017.08.003
D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, C.-J. Park, Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors. Dalton Trans. 42, 6459–6467 (2013). https://doi.org/10.1039/C3DT50275A
A.D. Manasrah, I.W. Almanassra, N.N. Marei, U.A. Al-Mubaiyedh, T. Laoui, M.A. Atieh, Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids. RSC Adv. 8, 1791–1802 (2018). https://doi.org/10.1039/C7RA10406E
N. Phutanon, P. Pisitsak, H. Manuspiya, S. Ummartyotin, Synthesis of three-dimensional hierarchical CuO flower-like architecture and its photocatalytic activity for rhodamine b degradation. J. Sci. Adv. Mater. Dev. 3(3), 310–316 (2018). https://doi.org/10.1016/j.jsamd.2018.05.001
P. Deka, A. Hazarika, R.C. Deka, P. Bharali, Influence of CuO morphology on the enhanced catalytic degradation of methylene blue and methyl orange. RSC Adv. 6, 95292–95305 (2016). https://doi.org/10.1039/C6RA20173C
S. Sundar, G. Venkatachalam, S.J. Kwon, Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials 8(10), 823 (2018). https://doi.org/10.3390/nano8100823
R. Cuevas, N. Durán, M.C. Diez, G.R. Tortella, O. Rubilar, Extracellular biosynthesis of copper and copper oxide nanoparticles by stereum hirsutum, a native white-rot fungus from chilean forests. J. Nanomater. (2015). https://doi.org/10.1155/2015/789089
C. Jing, C.J. Yan, X.T. Yuan, L.P. Zhu, Biosynthesis of copper oxide nanoparticles and their potential synergistic effect on alloxan induced oxidative stress conditions during cardiac injury in Sprague-Dawley rats. J. Photochem. Photobiol. B 198, 111557 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111557
J.K. Sharma, M.S. Akhtar, S. Ameen, P. Srivastava, G. Singh, Green Synthesis of CuO nanoparticles with leaf extract of calotropis gigantea and its dye-sensitized solar cells applications. J. Alloy. Compd. 632, 321–325 (2015). https://doi.org/10.1016/j.jallcom.2015.01.172
M. Nasrollahzadeh, S.M. Sajadi, A.R. Vartooni, M. Bagherzadeh, Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions. J. Colloid Interf. Sci. 448, 106–113 (2015). https://doi.org/10.1016/j.jcis.2015.02.009
B. Kumar, K. Smita, L. Cumbal, A. Debut, Y. Angulo, Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. J. Saudi Chem. Soc. 21, S475–S480 (2017). https://doi.org/10.1016/j.jscs.2015.01.009
D. Rehana, D. Mahendiran, R.S. Kumar, A.K. Rahimana, Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacothe. 89, 1067–1077 (2017). https://doi.org/10.1016/j.biopha.2017.02.101
D. Devipriya, S.M. Roopan, Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger. Aspergillus flavus. Mater. Sci. Eng. C 80, 38–44 (2017). https://doi.org/10.1016/j.msec.2017.05.130
H. Raja Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, H. Nagabhushan, Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J. Taibah Univ. Sci. 9, 7–12 (2015). https://doi.org/10.1016/j.jtusci.2014.04.006
G. Sharmila, R.S. Pradeep, K. Sandiya, S. Santhiya, C. Muthukumaran, J. Jeyanthi, N.M. Kumar, M. Thirumarimurugan, Biogenic synthesis of CuO nanoparticles using Bauhinia tomentosa leaves extract: characterization and its antibacterial application. J. Mol. Struct. 1165, 288–292 (2018). https://doi.org/10.1016/j.molstruc.2018.04.011
K.R. Reddy, Green synthesis, morphological and optical studies of CuO nanoparticles. J. Mol. Struct. 1150, 553–557 (2017). https://doi.org/10.1016/j.molstruc.2017.09.005
S. Hemmati, L. Mehrazin, M. Hekmati, M. Izadi, H. Veisi, Biosynthesis of CuO nanoparticles using Rosa canina fruit extract as a recyclable and heterogeneous nanocatalyst for C-N Ullmann coupling reactions. Mater. Chem. Phys. 214, 527–532 (2018). https://doi.org/10.1016/j.matchemphys.2018.04.114
P.R. Choudhury, P. Mondal, S. Majumdar, S. Saha, G.C. Sahoo, Preparation of ceramic ultrafiltration membrane using green synthesized CuO nanoparticles for chromium (VI) removal and optimization by response surface methodology. J. Clean. Prod. 203, 511–520 (2018). https://doi.org/10.1016/j.jclepro.2018.08.289
A.B. Rezaie, M. Montazer, M.M. Rad, Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in situ synthesis of cauliflower-like CuO nanoparticles. J. Photochem. Photobiol. B 176, 100–111 (2017). https://doi.org/10.1016/j.jphotobiol.2017.09.021
F. Duman, I. Ocsoy, F.O. Kup, Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater. Sci. Eng. C 60, 333–338 (2016). https://doi.org/10.1016/j.msec.2015.11.052
S. Prakash, N. Elavarasan, A. Venkatesan, K. Subashini, M. Sowndharya, V. Sujatha, Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Adv. Powder Technol. 29(12), 3315–3326 (2018). https://doi.org/10.1016/j.apt.2018.09.009
B.T. Sone, A. Diallo, X.G. Fuku, A. Gurib-Fakim, M. Maaza, Biosynthesized CuO nano-platelets: physical properties & enhanced thermal conductivity nanofluidics. Arabian J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.03.004
M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, S.M. Hussin, Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. J. Colloid Interf. Sci. 466, 113–119 (2016). https://doi.org/10.1016/j.jcis.2015.12.018
M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, Green synthesis of CuO nanoparticles by aqueous extract of Anthemis nobilis flowers and their catalytic activity for the A3 coupling reaction. J. Colloid Interf. Sci. 459, 183–188 (2015). https://doi.org/10.1016/j.jcis.2015.08.020
M. Nasrollahzadeh, M. Maham, S.M. Sajadi, Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol. J. Colloid Interf. Sci. 455, 245–253 (2015). https://doi.org/10.1016/j.jcis.2015.05.045
V.D. Kulkarni, P. Kulkarni, Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Int. J. Chem. Stud. 1, 1–4 (2013)
S.U. Yanpallewar, S. Rai, M. Kumar, S.B. Acharya, Evaluation of antioxidant and neuroprotective effect of Ocimum sanctum on transient cerebral ischemia and long-term cerebral hypoperfusion. Pharmacol. Biochem. Behav. 79(1), 155–164 (2004). https://doi.org/10.1016/j.pbb.2004.07.008
M.A. Kelm, M.G. Nair, G.M. Strasburg, D.L. DeWitt, Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine 7(1), 7–13 (2000). https://doi.org/10.1016/S0944-7113(00)80015-X
A.A. Khalil, U. Rahman, M.R. Khan, A. Sahar, T. Mehmood, M. Khan, Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Adv. 7, 32669–32681 (2017). https://doi.org/10.1039/C7RA04803C
S. Ghosh, D. Chatterjee, S. Das, P. Bhattacharjee, Supercritical carbon dioxide extraction of eugenol-rich fraction from Ocimum sanctum Linn and a comparative evaluation with other extraction techniques: process optimization and phytochemical characterization. Ind. Crops Prod. 47, 78–85 (2013). https://doi.org/10.1016/j.indcrop.2013.02.030
S. Kapoor, S. Saraf, Topical herbal therapies an alternative and complementary choice to combat acne. Res. J. Med. Plants 5, 650–669 (2011). https://doi.org/10.3923/rjmp.2011.650.669
P. Pattanayak, P. Behera, D. Das, S.K. Panda, Ocimum sanctum Linn A reservoir plant for therapeutic applications: an overview. Pharmacogn. Rev. 4(7), 95–105 (2010). https://doi.org/10.4103/0973-7847.65323
H. Rani, S.P. Singh, T.P. Yadav, M.S. Khan, M.I. Ansari, A.K. Singh, In-vitro catalytic, antimicrobial and antioxidant activities of bioengineered copper quantum dots using Mangifera indica (L.) leaf extract. Mater. Chem. Phys. 239, 122052 (2020). https://doi.org/10.1016/j.matchemphys.2019.122052
B. Arunkumar, S. Johnson Jeyakumar, M. Jothibas, A sol–gel approach to the synthesis of CuO nanoparticles using Lantana camara leaf extract and their photo catalytic activity. Optik 183, 698–705 (2019). https://doi.org/10.1016/j.ijleo.2019.02.046
M. Kamali, F. Samari, F. Sedaghati, Low-temperature phyto-synthesis of copper oxide nanosheets: its catalytic effect and application for colorimetric sensing. Mater. Sci. Eng. C 103, 109744 (2019). https://doi.org/10.1016/j.msec.2019.109744
N. Sreeju, A. Rufus, D. Philip, Studies on catalytic degradation of organic pollutants and anti-bacterial property using biosynthesized CuO nanostructures. J. Mol. Liq. 242, 690–700 (2017). https://doi.org/10.1016/j.molliq.2017.07.077
S.M. Pawar, J. Kim, A.I. Inamdar, H. Woo, Y. Jo et al., Multi-functional reactively-sputtered copper oxide electrodes for supercapacitor and electro-catalyst in direct methanol fuel cell applications. Sci. Rep. 6, 21310 (2016). https://doi.org/10.1038/srep21310
M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy, G.E.J. Poinern, Green synthesis of metallic nanoparticles via biological entities. Materials 8, 7278–7308 (2015). https://doi.org/10.3390/ma8115377
S. Upadhyaya, J. Behara, S.N. Tewari, Synthesis and biological activity of eugenol-copper complex. Chem. Sci. Trans. 3(1), 213–220 (2014). https://doi.org/10.3390/ma8115377
R. Sadri, M. Hosseini, S.N. Kazi, S. Bagheri, A.H. Abdelrazek et al., A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties. J. Colloid Interf. Sci. 509, 140–152 (2018). https://doi.org/10.1016/j.jcis.2017.07.052
M. Ito, K. Murakami, M. Yoshino, Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation. Food Chem. Toxicol. 43, 461–466 (2005). https://doi.org/10.1016/j.fct.2004.11.019
D.P. Volanti, M.O. Orlandi, J. Andrés, E. Longo, Efficient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly. CrystEngComm 12, 1696–1699 (2010). https://doi.org/10.1039/B922978G
L. Zhang, X.-F. Cao, Y.-L. Ma, X.-T. Chen, Z.-L. Xue, Microwave-assisted solution-phase preparation and growth mechanism of FeMoO4 hierarchical hollow spheres. CrystEngComm 12, 207–210 (2010). https://doi.org/10.1039/B912555H
C.C. Vidyasagar, Y. Arthoba Naik, T.G. Venkatesha, R. Viswanatha, Solid-state synthesis and effect of temperature on optical properties of CuO nanoparticles. Nano-Micro Lett. 4(2), 73–77 (2012). https://doi.org/10.1007/BF03353695
H. Siddiqui, M.R. Parra, M.S. Qureshi, M.M. Malik, F.Z. Haque, Studies of structural, optical, and electrical properties associated with defects in sodium-doped copper oxide (CuO:Na) nanostructures. J. Mater. Sci. 53(12), 8826–8843 (2018). https://doi.org/10.1007/s10853-018-2179-6
H. Siddiqui, M.S. Qureshi, F.Z. Haque, Effect of copper precursor salts: facile and sustainable synthesis of controlled shaped copper oxide nanoparticles. Optik 127(11), 4726–4730 (2016). https://doi.org/10.1016/j.ijleo.2016.01.118
H. Siddiqui, M.S. Qureshi, F.Z. Haque, One step, template free hydrothermal synthesis of CuO tetrapods. Optik 125(17), 4663–4667 (2014). https://doi.org/10.1016/j.ijleo.2014.04.090
S.P. Lonkar, V.V. Pillai, S. Stephen, A. Abdala, V. Mittal, Facile in situ fabrication of nanostructured graphene-CuO hybrid with hydrogen sulfide removal capacity. Nano-Micro Lett. 8(4), 312–319 (2016). https://doi.org/10.1007/s40820-016-0090-8
H. Siddiqui, M. Shrivastava, M.R. Parra, P. Pandey, S. Ayaz, M.S. Qureshi, The effect of La3+ ion doping on the crystallographic, optical and electronic properties of CuO nanorods. Mater. Lett. 229, 225–228 (2019). https://doi.org/10.1016/j.matlet.2018.07.029
N.M. Vuong, N.D. Chinh, B.T. Huy, Y.-I. Lee, CuO-Decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S gas sensors. Sci. Rep. 6, 26736 (2016). https://doi.org/10.1038/srep26736
A. Escobedo-Morales, I.I. Ruiz-Lopez, M. del Ruiz-Peralta, L. Tepech-Carrillo, M. Sanchez-Cantu, J.E. Moreno-Orea, Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. Heliyon 5(4), e01505 (2019). https://doi.org/10.1016/j.heliyon.2019.e01505
G. Manjari, S. Saran, T. Arun, A.V.B. Rao, S.P. Devipriya, Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract. J. Saudi Chem. Soc. 21(5), 610–618 (2017). https://doi.org/10.1016/j.jscs.2017.02.004
Y. Lu, X. Liu, K. Qiu, J. Cheng, W. Wang et al., Facile Synthesis of Graphene-Like Copper Oxide Nanofilms with Enhanced Electrochemical and Photocatalytic Properties in Energy and Environmental Applications. ACS Appl. Mater. Interfaces 7, 9682–9690 (2015). https://doi.org/10.1021/acsami.5b01451
H. Siddiqui, M.R. Parra, F.Z. Haque, Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol-gel technique. J. Sol-Gel. Sci. Technol. 87(1), 125–135 (2018). https://doi.org/10.1007/s10971-018-4663-5
H. Siddiqui, M.R. Parra, M.M. Malik, F.Z. Haque, Structural and optical properties of Li substituted CuO nanoparticles. Opt. Quant. Electron. 50(6), 260 (2018). https://doi.org/10.1007/s11082-018-1527-8
B.K. Sharma, D.V. Shah, D.R. Roy, Green synthesis of CuO nanoparticles using Azadirachta indica and its antibacterial activity for medicinal applications. Mater. Res. Express 5, 095033 (2018). https://doi.org/10.1088/2053-1591/aad91d
A. Marchese, R. Barbieri, E. Coppo, I.E. Orhan, M. Daglia, S.F. Nabavi, M. Izadi, Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit. Rev. Microbiol. 43(6), 1–22 (2017). https://doi.org/10.1080/1040841X.2017.1295225
T. Chang, Z. Li, G. Yun, Y. Jia, H. Yang, Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method. Nano-Micro Lett. 5(3), 163–168 (2013). https://doi.org/10.1007/BF03353746
H. Zhang, E.G. Dudley, P.M. Davidson, F. Harte, Critical Concentration of Lecithin Enhances the Antimicrobial Activity of Eugenol against Escherichia coli. Appl. Environ. Microbiol. 83(8), 03467–16 (2017). https://doi.org/10.1128/AEM.03467-16
M.I. Nabila, K. Kannabiran, Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal. Agric. Biotechnol. 15, 56–62 (2018). https://doi.org/10.1016/j.bcab.2018.05.011
S. Suresh, S. Karthikeyan, K. Jayamoorthy, FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. J. Sci. Adv. Mater. Dev. 1(3), 343–350 (2016). https://doi.org/10.1016/j.jsamd.2016.08.004
D.M. El-Mekkawi, M.M. Selim, N. Hamdi, S.A. Hassan, A. Ezzat, Studies on the influence of the physicochemical characteristics of nanostructured copper, zinc and magnesium oxides on their antibacterial activities. J. Environ. Chem. Eng. 6(4), 5608–5615 (2018). https://doi.org/10.1016/j.jece.2018.08.044