Surface-Engineered Li4Ti5O12 Nanostructures for High-Power Li-Ion Batteries
Corresponding Author: Dhamodaran Santhanagopalan
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 30
Abstract
Materials with high-power charge–discharge capabilities are of interest to overcome the power limitations of conventional Li-ion batteries. In this study, a unique solvothermal synthesis of Li4Ti5O12 nanoparticles is proposed by using an off-stoichiometric precursor ratio. A Li-deficient off-stoichiometry leads to the coexistence of phase-separated crystalline nanoparticles of Li4Ti5O12 and TiO2 exhibiting reasonable high-rate performances. However, after the solvothermal process, an extended aging of the hydrolyzed solution leads to the formation of a Li4Ti5O12 nanoplate-like structure with a self-assembled disordered surface layer without crystalline TiO2. The Li4Ti5O12 nanoplates with the disordered surface layer deliver ultrahigh-rate performances for both charging and discharging in the range of 50–300C and reversible capacities of 156 and 113 mAh g−1 at these two rates, respectively. Furthermore, the electrode exhibits an ultrahigh-charging-rate capability up to 1200C (60 mAh g−1; discharge limited to 100C). Unlike previously reported high-rate half cells, we demonstrate a high-power Li-ion battery by coupling Li4Ti5O12 with a high-rate LiMn2O4 cathode. The full cell exhibits ultrafast charging/discharging for 140 and 12 s while retaining 97 and 66% of the anode theoretical capacity, respectively. Room- (25 °C), low- (− 10 °C), and high- (55 °C) temperature cycling data show the wide temperature operation range of the cell at a high rate of 100C.
Highlights:
1 Surface-engineered Li4Ti5O12 nanoparticles were synthesized by an off-stoichiometric solvothermal process.
2 The electrode exhibited ultrafast charge–discharge (up to 1200C) performances in a half-cell configuration.
3 A full cell consisting of the engineered Li4Ti5O12 anode and LiMn2O4 cathode exhibited an ultrahigh-rate capability (up to 200C), long cycling life (1000 cycles), and robust performances (at − 10, 25, and 55 °C).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Tao, Z. Tan, C. Ma, J. Yang, Z. Ma, S. Zheng, Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv. Ener. Mater. 12, 1601625 (2017). https://doi.org/10.1002/aenm.201601625
- Z. Yang, D. Choi, S. Kerisit, K.M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power Sources 192, 588–598 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.038
- J.C. Daigle, Y. Asakawa, M. Beaupre, V. Garipy, R. Vieillette, D. Laul, M. Trdeau, K. Zaghib, Boosting ultra-fast charge battery performance: filling porous nano Li4Ti5O12 particles with 3D network of N-doped carbons. Sci. Rep. 9, 16871 (2019). https://doi.org/10.1038/s41598-019-53195-1
- Z. Yao, X. Xia, D. Xie, Y. Wang, S. Liu, S. Deng, X. Wang, J. Tu, Enhancing ultrafast lithium ion storage of Li4Ti5O12 by tailored TiC/C core/shell skeleton plus nitrogen doping. Adv. Funct. Mater. 28, 1802756 (2018). https://doi.org/10.1002/adfm.201802756
- Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44, 5926–5940 (2015). https://doi.org/10.1039/C4CS00442F
- L. Kavan, J. Procházka, T.M. Spitler, M. Kalbáč, M. Zukalová, T. Drezen, M. Grätzel, Li insertion into Li4Ti5O12 (Spinel). J. Electrochem. Soc. 150, A1000–A1007 (2003). https://doi.org/10.1149/1.1581262
- J.M. Feckl, K. Fominykh, M. Döblinger, D. Fattakhova-Rohlfing, T. Bein, Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew. Chem. Int. Ed. 51, 7459–7463 (2012). https://doi.org/10.1002/anie.201201463
- W.J.H. Borghols, M. Wagemaker, U. Lafont, E.M. Kelder, F.M. Mulder, Size effects in the Li4+xTi5O12 spinel. J. Am. Chem. Soc. 131, 17786–17792 (2009). https://doi.org/10.1021/ja902423e
- B. Gangaja, K.S. Reddy, S. Nair, D. Santhanagopalan, Impact of carbon nanostructures as additives with spinel Li4Ti5O12/LiMn2O4 electrodes for lithium ion battery technology. ChemistrySelect 2, 9772–9776 (2017). https://doi.org/10.1002/slct.201702367
- J.H. Jeong, M.S. Kim, Y.J. Choi, G.W. Lee, B.H. Park, S.W. Lee, K.C. Roh, K.B. Kim, Rational design of oxide/carbon composites to achieve superior rate-capability: via enhanced lithium-ion transport across carbon to oxide. J. Mater. Chem. A 6, 6033–6044 (2018). https://doi.org/10.1039/C8TA00883C
- Z. Yao, X. Xia, C. Zhou, Y. Zhong, Y. Wang et al., Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv. Sci. 5, 1700786 (2018). https://doi.org/10.1002/advs.201700786
- Y.R. Jhan, J.G. Duh, Synthesis of entanglement structure in nanosized Li4Ti5O12/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction. J. Power Sources 198, 294–297 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.063
- H. Gu, F. Chen, C. Liu, J. Qian, M. Ni, T. Liu, Scalable fabrication of core shell structures Li4Ti5O12/PPy particles embedded in N-doped graphene networks as advanced anode for lithium-ion batteries. J. Power Sources 369, 42–49 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.083
- Y.Q. Wang, L. Gu, Y.G. Guo, H. Li, X.Q. He, S. Tsukimoto, Y. Ikuhara, L.J. Wan, Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134, 7874–7879 (2012). https://doi.org/10.1021/ja301266w
- B. Gangaja, P.H.P. Muralidharan, S. Nair, D. Santhanagopalan, Ultralong (10 K) cycle-life and high-power li-ion storage in Li4Ti5O12 films developed via sustainable electrophoretic deposition process. ACS Sustainable Chem. Eng. 6, 4705–4710 (2018). https://doi.org/10.1021/acssuschemeng.7b03787
- H. Ni, L.Z. Fan, Nano-Li4Ti5O12 anchored on carbon nanotubes by liquid phase deposition as anode material for high rate lithium-ion batteries. J. Power Sources 214, 195–199 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.074
- B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009). https://doi.org/10.1038/nature07853
- B. Gangaja, S.V. Nair, D. Santhanagopalan, Interface-engineered Li4Ti5O12–TiO2 dual-phase nanoparticles and CNT additive for supercapacitor-like high-power Li-ion battery applications. Nanotechnology 29, 095402 (2018). https://doi.org/10.1088/1361-6528/aaa2ea
- C.Y. Xu, P.X. Zhang, L. Yan, Blue shift of Raman peak from coated TiO2 nanoparticles. J. Raman Spectrosc. 32, 862–865 (2001). https://doi.org/10.1002/jrs.773
- B. Babu, S.G. Ullattil, R. Prasannachandran, J. Kavil, P. Periyat, M.M. Shaijumon, Ti3+ induced brown TiO2 nanotubes for high performance sodium-ion hybrid capacitors. ACS Sustainable Chem. Eng. 6, 5401–5412 (2018). https://doi.org/10.1021/acssuschemeng.8b00236
- K. Naoi, W. Naoi, S. Aoyagi, J.-I. Miyamoto, T. Kamino, New generation “nanohybrid supercapacitor”. Acc. Chem. Res. 46, 1075–1083 (2013). https://doi.org/10.1021/ar200308h
- E. Zhao, C. Qin, H.R. Jung, G. Berdichevsky, A. Nese, S. Marder, G. Yushin, Lithium titanate confined in carbon nanopores for asymmetric supercapacitors. ACS Nano 10, 3977–3984 (2016). https://doi.org/10.1021/acsnano.6b00479
- N. Li, Z. Chen, W. Ren, F. Li, H.-M. Cheng, Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U.S.A. 109, 17360–17365 (2012). https://doi.org/10.1073/pnas.1210072109
- H.-G. Jung, S.-T. Myung, C.S. Yoon, S.-B. Son, K.H. Oh, K. Amine, B. Scrosati, Y.-K. Sun, Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 4, 1345–1351 (2011). https://doi.org/10.1039/c0ee00620c
- S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou, L. Qi, Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ. Sci. 7, 1924–1930 (2014). https://doi.org/10.1039/c3ee42646g
- L. Kavan, M. Grätzel, Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. Electrochem. Solid-State Lett. 5, A39–A42 (2002). https://doi.org/10.1149/1.1432783
- J. Liu, X. Wei, X.W. Liu, Two-dimensional wavelike spinel lithium titanate for fast lithium storage. Sci. Rep. 5, 9782 (2015). https://doi.org/10.1038/srep09782
- M. Odziomek, F. Chaput, A. Rutkowska, K. Świerczek, D. Olszewska, M. Sitarz, F. Lerouge, S. Parola, Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat. Commun. 8, 15636 (2017). https://doi.org/10.1038/ncomms15636
- J.H. Jeong, M.S. Kim, Y.H. Kim, K.C. Roh, K.B. Kim, High-rate Li4Ti5O12/N-doped reduced graphene oxide composite using cyanamide both as nanospacer and a nitrogen doping source. J. Power Sources 336, 376–384 (2016). https://doi.org/10.1016/j.jpowsour.2016.11.015
- S.T. Myung, M. Kikuchi, C.S. Yoon, H. Yashiro, S.J. Kim, Y.K. Sun, B. Scrosati, Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 6, 2609–2614 (2013). https://doi.org/10.1039/c3ee41960f
- H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee et al., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017). https://doi.org/10.1126/science.aam5852
- S. Lee, Y. Cho, H.K. Song, H.T. Lee, J. Cho, Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem. Int. Ed. 51, 8748–8752 (2012). https://doi.org/10.1002/anie.201203581
- F. Zoller, K. Peters, P.M. Zehetmaier, P. Zeller, M. Döblinger, T. Bein, Z. Sofer, D. Fattakhova-Rohlfing, Making ultrafast high-capacity anodes for lithium-ion batteries via antimony doping of nanosized tin oxide/graphene composites. Adv. Funct. Mater. 28, 1706529 (2018). https://doi.org/10.1002/adfm.201706529
- H. Zhang, X. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277–281 (2011). https://doi.org/10.1038/nnano.2011.38
- J. Hu, Y. Jiang, S. Cui, Y. Duan, T. Liu et al., 3D-printed cathodes of LiMn1− xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Adv. Energy Mater. 6, 1600856 (2016). https://doi.org/10.1002/aenm.201600856
- J. Zheng, Y. Hou, Y. Duan, X. Song, Y. Wei et al., Janus solid–liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries. Nano Lett. 15, 6102–6109 (2015). https://doi.org/10.1021/acs.nanolett.5b02379
- W. Guo, Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ. Sci. 5, 5221–5225 (2012). https://doi.org/10.1039/C1EE02148F
- Z.S. Wu, W. Ren, L. Xu, F. Li, H.M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5, 5463–5471 (2011). https://doi.org/10.1021/nn2006249
- S.R. Kasireddy, B. Gangaja, S.V. Nair, D. Santhanagopalan, Mn4+ rich surface enabled elevated temperature and full-cell cycling performance of LiMn2O4 cathode material. Electrochim. Acta 250, 359–367 (2017). https://doi.org/10.1016/j.electacta.2017.08.054
- G. Armstrong, A.R. Armstrong, P.G. Bruce, P. Reale, B. Scrosati, TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 18, 2597 (2014). https://doi.org/10.1002/adma.200601232
- Z. Weng, Z. Wang, W. Peng, H. Guo, X. Li, An improved solid-state reaction to synthesize Zr-doped Li4Ti5O12 anode material and its application in LiMn2O4/Li4Ti5O12 full-cell. Ceram. Int. 40, 10053–10059 (2014). https://doi.org/10.1016/j.ceramint.2014.04.011
- X. Wang, B. Liu, X. Hou, Q. Wang, W. Li, D. Chen, G. Shen, Ultralong-life and high-rate web-like Li 4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Res. 7, 1073–1082 (2014). https://doi.org/10.1007/s12274-014-0470-7
- G. Xu, P. Han, S. Dong, H. Liu, G. Cui, L. Chen, Li4Ti5O12-based energy conversion and storage systems: status and prospects. Coord. Chem. Rev. 343, 139–184 (2017). https://doi.org/10.1016/j.ccr.2017.05.006
- X. Su, J. Liu, C. Zhang, T. Huang, Y. Wang, A. Yu, High power lithium-ion battery based on a LiMn2O4 nanorod cathode and a carbon-coated Li4Ti5O12 nanowire anode. RSC Adv. 6, 107355–107363 (2016). https://doi.org/10.1039/C6RA23590E
- I. Belharouak, Y.-K. Sun, W. Lu, K. Amine, On the safety of the Li4Ti5O12∕LiMn2O4 lithium-ion battery system. J. Electrochem. Soc. 154, A1083–A1087 (2007). https://doi.org/10.1149/1.2783770
- O.K. Park, Y. Cho, S. Lee, H.-C. Yoo, H.-K. Song, J. Cho, Who will drive electric vehicles, Olivine or Spinel? Energy Environ. Sci. 4, 1621–1633 (2011). https://doi.org/10.1039/c0ee00559b
References
Y. Tao, Z. Tan, C. Ma, J. Yang, Z. Ma, S. Zheng, Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv. Ener. Mater. 12, 1601625 (2017). https://doi.org/10.1002/aenm.201601625
Z. Yang, D. Choi, S. Kerisit, K.M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power Sources 192, 588–598 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.038
J.C. Daigle, Y. Asakawa, M. Beaupre, V. Garipy, R. Vieillette, D. Laul, M. Trdeau, K. Zaghib, Boosting ultra-fast charge battery performance: filling porous nano Li4Ti5O12 particles with 3D network of N-doped carbons. Sci. Rep. 9, 16871 (2019). https://doi.org/10.1038/s41598-019-53195-1
Z. Yao, X. Xia, D. Xie, Y. Wang, S. Liu, S. Deng, X. Wang, J. Tu, Enhancing ultrafast lithium ion storage of Li4Ti5O12 by tailored TiC/C core/shell skeleton plus nitrogen doping. Adv. Funct. Mater. 28, 1802756 (2018). https://doi.org/10.1002/adfm.201802756
Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44, 5926–5940 (2015). https://doi.org/10.1039/C4CS00442F
L. Kavan, J. Procházka, T.M. Spitler, M. Kalbáč, M. Zukalová, T. Drezen, M. Grätzel, Li insertion into Li4Ti5O12 (Spinel). J. Electrochem. Soc. 150, A1000–A1007 (2003). https://doi.org/10.1149/1.1581262
J.M. Feckl, K. Fominykh, M. Döblinger, D. Fattakhova-Rohlfing, T. Bein, Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew. Chem. Int. Ed. 51, 7459–7463 (2012). https://doi.org/10.1002/anie.201201463
W.J.H. Borghols, M. Wagemaker, U. Lafont, E.M. Kelder, F.M. Mulder, Size effects in the Li4+xTi5O12 spinel. J. Am. Chem. Soc. 131, 17786–17792 (2009). https://doi.org/10.1021/ja902423e
B. Gangaja, K.S. Reddy, S. Nair, D. Santhanagopalan, Impact of carbon nanostructures as additives with spinel Li4Ti5O12/LiMn2O4 electrodes for lithium ion battery technology. ChemistrySelect 2, 9772–9776 (2017). https://doi.org/10.1002/slct.201702367
J.H. Jeong, M.S. Kim, Y.J. Choi, G.W. Lee, B.H. Park, S.W. Lee, K.C. Roh, K.B. Kim, Rational design of oxide/carbon composites to achieve superior rate-capability: via enhanced lithium-ion transport across carbon to oxide. J. Mater. Chem. A 6, 6033–6044 (2018). https://doi.org/10.1039/C8TA00883C
Z. Yao, X. Xia, C. Zhou, Y. Zhong, Y. Wang et al., Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv. Sci. 5, 1700786 (2018). https://doi.org/10.1002/advs.201700786
Y.R. Jhan, J.G. Duh, Synthesis of entanglement structure in nanosized Li4Ti5O12/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction. J. Power Sources 198, 294–297 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.063
H. Gu, F. Chen, C. Liu, J. Qian, M. Ni, T. Liu, Scalable fabrication of core shell structures Li4Ti5O12/PPy particles embedded in N-doped graphene networks as advanced anode for lithium-ion batteries. J. Power Sources 369, 42–49 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.083
Y.Q. Wang, L. Gu, Y.G. Guo, H. Li, X.Q. He, S. Tsukimoto, Y. Ikuhara, L.J. Wan, Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134, 7874–7879 (2012). https://doi.org/10.1021/ja301266w
B. Gangaja, P.H.P. Muralidharan, S. Nair, D. Santhanagopalan, Ultralong (10 K) cycle-life and high-power li-ion storage in Li4Ti5O12 films developed via sustainable electrophoretic deposition process. ACS Sustainable Chem. Eng. 6, 4705–4710 (2018). https://doi.org/10.1021/acssuschemeng.7b03787
H. Ni, L.Z. Fan, Nano-Li4Ti5O12 anchored on carbon nanotubes by liquid phase deposition as anode material for high rate lithium-ion batteries. J. Power Sources 214, 195–199 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.074
B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009). https://doi.org/10.1038/nature07853
B. Gangaja, S.V. Nair, D. Santhanagopalan, Interface-engineered Li4Ti5O12–TiO2 dual-phase nanoparticles and CNT additive for supercapacitor-like high-power Li-ion battery applications. Nanotechnology 29, 095402 (2018). https://doi.org/10.1088/1361-6528/aaa2ea
C.Y. Xu, P.X. Zhang, L. Yan, Blue shift of Raman peak from coated TiO2 nanoparticles. J. Raman Spectrosc. 32, 862–865 (2001). https://doi.org/10.1002/jrs.773
B. Babu, S.G. Ullattil, R. Prasannachandran, J. Kavil, P. Periyat, M.M. Shaijumon, Ti3+ induced brown TiO2 nanotubes for high performance sodium-ion hybrid capacitors. ACS Sustainable Chem. Eng. 6, 5401–5412 (2018). https://doi.org/10.1021/acssuschemeng.8b00236
K. Naoi, W. Naoi, S. Aoyagi, J.-I. Miyamoto, T. Kamino, New generation “nanohybrid supercapacitor”. Acc. Chem. Res. 46, 1075–1083 (2013). https://doi.org/10.1021/ar200308h
E. Zhao, C. Qin, H.R. Jung, G. Berdichevsky, A. Nese, S. Marder, G. Yushin, Lithium titanate confined in carbon nanopores for asymmetric supercapacitors. ACS Nano 10, 3977–3984 (2016). https://doi.org/10.1021/acsnano.6b00479
N. Li, Z. Chen, W. Ren, F. Li, H.-M. Cheng, Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U.S.A. 109, 17360–17365 (2012). https://doi.org/10.1073/pnas.1210072109
H.-G. Jung, S.-T. Myung, C.S. Yoon, S.-B. Son, K.H. Oh, K. Amine, B. Scrosati, Y.-K. Sun, Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 4, 1345–1351 (2011). https://doi.org/10.1039/c0ee00620c
S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou, L. Qi, Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ. Sci. 7, 1924–1930 (2014). https://doi.org/10.1039/c3ee42646g
L. Kavan, M. Grätzel, Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. Electrochem. Solid-State Lett. 5, A39–A42 (2002). https://doi.org/10.1149/1.1432783
J. Liu, X. Wei, X.W. Liu, Two-dimensional wavelike spinel lithium titanate for fast lithium storage. Sci. Rep. 5, 9782 (2015). https://doi.org/10.1038/srep09782
M. Odziomek, F. Chaput, A. Rutkowska, K. Świerczek, D. Olszewska, M. Sitarz, F. Lerouge, S. Parola, Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat. Commun. 8, 15636 (2017). https://doi.org/10.1038/ncomms15636
J.H. Jeong, M.S. Kim, Y.H. Kim, K.C. Roh, K.B. Kim, High-rate Li4Ti5O12/N-doped reduced graphene oxide composite using cyanamide both as nanospacer and a nitrogen doping source. J. Power Sources 336, 376–384 (2016). https://doi.org/10.1016/j.jpowsour.2016.11.015
S.T. Myung, M. Kikuchi, C.S. Yoon, H. Yashiro, S.J. Kim, Y.K. Sun, B. Scrosati, Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 6, 2609–2614 (2013). https://doi.org/10.1039/c3ee41960f
H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee et al., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017). https://doi.org/10.1126/science.aam5852
S. Lee, Y. Cho, H.K. Song, H.T. Lee, J. Cho, Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem. Int. Ed. 51, 8748–8752 (2012). https://doi.org/10.1002/anie.201203581
F. Zoller, K. Peters, P.M. Zehetmaier, P. Zeller, M. Döblinger, T. Bein, Z. Sofer, D. Fattakhova-Rohlfing, Making ultrafast high-capacity anodes for lithium-ion batteries via antimony doping of nanosized tin oxide/graphene composites. Adv. Funct. Mater. 28, 1706529 (2018). https://doi.org/10.1002/adfm.201706529
H. Zhang, X. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277–281 (2011). https://doi.org/10.1038/nnano.2011.38
J. Hu, Y. Jiang, S. Cui, Y. Duan, T. Liu et al., 3D-printed cathodes of LiMn1− xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Adv. Energy Mater. 6, 1600856 (2016). https://doi.org/10.1002/aenm.201600856
J. Zheng, Y. Hou, Y. Duan, X. Song, Y. Wei et al., Janus solid–liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries. Nano Lett. 15, 6102–6109 (2015). https://doi.org/10.1021/acs.nanolett.5b02379
W. Guo, Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ. Sci. 5, 5221–5225 (2012). https://doi.org/10.1039/C1EE02148F
Z.S. Wu, W. Ren, L. Xu, F. Li, H.M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5, 5463–5471 (2011). https://doi.org/10.1021/nn2006249
S.R. Kasireddy, B. Gangaja, S.V. Nair, D. Santhanagopalan, Mn4+ rich surface enabled elevated temperature and full-cell cycling performance of LiMn2O4 cathode material. Electrochim. Acta 250, 359–367 (2017). https://doi.org/10.1016/j.electacta.2017.08.054
G. Armstrong, A.R. Armstrong, P.G. Bruce, P. Reale, B. Scrosati, TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 18, 2597 (2014). https://doi.org/10.1002/adma.200601232
Z. Weng, Z. Wang, W. Peng, H. Guo, X. Li, An improved solid-state reaction to synthesize Zr-doped Li4Ti5O12 anode material and its application in LiMn2O4/Li4Ti5O12 full-cell. Ceram. Int. 40, 10053–10059 (2014). https://doi.org/10.1016/j.ceramint.2014.04.011
X. Wang, B. Liu, X. Hou, Q. Wang, W. Li, D. Chen, G. Shen, Ultralong-life and high-rate web-like Li 4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Res. 7, 1073–1082 (2014). https://doi.org/10.1007/s12274-014-0470-7
G. Xu, P. Han, S. Dong, H. Liu, G. Cui, L. Chen, Li4Ti5O12-based energy conversion and storage systems: status and prospects. Coord. Chem. Rev. 343, 139–184 (2017). https://doi.org/10.1016/j.ccr.2017.05.006
X. Su, J. Liu, C. Zhang, T. Huang, Y. Wang, A. Yu, High power lithium-ion battery based on a LiMn2O4 nanorod cathode and a carbon-coated Li4Ti5O12 nanowire anode. RSC Adv. 6, 107355–107363 (2016). https://doi.org/10.1039/C6RA23590E
I. Belharouak, Y.-K. Sun, W. Lu, K. Amine, On the safety of the Li4Ti5O12∕LiMn2O4 lithium-ion battery system. J. Electrochem. Soc. 154, A1083–A1087 (2007). https://doi.org/10.1149/1.2783770
O.K. Park, Y. Cho, S. Lee, H.-C. Yoo, H.-K. Song, J. Cho, Who will drive electric vehicles, Olivine or Spinel? Energy Environ. Sci. 4, 1621–1633 (2011). https://doi.org/10.1039/c0ee00559b